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1. ALGEBRAIC NUMBERS

These »~e complex numbers which satisfy a polyromial equation with
coefficients in Q. For example, i, ¥/1.78 and ™/5 are algebraic numbers,
whereas 7, ¢ and 3.7 107" are transcendental (not algebraic). Each
algebraic number is the root of & unic monic irreducible (over Q} polyno-
mial in Q[X], called its minimal eguation. Two algebraic numbers having
the same minimal equation are called conjugate. The minimal equations
of the algebraic ournbers above are respectively:

X 41 X*-178 XX e xtoX 4L

By Galois Theory we know that there are algebraic numbers which
cannot be formed from any set of rational pumbers by a combination of
sums, prodiicts and/or successive extraction of roots. By the fundamental
theorem of Algebra, the algebraic numbers, modulo conjugation, are in
bijection with the set of monic irreducible polynomials in Q[X] and this
is the most common way of exhibiting algebraic numbers in practi-e: as
the roots of & given polynomial with rational coefficients.

The subset Q of C of all algebraic numbers is an algebraically closed
subfield of C. It is an algebraic closure of Q.

2. NUMBER FIFLDS

These are finite extensions of the field Q of rational numbers. In other
words, a number field is & field A of characteristic zern with finite di-
mension as a Q-vector space {with respect to the natural structure). The
number [K : Q] = dimgAh is called the degree of A'. Examples of number
fields are:

['d
K =Q(V15) = {a efla=r+sv1b rseQl,

Ky = Q{X]/f(X), f(X) irreducible,

K= faea@ra=( 2 )

whith respective degrees 2, deg(f(X )} and 2.

All elements (which from now on will be called simply "numbers”) in a
number field, are algebraic over @ and satisfy a minimal equation whose
degree is a divisor of the degree of the number field. Reciprocally, given
a finite number of elements a, - ,ay, € L, in a field of characteristic
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It is quite common (and very inconvenient) to think in number fields as
subfields of C. By field theory, if K is a number field of degree n, there
arc exactly n embeddings (rii.,, homomorphisms):

v, : K« C.

Thus, every number field is isomorphic to a subfield of C, or more precisely
to a subfield of Q. but this subfield is not uniquely determined! It is better
to think of A as an abstruct object and to consider the n embeddings
v, ,Un 4s an (important) invariant of K. They will play a significant
role in what follows. An embedding v : K — C is called real if v(K') CR,
atherwise it is called complez. There is always an even number of complex
embeddings since for each v we have also its conjugate @ := "o v, which
is different from v if v is complex. Usually, ry, r2 denote the number of
real embeddings and pairs of non-conjugate complex embeddings. Thus,
we have the relation:
1+ 2?‘2 =n.

For the number field K, above, r; and 2r; are the respective number of
real and non-real toots in C of f(X) and the embeddings are obtained
sending the class of X to each of these roots. For K| and K; we have
respectively: ry = 2.r; =0, ry =0,rp = 1.

For any number field K we bave group homomorphisms:

Triq: K — Q, Nygjq: K7 — Q,
defined by:

n n

Trijqlzy =Y wl(z). Niqiz) = [[ulz
=1 =1
3.DIOPHANTINE EQUATIONS

Consider the problem of finding all integral solutions of a system of
polynomial equations:

Fo(X;..... Xa)=0

We speak of a diephantine equation to emphasize that we are interested
only in the integral solutions. Usually the polynomials Fi{Xi. -, Xa)
have also integral coefficients, This question has an obvious geometrical
interpretation. For instance, equations in two variables like:

(1) YP=X2+13, or

(2) ¥?= Xt -3,

can be thought as 8 curve in the plane XY and t~ integral solutions
are given by the intersections of the curve with the .(tice of points with
integral coordinates.

According to the context in which a diophantine equation appears there
are three levels of resoluiion of the equation:

(A) Determine if the equation has any solution at all.

(B) If the equation has solutions, determine if it has a finite or infinite
number of them.

(C) Describe the set of all solutions.
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There is no general algorithm to solve (A) {even less (B) or (C)!). In
general, this 1s a very difficult question, even for simple plane equations
like (1) or (2).

As a general rule, equations can be factorized inte & product of simpler
ones if we are allowed to play with algebraic numbers. Thus, we could hope
to have ‘mbassediapeset an: algebraic approach to deal with diophantine
equations, provided we could develope a divisibility theory for algebraic .
pumbers. This is the core idc. aedwd Algebraic Number Theory. Before - |
we proceed to see how it was exploited in full generaiity, let us see first
the most typical illustrating example. The equation:

(3) Xt eyt=2%,
can be expressed as:
(X +1Y )X —¥) = 22

Since we are interested 1n the integral values of XV . Z satisfying (3). this
last equation is a multiplicative relation in the ring Z{:] of the gaussian
integers. Now, the divisibility theory in this ring is not toe much compli

c%t.gd: Z|¢] is a PID and the units are +1, +¢. Moo, two tepr wiihoet common oo

257his arthmetic information is sufficient to solve (3). In fact. assume
that X.Y".Z is a primitive ( ged{ X, Y. Z) = 1) solution of {3}. Then, X +:}’
and X —i} are coprime in Z[i]. since if # € Z[i]is a prime element dividing
both X +1Y and X -:Y . t" 1 7 would divide 2.X and 2}, and thisis a
contradiction. since 7 cannot divide 2 {Z would be even and consideration
of (3) modulo 4 shows that t..s 15 impossible ) acmeenssemadssibyimes: |
Sommreltnnssnsitirasssnvni-masesivisiiscscasnnnssesivioorsom; This
since, Zjt] 1s 2 UFD, we have:

! X +1Y =u-a’, ua€lfil, uaunit

o tguaw aawd '
'_%:pn”nmu“ o,(“ {he wuift modteks g ooaved - faad
.

we pul,a = s + ti, 5,t € £, we get the parametric description of the
prthagorean triples:

X=5ut?, YV =2a, Z=4 +f2.,
The e o ¢ Just cxclonger e ol of Kawd .
Sincesany value of st furnishemtriples X .¥".Z satisfying (3). the solution
“Tis complete. Gness forvnala) b

4 Equations {1) and (2} admit similar factorizations:

1(4(‘.‘{.) =1,

W+ VXY - VI3 = X3, (Y + 4B - 03 = 3,

where Y-43  dlevoodeg ‘v\J ck)g}.( r,/’ - 6‘6'\47&—((7 J‘?u.qr( reolf 0{0_4’3_

“be: Upfor?'mately. the rings 2[v/13] and Z[f\d3] ar« no more UFD's. In

fact, all elements in the following factorizations are irreducible:

(4} (34 v13)3~V13) = -2

I

{5 1+6AD0 A3 =27,

3. THE REVOLUTIONARY IDEA OF KUMMER

was to think that unique factorization can be recovered by enlarging the
system of numbers by admitting some new 1deal numbers. Some of these

ideal numbers are not “visible” and only certain prducts of thein e car be LeferTof

as ordinary numbers. For instance, in Z[fv/13] one should have:

2=p-p, T=4q-9.

for certain "prime” ideal numbers p,p’. q. 9 such that:

1+fHA3=p-q. 1-KA3=p -q.

and we recover unique factorization n (5}

Wummer himself proposed candidates for these ideal nubers. but the
theory was founded in its most consistent way by Dedekind. He defined
the 1deal numbers of a ring of algebraic numbers to be certam subsets of
the ring satisfying certain properties. These properties define what we
understand nowadays by an ideai of a ning.

Therefore, in order to develope a 1easonable divisibility theory for alge-
braie numbers, "numbers” must be replaced by "ideals” and each ordinary
number is just & very special type of ideal: the principal ideal generated
by the nwnber. After this, we can ask for subrngs of nuniher fields for
which a fundamental theorem of arithmetic holds for ideals:
i.s a product of prime 1deals: a = p,---p,, and the p, are
uniquely determined ezcept for the ordering.

‘ satisfying this property is called a Dedekind ring. The crucial
question is then: what subrings of number fields are Dedekind domains?”
For instance. Z[f\A3] is a Dedekind domain. but Z{+/13} is not Dedekind.

5. ALGEBRAIC INTEGERS

These are the numbers whose minimal equation has integral coefficients.
Thus, the trace and the norm of an algebraic integer belong§ to Z. The
elemnents ), -+ -,y of a number field A are algebraic integers if and only
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if the subning Z[ay. -+ \am] of A is finitely-generated as a Z-module. n
particular, all elements in Z[ay, - . an| are algebraic integers too.

Thus, the set Oy of all algebraic integers in K is a subring of A with
field of fractions the whole of . The main theorem of Algebraic Num-
ber Theory states that these rings are Dedekind domains {see §6). Glmme

When dealing with
a particular arithmetic problem involving algebraic integers (like equation
(1}, leading to the ring Z[+/13]), we may,use divisibility theory by working
in the ring of ol algebraic integers. T
Foi quadratic fields, K = Q,(\/t}), d € 7 square-free, the ring of integ s
is given by:

o - 7|vd], ifd# 1{ mod 4)
Pl (224 rse 2, r= s mod 2)), ifd=1( mod 4).

A - un e actor rohar e 4 -
We sce now how to overcome the Iy ltz‘L” s a

unit in @x (A = Q(+/13)), so that we have equality of ideals,
20, = (3+V13)O = (3 - V13)0x

For cyclotomic fields, K = Q({m). {m = ¢2™/™ we have Op=2{(.n].
O is a free Z-module of rank [A : Q). A Z-basis of Oy is called an
integral basia of K.

6. DEKIND DOMAINS

are characterized by the following algebraic properties:

Theorem. A domain @ is Ded-kind if and only if it is noetherian, inte- ey

grally closed and has Krull dimension one (i.e{every non-zero prime ideal >~

is maximal).

The proof of this theorem is far from evident (see the Bibliography).
it is easy to check that the ring of integers of a number field has these

Let O be an arbitrary Dedekind domain and let A be its fraction field.
O has a divisibility theory with respect to the product of ideals. Just as
in the case of numbers, it is convenient to introduce the concept of tnve--¢

of an ideal.

algebraic properties, hence, it is & Dedekind domain. w=—— - - "‘“\
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Definition. A fractional ideal of K is a finitely-generated sub-C-module
o of K. 0 # 0. Equivalently, it s a sub-O-module a of A, a # 0. such
that ca C O for some ¢ € O, ¢ £ 0.

For any element a € A", a(? is a fractional 1deal. These fractional ideals
are called principel. The ordinary ideals of O are called ntegrai fractional
ideals.

The set Jy of all fractional ideals of A has the structure of an abelian
group with respect to the product of ideals. The unit element is  itself
and the inverse of a is:

o= {re K/raC ).

In particular, any fractional ideal of K has a unique factorization:
P

where p are the non-zero integral prime ideals of O and ¢, are integers,
vanishing for almost all p. In other words. Jg is the free abelian group
generated by the p's.

The principal fractional ideals Py of K form a subgroup of Ju. The
quotient:

Cly = J /Py,

is the ideal class group of K. We have an exact sequence of abelian groups:

1+ O~ K~ Jg — CIKH 1.

where the homomorphism in the middle is a — aQ. In the process of
substituting numbers by ideals, the class group Clp measures what we
gain and the unit group O what we lose. Therefore. the description of
these two groups is crucial for a good understandi-z of the divisibility
theory of O. For O the ring of integers of a number field, this will be
explained in the second lecture.

7. THE FUNDAMENTAL PROBLEMS

for a number field K are:

(1} Which are the units of Ox7 How to compute them? What is the
structure of Q" as an abelian group?

8
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{2) How far is Oy from being an UFD? How many ideal classes has
K? What is the structure of Cly as an abelian group?

{3) Which are the prime ideals of 0" /—Equivalent]y: How do the
rational primes decompose in Q7

Before giving general answers, we finish this lecture showing how a

W these questions for Q{I\HB and Q\\/IS\ provides a

complete solution of the diophantine equations (1) and (2).

Exercise. Prove the following facts:
(1) If two integers v € I are coprime. then the ideals rCr, sOr are
coprime in any number field A
(ii) For K = QU\A13), we have Ox "= {+1}. For K = @(\/13), we have
Okr™={2¢". rel}. wheree= 3—“%@
(1i1) The rlass groups of Q(f 13 and Q(/13) are finite groups whose
order is not divided by three.

Assume now that X, are eepebems integers satisfying (2} Let K =

Qif 231 The ideals (Y + A0, and (Y — HATO, are coprime,
In fact, 2 common prime divisor would divide simultaneously 2 and X
(by (1) X would be even and this is impossible since -131s not a square
modulo 8), or 13 and X (by (i) 13 divides X, which is absurd). By umique
factorization. since thv product of these ideals s a cube, each of them
must be a cube:

¥ +HA30;: = 2t

Thus, the class of a in Cly 15 etther trivial or has order three. By i1} 1
must be trivial; that is. 0 is a principal ideal. Therefore.

V4 lA3=u-a® wace @y, uauni.
We can drop u (all units in O are cubes) and substitute a by r + sf NZE)
We get:
Y =7 - 30rs?
1=3r% —135°

From the last equation we nave s=-1, r = 2. This gives ¥ = £70,
X = 17 as the only solutions o1 (2).

/’”_*Tﬁ“f—

Simililarly. from a pesmieime solution X. Y ot (1) we get. working in
L= \)'13

Y+ v13=u-0® waeOp, uaunit

e I . o il L
We can substitute a by ﬁ%@ with r.s € I of the same parity. There
arc now three N re ‘ e [+ 1% trivial to
check that the @ case,gives no solutions. The et casc leads to:
=1 u T

161 = 3r" 4 117" 4 3078 s 4 169:°
16 = 7' +30rs” + G725 + 304

Substracting to the first equation the second multiplicd by three we get:

4Y -3y = si3r7 4 137,

noE
- a 9 - P . - . .
Sinece the MT' + 13.4‘] 15 divisible by 80 Y must be odd, which is a
contradiction. The oy caseys analogous, so that we have seen that the

equation {11 has no solutions mEHI""\(fT:—?)
HIEL
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