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LECTURESBY FABRI2I0 CA TANMNESE

7.1. The Albanese variety and the Albanese map.

In this lecture we will introduce an important tool for the
classification of surfaces or, more generally, of complex
manifolds, namely the study of a variety with the help of its
Albanese map. Even if we only apply these methods to the case
of complex projective surfaces we prefer to develop the results
in more generality (cf. [Uel,..).

In the following, for the sake of brevity, assume X to be a
compact Kahler manifold.

We recall that a complex manifold is called a Kahler manifold
if and only if there exists a hermitian metric on X whose
associated (1,1)-form is closed, l.e., if in local coordinates the

metric h is given by X .1  dimx hij(z)dzisﬁdiJ, then the

associated (1,1)-form & is given by 2 hi:}(z)dzi/\dij, and E 1is
callgd closed iff dE=0. Such an hermitian metric on X is called
a Ka etric on X.

(7.1) Remark. A submanifold Y of a Kahler manifold X is again
a Kahler manifold.

This is clear, because the restriction of a Kahler metric of X to
Y gives a hermitian metric on Y, whose associated (1,1)-form
1s closed.

(7.2) Example. 1) A smooth projective variety X is a Kahler
manifold.

2} A complex torus T=C"/I", where [ is a lattice (i.e. a discrete

subgroup of maximal rank) in R2", is a Kahler manifold.

Proof. 1) We set &:= (ddlogllZlI?)/2mi on PT¥, where Z is a
homogeneous coordinate vector. £ is well defined (since if one

replaces Z by fZ with f holomorphic = 0, then ddloglf|? = 0) and



is the (1,1)-form associated to the Fubini-Study metric on PF

(cf. [1). Moreover, remembering the relations d = 9+9, 3%2= 32,

29 = -39, we see that E is closed. Therefore P' is Kahler and by
(7.1) also a projective manifold is Kahler.

2) The (1,1)~form & = (X dziAdz_J)/QTri, coming from the

standard Euclid‘ean metric on C", is obviously closed on T.
Therefore T is Kahler. QE.D.

In general a complex torus of dimension > 2 is not a projective
varilety. But as the follewing result shows there are several
equivalent conditions which describe when a torus is algebraic.

(7.3) Theorem. Let T be a complex torus of dimension n. Then
the following statements are equivalent:

1) The transcendence degree of C(T) over the complex
numbers 1s n.

2) T is projective.

3) There exists a meromorphic function feC(T) without
periods , i.e. I'p={teT : f(x+t)=f{x) for all x}={0}. (Notice that I’ is

always a closed subgroup of T).

4) There exists a positive definite hermitian form H on CP»
such that imHIp, takes integral values (Riemann conditions).

For a proof of this result we refer for example to [Mumford].

(74) Remark. 1) By a result of L. Siegel it holds for any

compact complex manifold X:

tr degeC(X) < dimX.

2) We recall that the imaginary part of a hermitian form is
alternating and the real part is symmaetric.



3) We want to point out that the equivalence of the conditions
1) and 2) in the theorem holds more generally for Kahler
manifolds (c¢f. [Moisezon])

(7.5) Definition., A complex torus with one (or all) of the
properties 1)-4) of (7.4) is called an abelian variety.

Therefore by definition an abelian variety admits an
embedding into projective space.

If X is a Kahler manifold, then by Hodge theory (cf. [Griffiths-

Harris]), holds a fact we already proved for projective surfaces

(cf. (6.20), (6.24)):

(7.6) Remark. 1) Hljp(X,0) = HO(X, Q1) eH(X, Q1)
2) In particular, the complex vector space HO(X,le) is
isomorphic as a real vector space to Hlpp(X,R) by the map 0

= (n+n)/2.
3) We recall that H{(X,R) is isomorphic to H{(X,Z)®R. So, if j:
H,(X,Z) — H{(X,R) is given by ¢ — c¢®1l, then

Hi(X,R)/j(H,(X,Z)) is isomorphic to (R/Z)29 as a differentiable

manifold.
Hy(X,Z) is a finitely generated abelian group, hence consists of a

free subgroup and a torsion subgroup; the last one is killed by
the map j (j is in general not a monomorphism !).

4) The real vector spaces Hlpp(X,R) and H;(X,R) are naturally
dual and the duality is given by integration, i.e. if ceH{(X,R)

and geHI R (X,R) then <g,c> = [, @.

In the sequel we denote the R-dual of a (real) vector space W

by W*, the €C-dual of a complex vector space V by VY.

(7.7} Remark. Let V be a complex wvector space. Then

V~:=Hom¢(V,C) is naturally R-isomorphic to V* (=Hompg(V,R))
by the (R-linear) map ¢ — Re({).



As a consequence of (7.7) we get (using (7.6)):
Hy(X,0) = HOUX, Q1) e (HO(X, Q1) ~.
In this way we obtain:

JH{(X,2)) ¢ H(X,R) = HUX,QL)v,

where the last equality follows from (7.6), 2) by (7.7), and we
get a g-dimensional complex torus

A = AIb(X) = HO(X, QY0¥ /j(H (X,2)),

the Albanese variety of X.

X
If we fix a base point x5¢X, then «(x) :=JXO defines a map

oX = HOUX QL)Y /j(H(X, 7)) = Alb(X),

X
since IXO 1s only well defined modulo f., ceH,(X,2).

o 1s called the Albanese map of X.

(7.8) Remark. The Albanese map is defined up to translations,
lL.e. changing the base point x5¢X, o changes by a translation

on A,

(7.9) Proposition (universal property of the Albanese variety).

Let X — T be a holomorphic map from a compact Kahler
manifold X to a complex torus T. Then there exists a unique
affine homomorphism p:AIb(X) — T (ie, p is a homomorphism
for a suitable choice of the origin in T) and a unique
factorization of f through Alb(X), ie., the following diagram

commutes
f



X T
Alb(X)

Proof. Let T=C"/I" be a complex torus and f:X — T be a

holomorphic map. Since Q¢ = (I)94™T we have:

T = HYT, Q1) v /H (T, 2).

[Let p be the affine homomorphism provided by the linear map

(f*)~ (where f*HO(T,Q1) — HOX,Qly)), (noting that (£*) = f
on Hy(X,Z) and has image in H(T,Z)).

We show that f factors through o.
Given a base point xg we can assume to have chosen the origin

in T so that f(xy)=0¢€T.

*

Then f and peo coincide at xy3. By definition p*=f*, hence (f-
X

Boax)™ = f"-a™of*, Moreover, fxo n, with néHO(Qix), is a

X
multivalued function such that d(fxo n)=n(x), because n is

closed, i.e., dn=0, and therefore «*(n)=n for all neHO(le).

Hence (f-poox)*(c)=0 for all weH%(Q1;) and f-peor is constant.
This implies that f and pex are equal.

*

Conversely, if p exists, then necessarily p™=f
argument, hence g is unique. Q.E.D.

(7.40) Proposition. Let X be a compact (connected) Kahler

manifold and o:X — A the Albanese map. Then «(X) generates
A=Alb(X), ie. there exists a natural number m such that the
map

by the above

U, Xx..xX = XM —— A,



given by (xq,..,X,,) = olx)+. +a(x,,) Is surjective.

Proof. Since a(xy)=0, we have «(X) € im(u,} € im(uz) < ...

Since X is compact, also X™ is compact and therefore Y,, :=
im(u,,) is a closed subvariety of A by Remmert's proper
mapping theorem (cf. [Re]). Since Y, is irreducible, the above

sequence of inclusions stabilizes, 1.e. there exists a m such that
Ym = Ymer=--= Y CAIb(X).

CLAIM: Y is a subtorus of A.
We assume for the time being the validity of the above claim.

Then, by definition «:X — YCA and therefore HY(Q1ly) =
o *(HO(QL, ) ¢ o*(HOQLy). But dimH2(Q1,) = g = dimH(Q1y)

< dimH%Q%y) = dimY, hence Y=A. QED.

It remains to prove that Y Is a subtorus of Alb(X).

Proof of the claim. Let m:C9 — A be the universal cover of A.

Since Y is obviously a semigroup (note that 0¢VY), also Y :=
1 1Y) is so. We take the irreducible component of Y contalning
the origin of €9 (we want to point cut that Y is a priori not

necessarily irreducible), which for brevity we will again call Y.
For all m it holds mY C Y and since they are both irreducible
of the same dimension, we have in fact mY=Y, and therefore

also m?;‘?. Therefore if &e?, also &/me? and we have shown

that (@Y-YCY. So every holomorphic function vanishing on Y,
vanishes on Q*E and therefore vanishes on C&. This shows that
Y is a complex vector subspace of €% and therefore w(Y)=Y is a

subtorus of A. Q.ED.

From the construction we gave for the Albanese variety it is a
priori not clear that Alb(X) for a projective manifold X is an



abelian variety. But from (7.10) we obtain immediately this
property.

(7.11) Corollary. Let X be a projective manifold. Then the

Albanese variety of X, Alb(X), is an abelian variety.

Proof. By (7.10) There exists a natural number such that

Uy, X™ — A is surjective, hence there exists a closed

subvariety ZCX™ of dimension g(X) (=dimA) such that u,,Z —
A is surjective and generically finite; (this can be seen easily

by inductively taking generic hyperplane sections of Xm,

XM AH, . ). Therefore C(Z) is a finite extension of C(A), hence
tr.degcC(A)=tr.deg¢C(Z)=q (since Z is projective). This implies

by (7.3) that A is projective. Q.E.D.

In the following lectures we will see how important for the
classification of projective surfaces it is to study the Albanese
variety and Albanese map. In this lecture we will only give one
application of the methods introduced so far.

(7412) Theorem. Let X be a smooth projective variety and
assume that the image of the Albanese map «(X)=:YCA is a

curve. Then Y is smooth and &« has connected fibres.

Before proving this result we want to recall a classical result,
which says essentially that we can factor each morphism
between projective varieties as the composition of a morphism
with connected fibres followed by a finite morphism.

(743) Theorem (Stein factorization). Let f:X — Y be a
morphism of projective varieties (or more generally of reduced
compact complex spaces). Then there exists a complete
algebraic variety Z (resp. a reduced compact cormnplex space), a
finite morphism h:Z — Y and a morphism g:X — Z with
connected fibres such that f=heg.

Proof. We want only to give an idea of the proof, for more
details we refer to [Hartshornel.



The main point is that the sheaf {,0y (given by (,0y), =

limYEVGX(Lp_i(V))) is a coherent sheaf of Oy-algebras on Y (cf
[). Then we define Z:=Spec(f,Jy), which is obtained by glueing

affine schernes {(over Y) given as follows: for each open affine
subset UCY f,0x(U) is a finite integral extension of Gy (U),

therefore f,Oyx(U) = O(Ullz,,...,2.]/l. Then ZyCcUxCY is defined

by the ideal I. The maps ¢ and h are then naturally given and
fulfill the desired properties. QE.D.

With the help of this reult we are now able to prove (7.12).

Proof of (7.12). Let m:C — Y be the normalization of Y.

CLAIM: There exists a map f:X — C such that the following
diagram 1s commutative:

o: X — alX)=Y C A
f\' Trr
C.

Proof of the claim. The surjective map «:C — Y Induces on each
affine open set UCY an inclusicn

O4y(U) = Oyl u)).

Since X is smooth, Ox(oc 1(U)) is integrally closed in its field of

fractions. Therefore we obtaln an lncluslon
O HU) - Oyla”t(U)),

(because O-(m™1(U)) is the integral closure of Gy(U) in its field of

fractions) which gives rise to a map f:X — C. QED.

If f has not yvet connected fibres we consider the Stein factorization



f: X — C
g > A h
c,

f=heg. Since C' is a smooth curve, we can consider the the
Albanese map (also called the Jacobi map) C° — J(C)=:A" of C,
(we recall that dim A'=genus(C)).

Now we have the following commutative diagram:

o X — Y C A

Applying the universal property of the Albanese map to meh
and o' 1= ueg we obtain maps ¢: A — A’ and ¢: A" — A, such
that ao=yecx’ and «'=@eox. Then 9oy resp. Yoy is the identity on
im(«') respectively on im(«), hence everywhere (cf. (7.10)).

Ii C' has genus zero, then A'=0, hence «(X) is a point which is a
contradiction. Therefore the genus of C' has to be bigger or
equal to one, which implies that C' is embedded in its Jacobian
and so by the above we obtain that C' = «(X)} = Y. This proves
the assertion (note that, since we have proved now that the
degree of C' — C is one, C' Is equal to C, hence the fibres of «
are connected). Q.E.D.



SomeTimes
We will show now that fwe can choose Miebty two one-forms in

such a way that their wedge product is zero in HO(S' ,QQS-).

(843) Lemma. Let S be an algebraic surface with Pg<2q~4. Then
there exist two C-linearly independent one-forms Wi, Wy €

H%Q1g) such that Wi ~Wy=0 in HY(Q2Y).

Proof, We consider the linear map

A2HO(QL)) - HOO2),

obtained from the bilinear, alternating map (w;,w,) —
W1 ~wy. In the following we shall denote by (wi) ~(w,) the
element of AZ2(HO(Q1y)) corresponding to the pair (w;,w,) ¢

HO(le)XHO(le), which should be distinguished from the

section wj~w; in HYQ2). Moreover let

p: PIAN2(HY(QL)) - PHOQZ)) = ph~

be the corresponding rational map of projective spaces and

G(2,9) C P(HO(Qis)) the Grassmann manifold of 2-dimensional

subspaces of HO(le). We have the Plucker embedding
G(2,9) = P(A2(H(QLy))),

which sends a 2-plane in HO(Qis), given by Cwi®Cw,, to
(W) ~(wy), ie. in particular we have

‘o)



Clwy~wjy) = Cnyam,y) & Cwy+Cw, = Cny+Cny,.

Now we want to find a plane m=Cw;®Cw, in HO(Qis) for

which wj~w,=0 in HY(Q%), i.e. a point which lies in the base

locus of p restricted to G(2,q). But this is given by the
intersection of G(2,q) with pg hyperplane sections, which has

dimension bigger or equal to dimG(2,q)-pg = 2(q-2)-p, and this

1s bigger or equal to zero by our assumption. Hence such a
plane 1 exists and the lemma is proven. QE.D.

Eﬁ.'.lf“ [heorem (Castelnuovo, de Franchis). Let X be a compact
Kahler manifold. We assume that there exist linearly

independent holomorphic one-forms wy,..,w,eH%(Q1y) (r22),

such that w;~w;=0 in HY(Q2y) for all i,je{1,..,r}. Then there

exists a holomorphic map f: X = C from X to a curve C, such
that f has connected fibres. Furthermore there exist

holomorphic one-forms ny,..,n, ¢H%(Q1:) such that w;=f*(n;) for

all ie{1,...,r}.
thew

(8.15) Remark. The genus g(C) of the above curve islat least r.

Proof of (8.14), Let ooi,...,coreHO(Qix) be linearly independent

holomorphic one-forms, such that Wi~ w;=0 in HO(sz) for all
1,J. In particular wy~w,=0, which is equivalent to wq=gw, for
ge C(X). Since X is a Kahler manifold, we have dw=0 for all w ¢

HO(Q1y) and therefore we get
0 = dwy = dgrwjytgdw, = dg~wo,.

We consider the commutative diagram



X ---— pl

A 71 A
™ J //' S

X - C,

where 1 is a blow-up of X, such that g 1s a morphism, and {;’ =
hef is the Stein factorization. Since h is finite, C has dimension
one and therefore it is smooth (because it is normal).

We denote m*(w;) by c:)i for ie{1,..,r} and we remark that

—~ i~

wi~dg = 0 (note that w; = A;w,). Therefore <:Ji=)\idg.
CLAIM: 7 ef*(C(C)).

PROOF (of the claim). Since dw;=0, it follows that diAdg=0

and therefore the differential of (f,\): X — CxP! has rank one.

This implies that the Image of (f,);) is a curve Cy C Cxpl,
Because f = prye(f,};) has connected fibres, pryIC’: C; =C has
degree one and is therefore an isomorphim (since C is smooth).

So we have proven that C is the graph of a map /)\\,-: C - pt

with Aj=X;ef, which shows the CLAIM.

With this we get

—~

w; = ndg = £*(R)E*(dh) = £*(R.dh)
for all ie{1,...,r}.
Setting ni:=3\\idh we have found rational one-forms N on C with

w; = f*n;. We are now going to prove that ny,..n, are in fact

holomeorphic one-forms on C.



SSic ‘”\1 ;

CLAIM: 1n; has no poles.

PROOF (of the claim): Let peC and let t be a local coordinate at

p. Furthermore we choose a smooth point xe(f"1(p)),,4. Then
there are local coordinates (z4,..,2,) at x such that tef=(z,)™. [f
ni = @i{t)dt with ¢;(t)eC(C), then w; = g"(n,) = 9i(zy™)mz, ™"

1dzi. This implies that ¢; cannot have a pole, because then also
w; would have a pole. Hence the CLAIM follows.

Since ny,..,n, € HO(Qic) are linearly independent, the genus of C
is bigger or equal to r (22). This implies that every map from

Pl to C is constant and therefore f maps the fibres of 1 to
points. Hence f factors through X, which proves the theorem.
Q.E.D.

In order to conclude the proof of (8.7) we need another result,
which we will state in the sequel, whereas the proof will be
postponedto the next lectures.

(8.16) Theorem (Zeuthen-Segre formula). Let : S — C be a
fibration (i.e.,surjective with connected fibres) of a smooth
projective surface S over a curve C and F a smooth fibre of f.
Then we have the following identity for the topological Euler
characteristics:

e(S) = e(C)e(F) + u,
awd {y]> o

where Hz0, 4 = Z . 8(y) with 8(y)y0/iff Fy:=f‘1(y) is singular
and not equal to the multiple of a smooth elliptic curve.

Proof, Cf. lecture 9.
(8.17) Remark, If f is a Lefschetz pencil (i.e. Fy is either smooth

or has at most one node as a singularity), then g is the
number of singular fibres of f, and this enumerative formula

wasVtaken as the definition of e(S) = [+4 (I.=Zeuthen-Segre

invariant).
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(8.18) Corollarv, Let f: S — C be as above, e(S)<0 and g(C)22.

Then it follows that F=zpl

Proof, We recall that g(C)>2 if and only if e(C)<0. Hence (by
(8.17)) e(F}>0, but e(F) = 2-2g(F). Therefore g(F)=0 and Fx=p?
QE.D.

We are now finally able to conclude the proof of the theorem of
Castelnuovo.

by lemma (8.13) there exist two C-linearly independent

holomorphic 1-forms w1, Wy € H%QLg) such that W1A~W,=0 in

HO(Q23-), which implies (by the theorem of Castelnuovo-de

Franchis, cf. (8.14)) that there exists a fibration f: §' —» ¢ with
g(C)22. Using (8.18) we get that the general fibre of f 1s Isomorphic

to P1, which implies by {(8.11) that S' is ruled. Finally by (8.10)
(note that e(S)<0 implies q(S)>1) we conclude that also S is ruled
and hence the theorem is proven. QE.D.



Surfaces fibred over a curve,

In this lecture we will study surfaces S, fibred over a (smooth)
algebraic curve B. This means we consider fibrations f: S —» B
(i.e. f is surjective and has connected fibres}), where S is a
smooth projective surface and B a smooth curve. By Bertini's
theorem (cf. (2.32)) we know that for generic yeB the fibre
Fy:=f'1(y) is a smooth curve of genus g(F).

By the adjunction formula we have:

Wfg = OF(KS)s
2¢(F)-2 = -e(F) = KsF.

An important and not at all trivial problem is now to
determine how special fibres can degenerate, 1.e. which
singularities will occur on the singular fibres of f.

(9.1) Zariski's lemma. Let {:S — B be a fibration of the surface
S over the curve B and let F=Z,_; , n,C; be a fibre of f (C,

are irreducible and all ni>0). Furthermore let D=%._, | m.C,

m; € Z, be a divisor on S with support on F. Then

Pt

1) D2<0,

2) D2=0 if and only if DeQ'F.
Proof, We keep in mind the following facts:

a) we have C,C;20 for i=j (since the C/'s are irreducible);

b) np0 for all ie{1,.. k};



c) we have F.C;=0 for all ie{1,.. k}, since O¢,(F) = Oc;

d) for each pair i,je{l,. k},i=j, there exist ig=i, iy,..i,=] €

{1,..k}, such that C;.C; >0, ie. there is a chain of curves

sucessively intersecting each other, connecting C; and C, (since

F is connected).

We calculate the selfintersection of D:

Im.: Im.

2 _ 2 _ 1 __d ~
D = i, xMCP° = 2 n, nnC.C; =
_ 1 _J —h2 2~ 2
= 22i<j n nl-nJ-Ci.CJ. + 3 (ni) n,<C.“ =<

m,? mJ2 RPN
< Zi(J-( 2) + ( 2)1‘111‘1JC71.CJ- + Zi(?) n,°C,“ =
n. n. 1
1 J
m12 mi2
1. n.
1 1
mi2
= Z.(—In.C.F = 0,
1 2 11
1.

i
and we have proved 1).

Equality above holds iff for each pair (i,j) with i=j holds:



m. m.
: 1 __
either C;.C;=0 or n -
I J

By property 4) we see:
mj

n min+1

nin nin+1

and therefore

m .

Im .
A Y foralllJ Q.ED.
ni nj o q

Analogously as for surfaces we have in the relative situation of
fibrations of surfaces the notion of minimality.

(9.2) Definition. A fibration f: S — B of the surface S over the
curve B is called r_el_a_uie_]y__mlm;z[mgl if and only if no fibre of f
contains an exceptional curve of the first kind.

(9.3) Remark, If f: S — B is an arbitrary fibration, then by the
theorem of Castelnuovo-Enriques (cf. (3.18)) there exists a
relatively minimal fibration f: S° - B and a sequence of blow-
downs m: S — S’ such that f=fem.

(-]
As a first exampl’e\’gl_ow convenient it 1s to assume a fibration
to be relatively minimal ,we give the following result... . ..

(9.4) Proposition, Let f: S — B be a relatively minimal fibration.

If the generic fibre F of f has genus zero, then F = Pl for all
y€B.

For the proof of the above proposition we need some auxiliary
results.

(9.5) Lemma. Let f: S — B be a relatively minimal fibration
and F=2X. 1k i€ a reducible fibre of f (i.e. Zl 1,..k B >4).
>

i=
Then Kq.C; 2 0 for all ie{1,...k}.



(9.6) Remark, The above statement is obviously wrong if f is

not relatively minimal (since for an exceptional curve of the
first kind E we have K.E=~1).

Proof of (95), Let F=Ei=1,...,k niCi (ni>0 for all i) be a reducible

fibre of f.
1.case: k22.

Since p(Ci)zo, we have Cl-2 + K.Ci = 2p(Ci)-2 2 -2. Moreover
C12<O by (9.1), therefore K.C;<0 implies Ci2 + K.Ci =-2. So we

obtain C12 = KC, = -1 and p(C)=0, which implies that C, is an
exceptional curve of the first kind (contained in F)
contradicting the relative minimality of f.

2.case: k=1.
Then F=nC, n>1 and C irreducible. If K.C<0, then 2p(C)-2 =

C2+K.C =K.C < 0 and therefore C=P!, K.C=-2. This implies 2p(F)-

2 = KF+F2 = KF = -2n and so n=1, which is a contradiction.
Q.E.D.
(2.7) Corollary. Let f: S — B be a relatively minimal fibration

and F=Zi=1,...,k n,C, a reducible fibre of f.

1) If k22 and KC; = 0 bl i, then C;2=-2 and G;=P? fopel

X

2) If k=1 (i.e.F=nC), then K.C = 0 if and only if p(C)=1.

Proof. 1) In this case C12 = Ci2 + K.Ci = 2p(Ci)—2 = -2 and

therefore p(C;)=0, which implies that C= pl.

. 2 2.2
since F=uwC=0
2)Cc2 =0 Yyt Zdtiaim and therefore C2+KC - 0, which implies
p(C)=0 by the adjunction formula. Q.ED.



(9.8) Remark. In (9.7), 2) C is either a smooth elliptic curve or
has an ordinary double point or a cusp as a singularity.

Proof of (9.4). Let F,, be an arbitrary fibre of f. By (6.5) Fy is
irreducible, because otherwise K.F, = ZniK.Ci > 0, which

contradicts -2 = K.F = KFy. Furthermore p(F,)=0 and therefore

~pl
F,=PL QED.

In the remaining part of the lecture we will essentially proof
the (already stated) theorem of Noether and Enriques (cf.
(8.11)) as well as the Zeuthen-Segre formula (cf. (8.16)).

(9.9) Theorem (Noether, Enriques). Let f: S — C be a fibration of
a projective surface S over a curve C such that the generic
fibre has genus zero. Then there exists a rational map

g: S ---— P,

such that

yxf: S ---— P1xB

is a birational map.

Proof, Since g(F)=0, KF+F2 = KF = -2. Therefore K cannot be
effective (since F2=0, F irreducible implies that D.F20 for each
effective divisor). This implies that pE(S)=dimH0(S,st)=0,

which is by Serre duality (cf. (2.38)) equivalent to H2(S,94)=0.

Therefore we obtain by the exponential sequence (cf. proof of

(4.1)) that the morphism cy: H1(S,04") = H2(S,Z) is surjective,

which means that every cohomology class in H2(S,Z) is the
class of a divisor on S. We observe that the intersection form

on H2%(S,Z) is unimodular (i.e. the determinant of the associated
matrix is 1 or -1) by Poincare’ duality. F is indivisible (because



if F=nF', KF'=-2 and therefore n=1) and so there exists a
divisor D such that DF=1.
We consider the long exact cohomology sequence (noting that

HY(Q((D+nF)) = HYO;(1)), since F=P! and F.(D+nF)=1)
0 — H%D+(n-1)F) — H%D+nF) — HO(O (1) = €2 -
HYD+(n-1)F) —» HYD+nF) — HYO,,(1)) = 0.

Therefore the map H(p,): HY(D+(n-1)F) — HI(D+nF) is

surjective for all n and so the dimension of HY{D+nF) decreases
with increasing n. This implies that there exists a ng>0 such

that Hi(pn) is an isomorphism for all nzng and so for n2ng
there exist sections oy, o; ¢ HYD+nF) which induce a basis of
HY(Op(D+nF)) = C2.

We consider the rational map ¢=(0,,04): S ---— P1; then ¢IF:

F— Plisan iIsomorphism.

CLAIM: yxf: S ---— P1xB is birational.

Proof of the claim: It is enough to show that the degree of ¢xf

is one. We fix a general point (t,y)eP1xB, then
{t}xB)(PIx{y}) = 1.

We recall that for any two divisors C,D on P1xB we have

f*(D).f¥(C) = deg(f)(C.D) (cf. remarks after (3.12)) and therefore

deg(f) = tp‘i(t).Fy = (D+nF).F, =1.



So we have proven the claim and the theorem. Q.E.D.

(9.10) Definition, Let £f: S — B be a fibration of the surface S
over the curve B. A fibre F=Zi=1 n niCi of f is called multiple

fibre iff m:=GCD(ni) > 1.
Then we can write F = mF’, and F2=0.

(911) Example Let f: S — B be a fibration of the surface S over
the curve B and F=2,_, | n,C a fibre. Furthermore let

D=Zi=1 g MG, with m;eZ and D2=0. Then by Zariski's lemma
we obtain that there exists a reZ such that D=rF",

(9.12) Remark. Let f: S — B be a fibration of the surface S over
the curve B and g=g(F) the genus of the general fibre F of f. Let

Fy = mF’ be a multiple fibre. Then 2g-2 = K.F = K.Fy = mKF =

m(2p(F'}-2). From this we see that g=0 implies m=1, i.e. there
don't exist multiple fibres.

If g=2, then 2p(F)-222, hence mx<g-1.

If g=1, then m can be arbitrarily large and in fact an essential

tool of surface classification is the study of elliptic fibrations

(i.e. fibrations whose general fibre has genus one).

We will now prove the formula of Zeuthen-Segre which we
already formulated (cf. (8.16)) in order to use the result for the
proof of the theorem of Castelnuovo.

{9.13) Theorem (Zeuthen-Segre formula). Let f: S = C be a

fibration of a smooth projective surface S over a curve C and F
a smooth fibre of f. Then we have the following identity for the
topological Euler characteristics:

e(S) = e(Cle(F) + u,
ac‘tuo\lly rl(Y)?’o and

where u20,{u = Z,.c nuly) with'u(ybo iff Fy:=f'1(y) is singular

and not equal to the multiple of a smooth elliptic curve.

(@)




For the proof we need to recall some facts about Chern classes
of vector bundles. A general reference for this topic is for
example [7']

(9.14) Remark, 1) To any locally free sheaf F of rank r on a
nonsingular projective variety X we can associate integral

o .
cohon:}’l/ogy classes ¢;(F)eH%(X,Z), i=0,...,r, the Chern classes of F.

For convenience we put the Chern classes together to,the total
Chern class ¢(F) 1= 1+c;(F)+..+c (F) € BH?(X,2Z). Q

This cohomology classes exist and are uniquely determined by
the following properties:

rYm

a) Co(?)= 1.

b) If O(D) is the line bundle of a divisor D, then c(D) = 1+c4(D)
= 1+c4(0(D)) is given by the image of G(D) under the map

HY(X,04"*) - H2(X,2) arising from the exponential sequence on X
(cf. proof of (4.1)).

c)If 0 - F - g > H — 0is a short exact sequence of
locally free sheaves on X, then c(3)=c(F).c(H).

2) Let E be a locally free sheaf on X, then c¢;(E)=c,(detE).

3} Let S be a projective surface, then c¢,(S): —cz(QS’) e(S)

where e(S) is the topological Euler characteristic of S.

(9.19) Example, Let S be a projective surface and £ a locally
free sheaf of rank 2 on S. Furthermore let o be a section of £

vanishing on a finite set. We get an exact sequence

o ta

O—’GS—’Eﬂﬂsz*’O,

@

Har'fs L\an
Grothendee



where L is the determinant of E, 'o is the transposed of o (i.e.

T

if o is locally given by [ Jthen to=(-0,,04)) and $; is the

T2

ideal of the 0-dimensional subscheme Z of S locally given by
{oy=0,=0}. From this we obtain the following:

Ci(L) = Ci(E),

c,(E) = degZ = h%0,).
Furthermore the total Chern class of O is given by
c(9z) = ¢(L/9,8) = 1-degZ.

Obvicusly the degree of Z is always bigger or equal to zero and
it is equal to zero if and only if Z=2. This is a completely
elementary fact, but it will be very useful for the proof of

(9.14).

Proof of (9.1%) We can assume f to be relatively minimal, since

otherwise by (9.3) there exists a relatively minimal fibration f'"
S" = B and a sequence of blow-downs n: S — S such that
f=f'ert and then e(S) = e(S’) + number of blow-ups.

We have, by definition of the gheaf of relative Kaehler
gjjf_f_e_mng_a_l_s_glm, we have the following exact sequence:

R B R T . T

0 — f’(ng) - Qis — Qis/B - 0.

We observe that we have the following relation between the
sheaf of Kaehler differentials of a fibre F of f and the relative

Kaehler differentials Qis,B:

Qlr = Qg ® OF.

@3



By the above exact sequence we see, that wgp (:=det(Q1g,5))

= Q% (" (Q) ! = O5(Ks-1"Kp).

We define a map &: Qly — Ws/pg, locally given by

E(n)=(nadt)®(dt) 1 and it is easy to verify that E' is
welldefined.
Let (x,y) be local coordinates around peS and t a local

parameter of B at f(p). Then locally we have Q13=Gsdx+6sdy

_ at ot | ot 4
and since dt = % dx + 5‘; dy, g'(dx) = 5;; (dx~dy)e(dt)™* and
ot
E'(dy) = - % (dx~dy)®(dt)"1 (note that (dx~dy)®(dt)™?! is a

local generator of wg,g). Therefore we see that Im(&)=3rwg/p,
where 4e is the ideal sheaf of the critical set of f (i.e. Sp is
dt ot

Iox ' oy’
The critical set C of f is in general not a divisor, it can have
zero-dimensional components. We consider the divisorial part &

ot ot
of C, locally defined by O’=G.C.D(3}'{' , ““;). Then 8 = ¥, .5 8,,
where 3, = Z(n;-1)C; if F,, = En,C, (note that this fact is not

true in positive characteristics).

at ot

Therefore we get: x = ¥x9. @ = ¥,0 with ¥,, ¥, relatively

prime regular functions. R -

locally given by (

CLAIM: ker(g’) = f*(QiB)(»g) = es(f*(KB)*"g).

Proof (of the claim): We calculate in local coordinates (x,y)

around a point p of S, then an element of le is given by

adx+bdy, where a,b are regular functions around p. Obviously

ot ot
E'(adx+bdy)=0 if and only if a 5; - b 3% - 0, which is again



equivalent that a¥, = b¥,. This means that a=u¥, and b=u¥,

dt
and so adx+bdy = u(‘g), which proves the claim. QED.

Putting the knowledge about £’ together we obtain an exact
sequence of sheaves on S:

(=) 0 — @S(f!KB"ﬂS) — le - Wgyp ac(ws/g) — 0.
, Simece  twe ideal 0f & is cowtatmed | .

* iw the ‘deal o 8

e also have the exact sequence \L

(xx) 0> F - Ge— G5 0,

where the support of ¥ has dimension zero (ie. F s
concentrated in finitely many points). In fact locally we have:
G 3=0g/(a), Or=05/(c¥,,0¥,) and the kernel of the natural

quotient map Og — O3 is given by (g)0s5/(c¥,,0¥,)= GS/(h’x,B’y)
=:F. Moreover the stalk ‘}'p=0 if and only if p i1s a singular point
of the reduction F_ .4 of a fibre F of f. Therefore ¥ is
concentrated in finitely many points.

Tensoring {= %) by wg/g We obtain the exact sequence:

(%% %) 0 — F — @c(U-JS/B) - G,S(wS/B) - 0

With the help of the above exact sequences and continuously
using (9.15) we will now calculate e(S)=c,(S) and e(F).

By (9.15), 1¢) we obtain from (»): . e e

C(Qis) = C(Os(f*KB+8))C((A)S/fB)C(ec(OJS/B))-i.

By the exact sequence (xxx) we know on the other hand:

C(ec(()\)s/B)) = C(?)C(GB((‘OS/B))'

and therefore we get:

C(le) = C(Og(f'KB+3))C(ws/B)C(?)—ic(ag(wS/B))-i =



- (Ol K+ 8))c(F) Le(cogn(-8)) =
= (1+f"Kp+2)(1+degF)(1+Kg-{*Kg- 3).

By definition <(Qlg) - 1+¢1(Q5) +e, (01 = 1+Kg+c,(S) and
therefore we see from the above equality:

CQ(S) = deg¥F + (f*KB“’;S)(KS—f*KB-'g) = deg‘&' + f.‘KB'KS + 8.Ks,

where the last equality holds by Zariskis lemma, since f*Kg is a

sum of fibres and & is contained in a sum of fibres.
The canonical divisor Kg of the curve B is linearly equivalent

-

to 2g(B)-2 points, therefore f{*Kg is linearly equivalent to 2g(B)-
2 fibres. Furthermore Og(Kg) = wp, hence KgF = 2g(F)-2.
Putting these observations together we obtain:

c(8) = (2g(F)-2)(2g(B)-2) + degF + 8Kg =
= (-e(F))(-e(B)) + degF + 8Kg =

= e(F)e(B) + u, .

where p:=deg? + 3. Kg.

Furthermore u = ZyHy, where uy=u(Fy)=deg(?nFy) + 3, Ks.

Let FY:Zi=1,...,k n,C; be a fibre of f. If &, (=zi=1,...,k (n;-1)C,) =

0, then F,, is not irreducible and (9.5) implies that KS.Cizo and

so also 3,.Kg20.

On the other hand deg(¥~F,)>0, unless (Fy)req is smooth or
equivalently Fy = mC, where C is a smooth curve. If m=1, th%I(Fy 1s

LP mOYeEo Vv q-K =0,
smooth and if m:22Ythen C.KS=C2=O and therefore by the

adjunction formula C is a smooth elliptic curve. This proves the
theorem. QED.



Elliptic fibrations (and their role in the classificati
theory of surfaces),

In this lecture we will study elliptic fibrations, e, fibrations f: S
— B of a smooth projective surface S over a smooth curve B
such that the general fibre is a (smooth) elliptic curve (i.er\has
genus one). Furthermore we will always assume f to be
relatively minimal (cf. (9.2)).

If F is any fibre of f, then it follows from the adjunction
formula together with the fact that F has selfintersection zero,
that

Ks.F = O

The first aim of this lecture will be to give a complete
classification of all possible singular fibres of f. '

(10.1) Remark. If the fibre F=2,_1 x nC (note that we have

adopted the convention n;z1 for all 1) is not irreducible (i.e.,

there exists an i such that n;=2 or k>2), then by (9.5) we have
KS.Ci > 0 for all ie{1,....k}. Since

0 = KSF = Zi=1, k nl(KSCl) > 0,

1t follows that

KS.Ci = 0 for all ie{1,...k]}.

iti Let S be a smooth projective surface and
D=Zi=1 Kk niCi an effective divisor on S. D is called of elliptic

tvpe if and only if the following is fulfilled:

1) D'Ci=0 for all 1,



D is called an jndecomposable divisor of elliptic tvpe if D is of
elliptic type and cannot be decomposed in a sum of two
divisors of elliptic type.

(10.3) Remark, 1) Obviously an indecomposable divisor of
elliptic type is connected.

2) If we look at the proof of Zariski's lemma (cf. lecture 9) we
see that the statement remains true if we replace the fibre F
of the elliptic fibration by an indecomposable divisor of elliptic
type. This means that in the following we will not only give a
classification of all singular fibres of an elliptic fibration, but we
give a classification of the indecomposable divisors of elliptic
types((g_) v ettt o5 (w .42, we V'aPloce, a

mu ltiple Pibre Fzwm ' L-’ F')_

1 _CASE: k22,
Let F=2,_, k 1C; be a fibre of f with k22. Then by Zariski's

lemma we know:

ci2 < Q for all ie{1,. k).

by
So we obtain with the adjunction formula:

-2 = 2p(C)-2 = KC; + C;2 = .2 <o,
hence ci2=—2 and C;=P? for all i,
If there exist i=je{1,.. k} such that Ci.CJ-zZ, then

2 _ _
(Ci+cj) = 4+2Ci'cj > 0.

Hence by Zariski's lemma Ci.CJ-=2 and there exists a natural
number m such that F = m(Ci+CJ-) = mF' (F' as in (9.10)). In



this case we have the following two types of intersection (of Ci

d C.):
an J)

>

1a" and Ay ,

i.e.,F)is of type Ala or Al‘
Therefore we can assume in the following:

Ci.stl for all i=je{1,.. k).

[f there exist three different elements i,j,1 of {1,..,k} such that
Cir-~CJ-r\C1 = & (in particular Ci.CJ-=Ci.Cl=CJ-.Cl=1), then

2 _ _ =

\
and again by ZariskiR lemma we see that F'=Ci+CJ-+CI, l.e. F' is of

type A 2a

So we can also assume in the following that for all pairwise

different 1,j,kef{1,.. .k} we have Ciﬁc\jncl = &,

Finally if we assume that there exists a cycle of b (23)
irreducible curves C1""'cb contained in F, i.e. Cl.C221,...,Cb_1.Cb

21, C,,.C421 (note that by the above argument we know that

Ci.Ci+1=1), we can conclude analogously that F' = C1+...+Cb, ie.

F' is of type Kb-1:

(Fol‘{ Yo with | sl'o\es)



If F'=Zi=1 k 1;C; (G.C.D(ni)=1) is different from the above
configurations (as we already saw F' then also does'nt contain

one of the Ergf:eding configurations Kla' Kl’ ‘Z‘Qa’ Kb—l)’ then

we assoclateYa graph, called the Dynkin-graph, #$ofF".
The vertices of the graph correspond to the irreducible
components Ci of F' and two vertices (corresponding to Ci and

CJ-) are connected by an edge if and only if Ci'CJ':l'
Moreover the vertices are labelled by the multiplicities n, of Ci'

Since F' does not contain cycles of curves, the corresponding
Dynkin-graph is simply connected, hence is a vertex labelled
tree.

(10.4) Theorem, Let f: S — B be a relatively minimal elliptic

fibration and, FemF'=m(%;_, | nCy, (G.C.D(ni)=1),/,51 fibre of f.
Gt ~ be

We assume furthermore that F' is not of type Ala’ Ai’ A2a’

'Kb-l' Then the Dynkin-graph of F' is one of the following trees:

Dgsp S

E8: 5 l

—~—
—

"_.6 : O R ——O——P



(10.5) Remark, Vice versa all the above graphs (K 12 ;‘:1, ;‘2a’

Kb~1’ 64+b' Es, E7, Eé) occur as Dynkin-graphs of elliptic

fibrations (even with S being an appropriate blow-up of the
plane) (cf. [Mirandal).

Proof (of (10.4)). It is easy to verify that for each of the above

graphs the associated divisor F'=Zi=1 Kk niCi is indecomposable

of elliptic type. Therefore (by Zariski's lermma) a Dynkin graph
which is a subgraph of one of the above trees or contains one
of the above trees must coincide with it.

Let D be a Dynkin-graph arising from an elliptic fibration. Then
any vertex touches at most four edges and if there exists a

vertex touching four edges then D=f)4.

Furthermore D has at most two nodes (i.e. vertices through

which pass three edges) and if D has two nodes, then D=54+b

with bz1.
In the case that D has exactly one node, we get by removing
this node three connected components with a,, a,, az vertices

(a15a25a3).
If a122, then D contains E6 and therefore D=E6.

If a1=1 and a223, then D contains E7, hence D=E7.
On the other hand if a1=1, a2=2, then we distinguish two

cases:
<) az25.

In this case D contains ES' hence D=E8.

B) az<4.

Here D is a proper subtree of E8’ which is a contradiction, so

this case cannot occur.



The remaining case aqy=a5=1 is not possible, since then D would

be a proper subtree of 54+b for an appropriate b.

If D had no nodes, D would be a proper subtree of 54+b for an

appropriate b, hence also this case cannot occur and we have
proven the theorem. QE.D.

In this case F=mdC, mz1, where C is an irreducible curve.
Moreover p_(C)=1 and (using Kodaira's notation (cf. (1)) for C

only the following cases can occur:

IO: smooth elliptic curve,
Ilz nedal cubic,

II: cuspidal cubic.

We have now completely classified the non maultiple fibres of a

relatively minimal elliptic fibration and the following theorem
will conclude the classification of all possible singular fibres of
an elliptic fibration.

(10.6) Theorem. Let F=mF' be a multiple fibre (i.e. m22) of a
relatively minimal elliptic fibration. Then F is of the form mIO,

ml, or m Kb—i (b22).

This result is an immediate consequence of the following
proposition together with the classification above.

(10.7) Proposition, Let F=mF' be a multiple fibre of a relatively

minimal elliptic fibration f: S — B. Then the following
assertions hold:

1) F' is not simply connected.
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