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In modern language this famous theorem says that for a compact Riemann surface X
its Picard variety Picg(X ) and its Jacobian J(X)} are canonically isomorphic. Of course,
the theorem was originally formulated and proved by Abel and Jacobi around 1825 in much
more elementary terms (recall that at this time, even the notion of a Riemann surface itself
had to wait for 25 more years}. The aim of these notes is to present a proof of this theorem
as elementary as possible, but indicating in many places the relation to more advanced
topics and further developments.

The whole story began with the attempt of making any sense out of an integral of the
form

/ dr
Y N

/R(:r,y)d;r

with a rational function R of two complex variables x and y which are related by a poly-
nomial equation f(r.y) = 0 of degree > 3 (such integrals are still called Abelian}.

or, more generally,

The first step is now to consider
w = R{z,y)dz

as a meromorphic differential on the Riemann surface X defined by f. Let us assume that
w is even holomorphic on X (this is the first case to consider: abelian differentials of the
first kind). Recall from the Riemann-Roch theorem that the holomorphic differentials on
X form a g-dimensional complex vector space {{(X) = H%(X,Q), where g is the genus of

X.
Q
[w
P

Now the definite integral
on X depends on the chosen path from P to §, or more precisely on its homology class,
Hence fp w is only determined up to adding [_w for a closed path a on X. The homology
classes of these cycles form a free abelian group

H\(X, 2Z) =7
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of rank 2¢, hence the complex numbers { f w : & € Hy(X,Z)} form a subgoup of € which,
ifg>2in almost all cases is a dense subset. So it is impossible to attribute any reasonable
meaning to f p w, except on an elliptic curve.

The situation definitely improves if instead of looking at a single holomorphic differ-
ential w, we consider a basia wy,...,w, of U X) (which shall be fixed throughout these
notes): Let

A={{Jwr, .., fw} €C 1 a € Hi(X,B)}
o [+ 1

Let us fix moreover a canonical (or symplectic) basis o, 5, ... vag, Ay of Hij(X,Z). Then
obviously A is an additive subgroup of C? generated by the 2¢ vectors

A.':=(f.d|,...,fw,), i=1,...,2¢

oy

where from now on we make the convention
a|+g:=ﬂiv i=1----'g

Propogition: A is ¢ latizce
(i.e. discrete and not conlained in any hyperplane).

equivalently: A,,. .., Ay, are IR-linearly independent.

The proof will be an easy censequence of Abel’s theorem and is therefore postponed.
We note the following important consequence:

Corollary: The map
pi X xX — J(X):=C%A

q Q
(P V= (fw,...,[w,) mod A
P P

is well defined.
We will exploit this fact and study this map in detail, but first note that
J(X):=C/A

is not only an abelian group, but also a complex manifold: topologically J{X) is obtained
from the (fundamental) parallelotop spanned by the 2¢ vectors 4, .. Az, InC? = RY by
identifying opposite sides, so J(X) is a 2¢-dimensional real torus. Moreover the quotient
map € -+ J(X} is a local homeomorphism {even the universal covering map), hence can
be used to put an analytic structrue on this torus. Note that with this complex structure
on J(X), the map p of the Corollary is analytic. Using Riemann’s bilinear relations and
thets functions one shows that J{X) can even be embedded into & proje. .ive space, i.e.

J(X) is an abelian variety. It is called the Jacobian of X.
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Finally note that the analytic torus J(X) does not (up to analytic isomorphism)
depend on the choice of a basis of (X)) since the change from one basis to another
is given by a matrix in GL,(C), hence biholomorphic. The analytic structure of J{X)
depends however on X, although as groups and even as rea! analytic manifolds all tori of
the same dimension are isomorphic.

We now come to the formulation of the Abel-Jacobi theorem: Fix a point Py € X
and consider the map P — p{ P, P); this is an analytic map X — J(.X), which we shall
again denote by u. One important consequence of the Abel-Jacobi theoren: is that this p
i3 injective and even an analytic embedding.

We need to extend our map u to divisors: recall that the group of {Weil) divisors
Div(X) on X is defined to be the free abelian group on the points of X, i.c.

Div{X}={ Z npPinp € Z, np =0 for all but finitely many 7}
PEX

with formal addition as group law. For D = % np P Div(X), the degree of D is

PEX
deg D= 5 np.
PEX

Theorem (Abel-Jacobi): The map

o Divg(X) — J(XD)

P
D=anP»—v(§:np}'u|, anfu,g
PeX pex P pex P
t9 @ surjective group homomorphiem with kernel Divy(X).
Moreover u is independent of the choice of Py.

(Dive(X) is the group of divisors of degree 0; Diva(X) is the gronp of principal divisors
of X, i.e divisors of the form D = div({f) for a meromorphic function f on X: recall that

for f € M(X), div(f) = ¥ ordp(f) - P is a divisor of degree 0.)
PeX

At several places in the proof we shall necd the following
Lemma 1: Let P C H be a fundamental polygon for X {obtained from a canonical

dissection of X, say). Choose Py € 'Fo" and let 5 be a meromorphic differential on X without
poles on OP. For a holomorphic differentiai w € Q(X), cans:der the halomarphic function
foon 'P gwen by f(P) = fP w {which is well defined since P is simply connected),

Then:

29

2m-znfsp(fn)=—2(fmﬂ) (f‘“’)

PeX =1

where a, and b, are the edges of P as in the figure on the nexl page, and where we use the
conventions a;y, = b; and b4y 1= o]}

ry W
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{This lemma is sometimes called the first reciprocity law; it also plays a key réle in
the proof of Riemann’s period relations.)

Proof of the lemma:

Let U. (1 = 1,...,g4) be a simply connected neighbourhood of ¢, - {@} in X, and
denote, as will always be done, by the same symbol its inverse unage iu a neighibourhood
of P in H. Choose points I%; and P,; on either side of a, in U,. Fora pomnt P ¢ U, define

P n
fll(P) ?:f w! +/ !
Py o
P2 P
fa P} :=/ w / w
o iz

where in both fornulas the first integral is computed along a path in P, and the second
one in U;.

Finally choose a path v in U, U {Q) joining P to Q as indicated. T..en clearly the
path vy PP PP, P~v7'h, is mullhomotopic in X therefore we have

falP) -~ fa(P) = —] )

5,

Now for a polygon P’ inside P which is close enough to P such that all the poles of 5 lie
inside P', we can apply the residue theorem for domains in € to obtain

N =2x1 Res =2 v Resp
jwff 3 Resp(fn) = 2m0 Y Resp(fy)

Per Pex

ig
The left hand side s 3 ([, fn + fc, fn). Letting P' tend to P we fnally obtain

=1

2ri Z Resp(fn) = %L'(Li = faam= —‘Z (/., ’.') (/5 w')

PEX =]

Now we come to the proof of the theorem:
It is clear from the definition that 4 is a group homomorphism.

If we repluce P by a point P§ € X, i i changed by adding ¥ np f:;” wi to the i-th
PeX

component. Since }. np = degD =0, we see that g1 1dependent of the clioice of Py,
PEX

To show that u factors through Picg(X), i.e. Divp(XX) < kery, let f e AM{X) and let
D =div(f) = 3 ordp{f)- P be the corresponding principal divisor. Then according to
PEX

lemma 1 we have

— P
D) = (Z ordpt ) [ wr. ., 3 orde(f) | wg))
PEX P Po

° PEX
(et o)
(SN =S LD ()

and this is an element of A beeause 7= L ffi Is an integer (since a prinntive of %;[ 15 lot f,
which is well defined up to 200 Z).
(The third quality in the above computation holds hecanse all poles of %,[ are simple.)

The next step in the proof is Abel’s theorem: the injectivity of the map Picg(X) —
J(X). Thus we have to show that ker p C Divy (X))
Let D= 3% npP € kerp. We have to find f € M{X) with D = divf. We shall
show that thr»r.:fr;‘;cisis a meromorphic differential 5 on X with the following properties:
111 77 is holomorphic on X — Supp D
(uyordp(n)y = -1 for all P € Supp D
(it hespln) = np for all P e Supp D
{iv) .{a.“" c2miZfori=1,...,2g

Once we have found such n we set

P

sipy=oxpl [ )

Fo

This f is well defined berause of (iv), holomorphic outside Supp(D) because of {i); near
P € Supp D it behaves like ™" because of (i) and (iii), hence is meromorphic. Firally
ordp(f) = np.



To prove the existence of # with properties (i) - (iii) we use Riemann-Roch: Let
SuppD =: {P,....P.}, D := Ph+... + P, and QDY X) the set of all meromorphic
differentials n on X with divyg > ~D. If K denotes a cancnical divisor on X, we get from
the Riemann—-Roch theorem

dim QDY X) = ho(K + D) = ho(—D) —deg{-D) -1+ g=n—-1+g
Now consider the C-linear map

QDyxy L. ¢n
n — (Respn,...,Resp, 7)

Since the sum of the residues of a meromorphic differential on a Riemann surface is al-

ways 0, the image of p is contained iu the hyperplane H := {{z;...., e 0N 5 =0)
=1

Obviously kerp = §}{X), which is g-dimensional. So the image of p is of dhuension
n+l+g=g=n+1=dimH. Thus pis surjective, and we find € p~'{np...... np ),
i.e. satisfying properties (i) - (ili). Note that this argument works for all divisors, not only
those of degree 0.

It remains to show that we cau choose n € p~!({np,

..... np, ) satisfying property {iv).
We introduce the notations

P
f,l,(P):z'[ W, k=1,....9

Po

Ad:::/wh k=1,...,:t=1,....2¢
a

B,k::/wk, E=1,...,0:1=1,....2
LY

we can compute the k-th component of u( ), using lemma 1:

(6(DVi - Y mpfilP)= 3 Resp(fum)
PeX PEX
2g

- w7

=1

On the other hand we have assumed that (D) isin A; hence we findm, € Z, 1 = 1,...,2¢
such that

29
(W(D)x =Y miBu
i=1
These two computations imply
22
NoB + 2mim,) = 0
ya l!(“{ n I)

1=1

Now we use the following

Lemma 2: Fori=1,_.,2g, let A, :=(Aa,....Aj;} end B, 1= (Ba,....By).
Then for any vector 1 = (z1,...,T24) € C¥ we have

2¢
S zi- B, = 0 3f and anly if there is b € €7 such that 2, = - A; for all .
i=1

In our situation the hypothesis of this lemma is satisfied with 1; = _fn n + 2rim;.
Then taking & = (b;,....b;) as in the conclusion of the lemma, and putting

g
7= - be“"J
7=t

g
fﬁ:[ 1;—2[1)]%.:/r;fbl,ﬁl,:/n—r.:Qmm,
ag a, =1 a, a, a;

Hence 7 satisfies all four desired properties.

we find

Proof of lemma 2:

29
by lemma 1 we lhave, since w is holomorphic: Z(fal WY By =0
=1

“ = ": Let us show first that A,...., Az, (and hence also By, ..., B24) generate C7:
assume that this is not true, and let y = (y1,...,y,) € €¥ be orthogonal to the subspace
g
spanned by 4,,..., Agg. and let w = 37y w) € X))
=1

g .
Then fa‘w = Y y;4; =y 4, = 0for all ¢, henee P — ff,ow 15 a well defined
=1

holomeorphic function on X. As X is compact, this function is constant, and thus w = 0.
But then y = 0, because the w, are hnearly independont.

Consequences of this fact are
N p:@9 =¥y (y-As,. ..,y Az, ) is injective
2g
2) € =€ 2+ 3 1, B is surjective
1=1

From the first part of the proof we already know that the kernel of ¢ contains the
image of p. On the other hand, 1) and 2) show that dim{ ker) = dim{im p) = g, hence
kerp = im p, as desired.

This concludes the proof of Abel's theorem, and we now turn to Jacabi's part of the
theorem: the surjectivity of u.
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Since p is a group homomorphism it is sufficient to show that u is surjective onto

a neighbourhood of (. For arbitrary points a1,...,a, in X choose local charts (U, ¢;),
i = 1...,¢, and consider the map

?
v Vg, g, HU' -
1=1

(Pr,... Py} — ﬂ(i:(}’.-a,-]) (ifpwlifpmg)

=1 =1 =1

1t suffices to find a;, .. a, such that the map v,, ...a, 15 locally surjective. By the implicit
function theorem this happens as soon as the determinant A of the Jacobi matrix of v is
nonzero. I in local coordinates ;= f,;(#,1dt,, we have & == det(f,,(0}). Hence A can
also be interpreted as the determinant of the linear map

XY o T woo (H10).. . f,(0)
where w = f,(t,}dt, in local coordinates. Writing w(a,} := f,(0) we are done if we find
ay,...,8, in such a way that there is no nonzerow € QX ) with w(a,) = 0fori =1,...,g.

Now for any a € X consider the vector space N(a) .= {w € Q(X) : w(a) =0}. It is

either equal to Q{X), or it is of codimension 1. But of course [ N{a) = {0}, hence we
agX
can find g = dim Q{ V'} of theses wector spaces such that their intersection becomes trivial.

This finally ends the proof of the Abel- Jacobi theorem.

It still remains to prove the proposition, i.e. that A, the additive subgroup of C*
generated by A,,..., A3, is a lattice.

This will follow from the surjectivity of g by purely topological considerations:
Consider the map

g
P X? = Pieol X), (Py,....Py) — class on(P, -y

=1

Let us show that this map is surjective:
let D € Divg(X): by Riemann-Roch {{(D + gFy) > ¢+ 1 — g = 1: so there exists
f € L{D + gFo), hence also an effective divisor D of degree g such that

divf=-D-gP+D

- ¥
Let D =P, + ... + P,; then Y (P, — F) is linearly equivalent with D, which shows the
1=1

surjectivity of 3.

From the theorem it follows that the composite map

g P g P
@ = p0d: X7 = I, (P P (Y [ Y [
i=1 7 Po Py

8

is also surjective. Since & is obviously continuous, the image J(X ) = $(X?) of the compact
space X7 is also compact.
Now assume A were not a lattice; then A were contained in some real hyperplane

H c R, and C°/A = (H x R)/A = H/A x IR couid not be compact.

We end these notes with a few remarks:

1) Algebraic construction of the Jacebian

In view of the Abel-Jacobi theorem an algebraic construction of J{.X) comes down to
endow the group Picg{ X'} with the structure of an algebraic variety (and henee an algebraic
group).

First note that S (P;, ..., P;) docs not depend on the order of the ¢ points, henee 3
induces & map

[

vyt Xl Piegt X))

where V19 = X9/8, is the g-fold symumetrie produet of X. By the theorem of elementary
symmetric functions, X' is a complex manifold of dimension g. It is convenient to write
the elements of X9 as effective divisors of degree g¢.

The fibre p;]{;g(D}) for D= P, +...+ P, € X' consits of all effective divisors
D' € X'9 Lnearly equivalent with D, thus

vy wg DV = {D +div f: fe L(D)} = D(L{D)N

In particular the fibres of g, being projective spaces, are connected. Identifying Picg( X}
and J(X) by the Abel-Jacobi theorem we may view Pico(.Y) as a compact g-dimensional
complex manifold. The same holds for X9, and since @, is continuous. it is generically
finite. The above ohservation then shows that g 18 generically injective (but definitely
not globally, except for ¢ = 1!}

In the abstract situation of a smooth projective curve X over an algebraically closed
field k, we still have the map y; from the projective variety X9 to the abelian group
Picy( X)) of divisor classes of degree ), and it is still generically injective (although, of course,
the proofl is completely different: essentially it requires a refinement of the Riemann -Roch
theorem). So on an open (Zariski-) dense subset of X% . induces “almost” a group
law; A. Weil developped a general technique to construct an algebraic gronp out of such
a “group chunk™. This abelian variety is then defined to he the Jacobian of X and turns
out to be, as a group, isomorphic to Picg(X).

2) Elliptic curves

In the particular case of genus 1, the map v is not only generically injective, but also
globally, hence it is an isomorphism. This is hecause for an effective divisor of degree 1,
ie. a point P € X, we have L(P) = €, because there is no meromorphic function on X
having only a single simple pole.

Note that this (analytic) isomorphism X — J{X) = €/A is one way to define a group
law on an elliptic eurve, It is not hard to deduce from this isomorphism (i.e. from Abel’s
theorem) the addition .horem for the Weierstrafl p-function.
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3) Ezponential sequence
A more abstract approach to the Abel-Jacobi theorem is through the exponential
sequence
0+ %Z — Ox X oy -0
which is a short exact sequence on any complex manifold. For compact connected X, the
associated long exact cohomology sequence begins

0 - Z —-C—C — H(X,Z) -

Of course, the map € — €* is the usual exponential map, hence surjective. So we obtain
an exact sequence of abelian grovpe™

0 HY(X,Z) - H'(X,0,) » H{(X,0%) - HYX.Z) + HYX.0Ox) >

Now if X is a compact Riemann surface of genus ¢, H'( X, Z). being dual to H (X, Z),
is & free abelian group of rank 2¢, H'(X,Oy) is by Serre duality isomorphic to HY(X,$),
hence a complex vector space of dimension g, H'{X, (%) is isomerphic to Pic(X) (this
holds for any locally ringed space), H?(X,2Z) is dual to Ho(X,Z), hence isomorphic to
ZZ, and H*(X,Ox) = 0 by the general theory (Grothendieck’s vanishing theorem).

Thus we obtain an exact sequence

0 —+ %Z¥ - C - Pic(X) = Z — 0

The last map in this sequence is the Chern class or in this case simply the degree of the
divisor {or the line bundle}, so that we get from this sequence immediately the isomorphism
of groups

Pico(X) = €9/ 2%
.ﬂ) Node thai e c;(fuicu‘%n( S((1,L~(,h(( N cL.fJ {c{ e o ne \‘:"Ji-u Codr ‘ii.NJ Lj CAGA
o macy Loe ety “"««*'-Fy #{ o,‘qfajh; Cand Moo M]th«L catipe “"{("U qree P L{ U | teaf
chyo e o—r\'--]h.n«al e ‘1?&1\7 o Pt ‘i'!!—w?
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