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Notes on Chern Weil Theory

By
M.S. Raghunathan

This 35 a brief account of Chern - Weil theory for characteristic classes.
We assuine some familiarity with basic concepts and facts about smooth and
complex manifolds such as tangent spaces, the operators d, d,, d; etc.

k 1. Vector Bundles

let M be a smooth manifold. A complex vector bundle £ of rank n is
a smooth manifold E(£) together with a amooth map () E(§) » M
and a vector space structure on E,(§) = m(£)"!(m) for each meM with the
following property (*).

For each meM, there is a neighbourhood U of m and a diffeomorphism
Dol =C® — w(€)H (1) such that =(£)®(m, v) = m for all {m,v)ell xC" and

or each mel/, v — $(m, v) is a vector space isomorphism of C™ on E,(£).
E(£) is called the lotal space of &, M the base of £ and for meM, Eq(£) the
fibre over €, For a fixed ® as above and mel!, we denote by &, the isomor-
phism v+ ®(m, v} of C" on E,,(£). Also ¢ will be called a “riviatisation of
£ over L/,

{The property () is a “local triviality” assumption and may be replaced
by an apparently weaker but equivalent condition. Such a modification of the
definition is of no great interest in the differential geometric context. How-
ever, one can make analogous definitions in the algebraic geometric category
and there the Zariski topology being a some what coarse topology, the local
triviality assumption with U/ replaced by a Zariski open set in the variety M
would appear too strong; and indeed to take care of many naturally occuring
objects, it is necessary to modify the assumption to a weaker one. As it
turns out the modified assumption that naturally suggests itself turns out to
be equivalent to the more stringent condition but unlike in the differentjal
geometric cateogry, this equivalence lies at a subtler level).

A morphism of a vector bundle £ on M in another vector bundle n also on
M is a smooth map @ : E(£) — E(n) such that r(y)e® = #(£) and ¢ induces
for each meM a vector space homomorphism of E,,{£) on E..(n). Evidently
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the class of all vector bundles with these morphisms form a category.
Exercise show that this is an abelian category.

The simplest example of a vector bundle on M is of course the product
M x C" (as the total space} and each {m} x C" given the vector space
structure on the second factor. A vector bundle £ of rtank n on M is trivial
if it is isomorphic to the above bundle.

A basic notion in the theory is that of induced bundles. Let £ be a vector
bundle on M and f: M — M be a smooth map of a smeoth manifold M’ in
M. Then we define a vector bundle £ to be denoted f7(£) on M’ as follows.
The total space E(£') of £ is the fibre product of M" and E(¢) over M.

E(E) = {(m',z)eM’ x E(£) | f(m") = x(£){z)}

E(£') is a closed smooth submanifold and the carterian projection of M’ x
E(£) restricted to E({') is the smooth map n(£'). En(£") = #(£)"Y(m') =
{{m',v) | veEn(£)} and acquires a vector space structure under this identi-
fication with E,(£). We leave it to the reader to check that & is indeed a
vector bundle on M’. A special case of this construction is the case when M’
is an open set in M and f is the inclusion. In this situation E(¢') is naturally
identified with x{¢§)~1(M’). Property {x) says then that for each rmeM, there
is an open subset U/ such that the induced bundle on I/ (also called restriciion
to U) by £ is trivial. Over such an open set U, the inverse image under (¢)
is a product of I/ and a fixed vector space C". A vector bundle on M may

be viewed as a continuously varying family of vector spaces (parametrized
by M).

Examples 1, Let M be a smooth manifoid and for each meM, let T,
denote the tangent space at m to M. We define the tangent vector bundle
T =7(M} of M as follows. The underlying set of the total space E{r) of 7 is
the disjoint union Uy, mT,, and x(r) is defined by setting x(£)(T,,)} = m. We
make E(7) into a smooth manifold in the following manner. Let [/;,ief he
open seta in M admitting coordinate charts o; : U; — Q,{= open set in R").
The coordinates {z, | 1 < a < n} define vector fields 8/92.,1 < & < n in
the open set U; for each ie]. We then obtain a bijection &; : ©; x R* —
x(£)~1(U;} by setting

Bz, t1,--- i) = E t.,&/ax; |w,-_'(=) .
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E(7) is topologised by requiring that a set U in E(r} is open iff ;7 ({/) is open
for all ie] and then made into a smooth manifold by taking (w{€)~1(17;), ®7)..;
as an atlas. Observe that the @; play the role of the ® in our definition of a
vector bundles.

2. Let M denote the Grassmann manifold of r dimensional subspaces
of C"(r < n). We define a vector bundle u of rank r on M as follows.
The total space E(u) of u is the smooth submanifold {(m,v)eM x C" |
ve vector subspace m}. E(u) is called the canonical vector bundle on the
Grassmann,ar

3. Let §" be the n—sphere {(z)---zn41)eR™ | 3~ 22 = 1}, Let

1<i<nt1 :
E(r) = {{z,v)eS™ x R**! |< z,0 = 0}. Then E(7) is the total space of a
rank n—vector bundle r on S™ with 7(7){x,v) = z and the obvious vector
space structure on E (1) = {{(z,v) | veR", < z,v = 8}.
Exercise: show that E(r) is isomorphic to the tangent bundle of S,

A host of other examples can be given starting with one or mare vector
bundles. Thus if £, 7 are vector bundles on M one can construct the direct
sum { @ 7 of { and 7. The total space E(¢'® r) is the fibre product of
E{£) and E(r) over M and (§ @ 1) is the natural map of E(¢ & r) in
M. For meM, then EL (¢ @ 7) = {(m,v,uw) | veEn (£}, weEn (&) & En(1))
and hence acquires a veclor space structure. Slightly more involved is the
construction of the tensor product £ ® n of £ and 4. The underlying set
of the total space E(§ @ n) of £ @ 5 is Uy Enl(é) ® En(n). Let U, iel,
be a covering of M by open subsets and &, : U; x C* — #{&)HL) and
¥ 1 Ui x €™ — w(g)7}(L};) be “trivialisations” of £ and 5 over U.. (such
Ui, ®;, 9 exist). Let A, : U; x (C™ @ C™) — x(€ @ 4}~ (V) (here x{E@ ) :
E(E®n) = M i3 the map »{¢ ® n)(En.(¢) ® En(n)) = m) be the bijecti :n
Ad(m, v, w) = &i(m, v)@¢i(m, w). We make E({®1) into a smooth manifold
by the requirement that a set Q C E(¢ ® 1) ie open if and only if AT s
open for all i¢/ and the smooth structure is such that A, is a diffeemorphism.
The details to be checked are left to the reader. One can similarly define
for any vector bundle £ and an integer m > 0, its m® symmetric or exterior
power vector bundles which are denoted 5™(¢) and A™(£) respectively. The
dual £* of a vector bundle £ is again defined in a similar way: the fibres
En(£") of £7 are the duals of E{£).

A smooth section of a vector bundle ¢ over an open subset U < M is
a smooth map ¢ : I/ — E(£) such that z(£)a(m) = m for all mel/. We

denote by I'({/,£) the set of all smooth sections of Eover /. I o,0 are
two elements of I'{l/, £) and f is complex valued ™ function o U, then we
define ¢ +o’el(U,£) and foel' (U, £) by setting (74 0')(m) = o{m)+o'(m)—
note that both o(m) o'(m) are in E,.(¢) and (fo)(m) = f(m).c{m). Thus
[(U,£) form a module over C=(U/) = C— valued O™ functions on U/,

A smooth exterior p— form & on M with values in a vector bundle € is
an assignment to each meM, an alternating p— form am on T, (= tangent
space at m) with values in E,.(£) satisfying the following conditions. Let
be any open set in M admitting a coordinate system and © a trivialisation
of £ over U. Let z; .-z, be the coordinates in I/ and fdxy---0/0z, the
vector fields in U corresponding to these coordinates. Tlen the funetion
™ 710, (8/ 0z, - - - 8/Bz,,) is 2 smooth (vector valued) function ay, -- -3,
on I for every p—tuple ¢ - - ip with 1 <4, < n. In U, then one has

a= 3 @i -oidrg Ao Adz,
“(A..<ip

where for 1 < i < n, dz; is the differential 1- form dz;(8/dr,} = §,; and
the exterior product is taken in the usual sense. In fact we define below
the exterior multiplication of vector bundle valued farms in a more general
context. The vector space of exterior p—forms on M with values in the vector
bundle ¢ will be denoted 0*(£) in the sequel. Observe that if p: M - A
is a smooth map and £ is a vector bundle on M, then for each m’eM, there
is a natural identification of £(¢') with Epm)(£) where £ is the bundle on
M’ induced by ¢ through f. Consequently one can define for each aeQP(L)
its inverse image f*(a)ef?(¢') : for tangent vectors vy vy to M at m!, et
vy -+ vy be their images in M; then f*(a)(v].-- v ) = e(vy 1) (note that
a(vy v )eEy(mn(€) = Enrl€’). f*(a) it the “inverse image” of o under ;.

We start with vector bundles £,4.¢ on M together with a vectar hunddle
motphism

BBy
Let & (resp 8) be a smooth exterior p— {resp ¢—) form on Af with values in
£ (resp. 7). Then a A B is the (p + ¢)— form with values in ¢ defined by the
following formula: let X, ---, Xp4q be vector fields {or tangenl vctors at a
point of m); then

1
(GA-B)(Xi T 'Xrﬂ) = ;T_. E F(C'(XO'(I) T Xe(p))aﬁ(xo[pﬂl T Xaipwli)-
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The casc of Scalar forms corresponds to the case when £,n and { are given
trivialisations and the map u is the usual multiplication of functions). Ob-
serve that [or € and 17 one has the natural {identity) map id: £ @ n —~ £ ®q
so that for any a, 3 above one has a £ ® 5 valued form a A 8 (with respect
id) and the general case is obtained from this exterior product by composing
with p).

We also remark that {— valued p— forms on M are the same as sections
of the bundle APr* @ ¢ where 7 is the tangent bundle of M and 7° is its dual.

§2, de Rham's theorem.

As in §1, let M be a smooth parecompact manifold of dimension n. For
an open set I/ of M, let F(U/) denote the vector space of all smooth complex
valued exterior differential forms of degree p in U/,

Recall that one has a differential operator

d: QP (U) - QL)

defined as follows: let X, .- X,y be smooth vector fields on I/. Then for
aefP (1),

da( X, - Xp+1) = E (—1)‘+1X,-Q(X,-a(X1 v -?- U Xp+l)
1<1<p+1 . .
+ 2 (-1e((X, X)), X X X Xpa)
i<y

One has of course to check that da(X) --+ X;1.) at point mel/ depends only
Xi{m)--- Xpp1(m) and not on the choice of line vector fields themselves.
The operator d is local ie., if  is zero on an open set V C U s0 is dav. It is
clear from the definition that d is compatible with restrictions. For an open
subset U" C U, the diagram

L) S )
1 i
(U S Qe
is commutative, More generally if f: M’ — M’ is a smooth map one has

a natural vector space homomorphism f* : QF(M*) — QP(M') given by
Frla}(er---vp) = aldf{w) - -- df (vp)) where vy -+ vy are tangent vectors at a

5

point m'eM" and df denotes the differential of f at m’. The diagram

(M) L aeHM)
1 L r (+)
@MY L (M)

is commutative.

It is well known and easy to deduce from the definitions made above that
we have the following two properties for d:
d{a A B} da A+ (—1)Pandp
d*a

=0

where « (resp @) is a p form (resp. ¢ form). The second condition shows that
0%(M) = (1, (M}, d) is a cochain complex and the second one shows Lhat
the exterior multiplication of forms gives rise to a product again denoted A
on the total cohomology

H(@(M)) = [] HP (2 (M)

P20

of the complex {}*(M); further one has for cohomology classes
acHP (M), BeHI(Q"(M)) one has a A § = (—1)"98 A o {since such a
formula holds for forms themselves). Thus H*(0°(M)) is a graded (anti-)
commutative ring for any ‘manifold. The commutative diagram ()} shows
that M — 0°(M) is a contravariant functor from the category of smooth
manifolds into the category of (cochain) complexes of vector spaces over C
and hence that M — H*(Q°(M)) is a functor from the category of smooth
manifolds into the category of graded commutative algebras.

de Rham’s theorem asserts that H*(£2°(M)) is a topological invariant of
M je. it depends only on the urnderlying topology of M and not on the
C* structure. (although °(M) depends heavily on the (7* structure for
its definition). The theorem carries in fact more precise information and we
outline below the necessary back-ground from algebraic topology.

Let AP denote the compact convex subset {z = (2, --- £, )eRP*! | z; >
0, 3 =z, =1} of R**. It is in fact contained in the linear subspace

1<i<n+1
Ly={z = (21 zpn)e R | 3} z,=1} . Amapf:A° - M (Ma
1Gign+t
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smooth manifold) is smooth, if there is a open neightbourhood U of AP in
L and a smooth function f: U — M such that f restricts to f on AP, A
singular p-simplez (resp smooth singular simplex) in M is a continuous (resp
smooth) map of A” in M. Let Sp(M) (resp. S&//(M)) denote the set of
singular (resp smooth singular) simplices in M. Clearly we have an inclusion.

SEIM) s S, (M).

Now, let C*(M) resp C};;;(M} denote the vector space of all complex valued
continuous functions on the set S,(M) (resp 55//(M}). The above inclusion
clearly induces a surjective vector-space homomorphism

Next we will introduce a “coboundary” homomorphisms @ : C*(M) —
CP*Y(M) and 8 : Cdif f*(M) — C3}}(M) compatible with iy and 7., and

P
such that @ = 0 in both cases. To define 8 we first observe that we have for

each 1 <i < p+ l,inclusions u; : AP — AP defined by
wilzy - Zppa) = (31 200y, 0,3 cZpp).

If f: A% — M is a singular (resp smooth singular) (p + 1)~ simple x
in M evidently f o, is a singular (resp smooth singular) p—simplex in M.
For 0eCP(M) (resp. C%,((M)),and 1 i < p+1, let OipeCPH (M) (resp.
Cm}(M)) is defined by setting 8ip(f) = ¢(f o u;) and let

Bo= 3 (~1)™Ma.

1<i<p+1
Then one has 9% = 0 in both C°(M) = []CP(M)Cy,;,(M) = []Co s (M).

p20 P20
One sees easily too that M — C°(M) and Caizs(M) are both functors on
the category of smooth manifolds. Also the diagram (for each M)

Ccr(M) A cr(M)
i 1
Cor(M) 3 CEHy(M)

is commutative.

Less obvious, though standard topology techniques yield it, is the follow-
ing

Theorem. The natural homomorphism C°({M) — Clir (M) induces iso-
morphism in the cohomology groups. (which will be denoted H?{M) in the
sequel).

Our next step is to define a homomorphism of complexes of 91°(M) in
Cgigs(M). Let then aefl’(M). Suppose that f : AP = M is a smooth map.
Then the pull back f*{«) is a C*p— form defined in a neighbourhcod of A” in

Lp. Now (zy---zp) vt {2y 35,1 — Z #p) gives a standard identification
1<i<p
of RP with L, and under this identification AP corresponds to the compact

set A} = {z =&, 2p)eRF | 2; > 0, 1; < 1}. Now f*(a), a p—form on
R” can be expressed uniquely as

F(e) =adz, A Adz,

where « is a smooth function in a neighbourhood of A} in R”. We then set
deR()(f) = [ adu,
Al
where dy, is the standard Lebesgue measure on R

Theorem. deR : 97(M) — C%,,,(M) defines a homomorphism of complexes
f1* — C* inducing an isomorphism in the cohomology groups.

The first agsertion is immediate from Stoke's theorem. The second in
conjunction with the earlier theorem shows that HP((M)) is a topological
invariant of M. A proof of the theorem is beyond the scope of these notes.

We need one important fact, viz. that f and g are smooth maps of a
manifold M" into a manifold M which are homotopic by a smooth homotopy
then the map induced by f and ¢ on H=(Q(M")) are the same.

§3. Principal Bundles

The notion of a principal &-bundle, G a Lie group is closely related to the
concept of vector bundles and serves to clarify many ideas connected with
vector bundles. We begin with the definition.

A principal G-bundle or simply a G-bundle £ on M is a smooth manifold
P(£), a smooth map x(£) : P(¢) — M and a smooth right action P(£)x G —
P(€) of G on P(£) satisfying the following conditions
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() #({)(zg) =#({)(z)forz € P,g€G

(ii) For every m € M, there is an open set [/ with m € U and a diffeomor-
phism @ : U x @ — 7(£)~'(I/) such that

$(u,gh) = ®(u,g).h

{for £ € F and g € G, g is the image of z under the action of ). is called
a local trivialisation of £ over I/. For m € M, Pn(€) = x(£)~'(m) is the
fibre over m. Also P({) is the total space of {. For ¢ as above, the map
g = ®(m,g) is a diffeomorphism of G on #(£)~*(m) compatable with the
right translation action of G on G and the given action on x(£)~'(m). We
sce thus that G acts simply trnasitively on the fibres of x(£). (As with vector
bundles the local triviality property of a principal bundle can be replaced
with an equivalei t condition that would at first glance appear weaker. The
interest in such o weakening actually stems from attempting a definition of
principal bundles in the algebraic geometric category where local triviality
for the Zariski topology would be an unsatisfactory assumption as it would
exclude even a very natural situation like the morphism H — H/G where H
is an algebraic group and G is an algebraic subgroup).

The property {*) can be replaced by the following condition : x(€) is
of maximal rank everywhere in P(£) and for each /s € M,G acts simply
transitively on #(£)"'(m). This is essentially a consequence of the implicit
function theorem and Saard’s theorem and is left as an exercise 1o the reader.

If ¢ and 5 are G-bundles, a morphism of £ in 1 is a smooth map f : P(§) -
P(n) such that x(n) f(z) = m({)(z) for all z € P(£) and f(zg) = f(z).g for all
g € G and z € P(¢). Evidently under these morphisms the G-bundles on M
form a category. Note that all morphisms in this category are tsomorphisms.

An obvicus example of a principal bundle is the product M x G with &
acting on the second factor through right translations: (m,g)h = (rn, gh)
form € M and g,k € G. A G-bundle £ is triviel if it is isomorphic to this
bundle.

If f+ M' — M is a smooth map and £ is a principal G-bundle on M, one
defines the induced G-bundles on M’, f~(¢) as follows: set f*(£) = 1; then
P(n) is the fibre product of M and P({) over M - it is easy to see that P(n)
is a smooth submanifold of M’ x P(¢) and is stable under the action of G
(acting on M’ x P(£) through the second factor).

The local triviality condition (*) says that for each m &€ M there is a
neighbourhood U of m such that the G-bundle induced by the inclusion
U — M from ¢ is trivial. The following lemma is often usefyl

Lemma. A principal G-bundle ¢ over M is trivial if and only if it admits a
smooth section if there is a smooth map ¢ : M — P such that (€).o(m) =
miforallme M.

Proof. If £ is trivial, one has an isomorphism & of M x G with £E-9
M x G — P(£) and we need only define @ by o(m) = &(m,1) (1 = G the
identity element). Conversely if ¢ is a section defined & : M x G — P(€) by
setting ®(m, g) = o(£).g. One checks that & is an isomorphism.

Examples 1. Let ™' = {z ™| |z = 3 |z |=1}. The group
1giga+l

§'={z € |z|=1}acts on 5 by v,z = v.z, v €"*! 2 € S and

the quotient is the complex projective space P*() of (complex) dimension n,

We have then the natural map $*"** — P*() and this with the action of §?

gives a principal 5! -bundle. The reader may check the details,

2. Let H be a Lie group and G a closed subgroup. Then H 2 H/G with
the right translation action of G on H is & G-bundle. The local triviality
condition is a consequence of a well known fact from Lie theory viz. that for
any point mg € H/(G, there is an open neighbourhood U/ of mq and a smooth
map o : U —+ H such that x.o(m)=mforall m € U.

3. More generally - and the first example is a special case of this, if
is a Lie group and H', H" closed subgroups and H" is a normal subgroup of
H' and we set G = H'{H"”, then one has a natural action of 7 on G/H" an
the right : for ¢ € G and a coset zH” we define tH".g = zjH" whera §is
any lift of g to H’. This action of G on H/H" together with the smooth map
HfH" — HfH’ is a principal G-bundle on G/H'.

4. This example establishes the connection between vector bundles and
principai bundles. Let { be a complex vector -bundle of rank r over M.
We consider the set {{m,p) | m € M,y is a vector space isomorphism of ®
on En(£)}. Then P,.(£) can be identified with an open set in Et®- -@f)

N Lopnea
{exercise) and is thus a smooth manifold. One defines an action of GL(::) on
P(£) by setting (m,).g = (m,p.g) for (m,) € P(£)and g € GL(n,). Thus
to each vector bundle £ of rank n on M. Conversely if £ is principal G'L{n,)
bundle on M we construct & vector bundle & on M as follows: Consider the
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product P(£¢) x™ .GL(n,) acts on this space by the rule
(z,v)g = (.9,97'(v))

z € P(£),v €™ and g € GL(n,). Let E(£) be the quotient of P(¢) x™ for this
action and x() : E(fo) — M the map induced by the map P(£)x™ — M
given by (z,v} v x(£)(z). Then for each z € P{£) with x({)(z} = m, the
composite map ™ — E,(fo) given by v »+ image of (z,v) is a bijection and
we may transport the veclor space structure on ™ by this bijection to En,(£):
the structure so obtained is independent of the choice of z € n(£;~!(m) since
any two such z are in the same GL(n,) otbit and GL(n,) acts linearlyon ™.
One checks easily that if £ is a GL(n, )-bundle, (&)* ~ £ and similatly if £ is
a vector bundle of rank n,{£")g ~ £. Thus there is a categorical equivalence
between principal GL(n,) bundles and rank n vector bundles on M (with
motphisms as isomorphisms}.

The last construction which associates to each (GL(n,)-bundle a rank n
vector bundle is a special case of a more general situation, We start with
a G-bundle £ on M and a continuous, hence sinooth, representation p of G
on a vector space V{p}. To this data we can associate a vector bundle £,
on M as follows: One forms the quotient E(£,) = (P(£) x V{(p))/G for the
diagonal action (z,v).g = (zg,p(g) " (v})z € P(£),v € V(p)¢ € G of G on
P(€)xV(p). The map n({): P — M enables one to define a map E{¢,) - M
and the compcsite map v — Image (z,v) in E(£,) gives an identification of
V(p) with E.-(£,) and hence a vector space structure (that depends only
on #¢(r)) making E{{,) into a vector bundle.

Observe that p s £, {for a fixed principal bundle £) is a functor from the
category of G-modules into the category of vector bundles on M. {Define
the morphism {; : £, — §,, corresponding to each G-module morphism
FV(p) = V().

84. Connections

Let £ be a G-bundle on M. Then for each X € Lie G, the Lie algebra of

(', we have a 1-parameter group of diffeomorphisms of P(£) viz

e zexplX, —oo <t < o0

where exp : Lie G — G is the exponential map. It follows that each X ¢ Lie
G defines a vector field on P(£). Observe that any such is tangential to the
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fibres of x{£) so that its projects to zero under dx(£). The map X i+ is an
injective Lie algebra homomorphism of Lie 7 into the Lie algebra of vector
fields on P(¢) (tangential to the fibres of 7(¢)). Since the map ¢ — ryg for
fixed z € P(£) is a diffeomorphism of G on =(£}"!(x{£)(x)), one sees that
for a € P({),~ (z) is an isomorphism of Lie G on the tangent space V(z)
to the fibre of 7(£) through x. We denote the inverse V(z) — Lie G of
this isomorphism by A(z) : A(){((z)) = X. For a tangent vector v to P&
at z € P(£) and ¢ € G we denote by v.g the image of v under the map
T: — T, of tangent spaces (T and T., at z and zg¢) induced by the smooth
map y — yg of P(£) into itself. With this notation one checks easily that

(2).9 = (Ad;' X)(zg) (=)

where Ad : G — GL{ Lie G) is the adjoint representation. Fquivalently one
has
Mzg)(vg) — Adg™"A(z)(v) {+)
for any vector v € V(z) (note that vg € V(zg)).
A connection on £ is a smooth Lie G- valued 1 form w on P(¢) such that

(1) w(vg) = Adg~'w(v) for v € T,z € P(£) and g € .
(ii) w |w(ey= A{z).

(In view of (') (ii) is consistent with {i)). Since w maps V(z) isomorphically
on to Lie G and V(z) is precisely the kernel of the tangent map dr(&)
Tz = To(e)(s), we conclude that T, ~ V{z) & H(z) where

2 -

H(z) = Kernel (w: T, — Lic G,.

H(z) is called the horizontal space of the connection at r. For a tangent
vector v € T, denote by H(v) its component in H(z) for the above direct sum
decomposition and call it the horizontal projection. In view of (i}, one has
evidently H(r).g = H(zg)forallge Gand z ¢ P(éy. ForveT,.me V[,
and z € P({) with x(£)(x) = m, the unique vector 5 € H(r) that maps Lo
v under the tangent map of {{) is the horizontal lift of v at 7. Any two
horizontal lifts of v (at two points P(£)) are mutual transforms under an
element of G. ¥ X, --- X, are vector fields on an open set {/ ¢ A their
horizontal lifts X, --. X, to P(£) (defined by X.(r) = (X.(=(€)(r)})~) are
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such that for each z € P(¢), {Xi(z) | 1 < i < n} is a basis of H(z). This
shows that the subset U.epiyH(z) is indeed a sub-bundle of T(P(£)) the
tangent bundle of P({). The map X  of Lie G into vector fields on P(£)
on the other hand gives us an isomorphism of the trivial bundle on (the sub
bundle) Uzepi;V'(z). Thus a connection gives a direct-sum decomposition
of the tangent bundle T{P(£)) of P(£) :

T(P)) = V(§) @ H(E).
Moreover the two sub-bundles are stable under the tangent action of G on
T(P(E)). . _

A connection on { enables one to define differentiation of sections of
associated vector bundles to £. Thus let p be a representation of ¢ on a
vector space V(p} and let {, denote the associated vector bundle. We will
first identily smooth sections of £, over an open set U/ ¢ M with certain
V(p)-valued smooth functions on x(£)7'(U). Recall that E(¢,) is defined
as the quotient of P(£) x V(p) under the diagonal action of G : for z €
P(£),v € V(p) and g € G,(z,v).¢ = {zg,p(¢)"'v). Let O : P(&) x V(p) —
E(S,)(= P(£) x V(p)/G) be the natural map. For z ¢ P(£) let B(z) be
the isomorphism of V(p) on E,¢)i-)(€(p)) defined by B(z)(v) = B(z,v),v €
V{p). Suppose now o : I/ — E(£,) is a smooth section so that a(m) € E,.(£,)
for all m € U, we can define 5 : (&)= (U} = V{p) as thie smooth function

¥(z) = O(z)'o(x(£)(2)).

One then checks easily that # satisfies the condition

&(zg) = p(g)~'5(z). (%)

for all z € (¢})"(U/) and g € G. Conversely if 5 is V(p) valued smooth
function en x(£)"(U) satisfying (*) above, o{x{£)(z)) = O(x)&(z) is well
defined and gives a section of {, over /. Thus we see that there is a nat-
ural isomorphism of the vector space T'(U, E(£,)) of smooth scctions of ¢
over U on the vector space of smooth V{p)-valued functions & on (£ (V)
satisfying (*).

More generally suppose a is an exterior differential p-form on an open set
{7 of M with values in E(£,), we define a V{p)-valued exterior differential
form & on #(£)7'(U) as follows: let v, ---v, be tangent vectors at a point
z € p(€)""(U). Let ©; be the image of v; under the tangent map of x(£).
Then c(vy,---,v) = B(2)a(®;, - F,). One checks easily the following:
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(i) &(vy---vp) = 0 if some v; € V(z).
(ii) &(vig---v9) = plg) " a(v, - V).

The map & — & is an isomorphism of the vector space {P(£,) of amooth €,
valued exterior p-forms on the space of V(p)-valued smooth exlerior p-forms
& on x(§)~1(V) satisfying (i) and (ii) above.

The identification of sections of §, over U with suitable functions on
7(£)"}(U) enables one to define differentiation of these sections by tangent
vectors to U. Let v € Ta,m € U. Let ¢ be a smooth section of £, over U/,
Then we define Do to be the element of En(£,) given by ©(x)(5.5) where
z is any point of x(£)~!(m), is the horizontal Lift of v at = and 7 i the
V{(p)-valued function associated to o. It ia easily checked that this definition
is independent of the choices involved. If X is & smooth vector field on [/,
one has a vector space homomorphism

Dx : LU, &) — T(U,4,)

given by (Dxo)(m) = Dx(myo. This differential operator has the following
properties:

Dxf.0'=Xf.0’+fDxO‘

for ¢ € [(U,£,) and f a smooth complex valued function. Secondly one has
D!xa = f.Dxa’

{Note that one has for v € T}, itself D(f.o) =vf.o+ fD,e). The operation
that assigns to each section ¢ of £, defined in a neighbourhood of a point
™ € M, the element Dyo € En(£,) is called covariant differentiation of o
with respect to v associated to the connection w on £ If p is the trivial
representation on (the vector space V(p)), £, is naturally jsomorphic to M x
V(p) and sections o of £, are V{p)-valued functions on M while & are simply
G - invgriant V(p)-valued functions P(£). All this leads to the conclusion
that Dyo = Xo where o is treated aa a V(p)-valued function on M through
the identifications abave.

Suppose now £ is a G-bundle on M and w a connection on E Let fo M
M be a smooth map. Then one has the induced bundle F(€)on M wli e
total space P(f*(¢)) = {(m',) € M’ x P(£) | f(m') = #(€)(2)}. The map
f defined by (m’,z) s z of P(f*(£)) in P(¢) is evidently compactible with
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the G action on both the spaces. It is then clear that f‘(w) is a connection
of f*(¢). This is called the induced connection.

& 5. Exterior differentiation and the Curvature Form

In §2 we saw the definition of a differential operator d : QF(M) —
(P+1( M) on ordinary exterior differential forms. If now we have a principal
G-bundle £ with a connection w on it, we can extend this notion to exterior
forms with values in the vector bundle £, associated to £ and a representa-
tion p of G. The extension is straightforward once we have the covariant
differentiation with respect to the connection introduced in §4. If 2 € Q7(¢,)
is a p-form with values in §;, d.or im the element of 0F¥1(¢,} defined by the
formula

o~

doo(Xy - Xpnn) = 3 (=) Dyw(Xy X Xpp1)
1<i<p 1
SRR IR U S
1<

That this definition depends only on the values of the X; at a point m
and not on the vector fields themselves is checked easily - as in the case of
the trivial representation when we have io deal with ordinary forms, The
definition of d, is natural to ensure some properties that one expects. If
u: Vip) —» V(p') is a G-module homomorphism, one has a corresponding
vector bundle homomorphism £, : £ ~ ¢y leading to a homomorphism
Q7€) — O7(£,) dunoted £, as well. One then has

dw(fu-a) = fu-(dwa)'

Next suppose that one has a G-module morphism g : V() ® V(g') — V(r)
for some representations p, p’ and r and a € 17(£,), # € N9(£,+), then

diaAf)=darf+(-1Pand,f

where the exterior product is with respect to g (so that all the forms in the
above equation are ¢,-valued). When p is the trivial representation one has
an identification of (1P(£,} with Q*(M) under which d, gets identified with
d. However it should be noted that there can be situations in which £, is
trivial as a vector bundle while p may be non-trivial. In such cases there is
no “natural” identification of £, is with the trivial bundle and hence d_, need
not coincide with d.
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In general & (unliked d?) need not be the zero operator. We will now
examine the operator d2, more closely. It will turn out that di - Qr(E)) —
!?’“(f,) i8 in fact linear over 09 M)-the algebra of complex valued C° func.
tions on M. Towards this end we will first prove the following formula

Proposition. Let o ¢ (&) and & the V(p)-valued form on P cotre-
sponding to . Then

(doa)” =dd +w A a.
Equivalently

(dua)™(Xy -+ Xppy) = d&(H(X,) - H(X,,).

Here the exterior multiplication of the V(p)-valued from o and the L3
valued form « is with respect to the bilinear pairing

Lie G®V({p) - V(p)
given by {X,v) = p(X)v.

Proof. Locally on M we can write o as a linear combiantion of forms of : he
form o A ag where o is a section of §s and ag is an ordinary p-form. One
then has d,(e A o) =do Aoy + 0 Adyag = 4,0 Aao+ 7 Adag. Since
w A =0 for any scalar forms (which are identified with elements of Qrien,
1 being the trivial representation, one sees that for proving the first assertion
it suffices to consider the case when p = 0. In this case one has

(doa)™(X)

il

d¥(H{X)) = H(X)a
= (X —w(X))d = X&+ plwi{X))a

since &(zg) = plg)~'a(x) for r € P(¢)and g € G; and da{X) = X& Thus
we have

(dA))™(X) = da(X) + w A al{X)
proving the first assertion. For proving the second we note that since HiH(X)
H(X;) and (dea)(X, o Xop) = (dwa)"‘(H(Xl)'--H(X,,“]) we may as-
surme that X; = H(X;). In that case w(X{) = 0 for all + so that {w A
&)Xy - X,00) = 0. Thus

(48 +w AB)( Xy -+ Xpu) = da(H(Xy} - H(X, )
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proving the proposition.
Assume p = 0 and we will now calculate (a)~(X,Y) for X,Y vector
fields on P(£). Let © = d_a; then one has.

(d0)(X,Y) = dB(X,Y)+ (wAB)X,Y)
= X.8(Y)-Y8(X) - (X,Y]
+ P {W(XNB(Y)~ 5 (w(Y)B(X)
XY& 4+ X(P (w(Y)a) -~ YX& - Y(p(w(X))a)
— [X,¥]a- pw([X.Y))a
+ P @(X))YE+ h (W(X)) b (w(X))a
= (X b ( (V))& - (Y. b (w(X))&
- P (A[X, Y)E+ B ([w(X),w(Y)))E
= dw(X,Y)d + (w Aw)/2AX,Y)E

where the exterior multiplication of Lie G valued forms is with referefice to
the bilinear product Lie & x Lie G — Lie G given by (4, B) ~ [A, B, A, B ¢
Lie G.

We have thus proved

Theorem. We define K to be the Lie (7 valued 2-form on P(¢) by
K3(X,Y) = do(X,¥) + (w Aw/2)(X,Y),
then one has for any ¢ € ['({/,£,),
(d2a)” = KX A&
Now if X is of the form with A € Lie 7, we have

dw(X,Y) = dw(,Y) = w(Y) —w([4,Y]).

Il in addition we assume that Y is horizontal, we find that dw(X,Y) = 0.

Note that since
w{[A, Y]) = wid/dt(X.ezpt A |i=0) = d/dt |ruo w(X.ezptA)} = 0.
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On the other hand (w Aw)(,) = 0 if is horizontal. If = with B € Lie G one
has
dw(,) = w() ~w(d) - w(],)
= w4, 5]

while {w Aw)/2(4, B) = [A, B] a8 well. Thus one has K(Y)=0iYis
horizontal or ¥ = with B € Lie G. The space H(z) and {(2) | B € Lie G}
span all of T,. Moreover since w(v.¢) = Adg~'w(v) for any tangent vector »
to P(£) and g € G, we conclude that

Ki(vg,wg) = p(g)'lK;(v, w)

for tangent vectors v,w to P(£) and ¢ € G. We conclude that K2 =K, for
a suitable £44 valued 2-form K, on M so that we may write

da=K,Aa
for a € 02°(¢,).
Corollary. d2a = K, Aa for o € %(¢,)

Proof. Locally we may write  as a linear combination of forms of the type
o Aag, o is a scalar p-form and ¢ € f1°(¢,). One has then BloAay) =

d,o Aag+ o Adap = aﬁa!\au—d.,,a/\d,,an+d‘.,a/\dw/\a/\a since
diay = ey = 0. Hence the corollary.

The corollary clearly shows that one has for a smooth complex valued
function f, o

&(f.a) = f.da.
One has also the following
Propasition. p (K, (X,Y))(e) = DxDyo—Dy Dxa—Dix v for o € 0(¢,)
and X,Y vector fields on M.
Proof.

(20)(X,Y) = Dxdyo(Y) - Dyd,o(X) - d.a(|X,Y))

DnyU - Dnya - D[x'y]cr

and we have already seen that d3c = K A o. Hence the proposition. This
leads to

Proposition. K(X,Y) = DxDy — Dy Dy ~ Dixy)-

18
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The right hand side which is evidently a differential operator 'vhich takes
sections of §, into itself is in fact a vector bundle endomorphism of £,.

We close this section with one final remark, Let ¢ be a G-bundle on M
and f: M' — M a emooth map. Let £ = f*(£) be the induced G-bundle
on M’. Now if w is a connection on £ and w’ is the connection on £ induced
by w (through f), it is easily seen from our definitions that K.. = f*(K,).
(Note that the bundle induced by £ 44 has a natural identification with Era-
§ 6. The Bianchi identity and Chern-Weil Theory

We begin with the following

Theorem. (Bianchi identity) d K, = 0.

Proof. (d K,)~ =4d I?U +wA E’w - Since (d,K,)~ is determined by the
value it takes on triples X, Y, Z of tangent vectors which are all horizontal it
suffices to show that (d,K,)*(X,Y, 2} = 0 for X,Y, Z horizontal. Now

Ku=dw + (wAw)/2
so that since &% = 0 '
(du KoY~ = d(wAw)/2 + wAdw + wA(wAw)/2.
Moreover, since d(wAw) = dwAw — wAdw, we have
(oK)~ = (dwhw)/2 + (wAdw)/2 + wA(wAw)/2.
Now if X,Y, Z are all horizontal
(dwAw)(X,Y, Z) = [de(X,Y) - (2)] ~ [d( X, Z),w(Y)] + [du(Y, 2),w(X)]

vanishes and similarly so does (wAdw)(X, Y, Z) sincew(X) = w(Y) = w(Z) =
0. Clearly wA(wAw)(X, Y, Z) = 0 as well. This proves the Binachi identity.
Consider now the symmetric algebra S(Lie &) of Lie G. For any two
finite dimensional subrepresentation p,p’ of & contained in S{Lie G) we
have a natural G-homomorphism of V{p)®V (¢') — S(Lie ) (defined hy the
commutative multiplication in ${Lie G) whose image is a finite diii. 1sional
G-stable submodule of S{Lie ). Thus one sees that if a,f are forms on
M of degree p and ¢ respectively with values in £, and £, where p,p' are
subrepresentations of §(Lie G'),aAf is defined as a form again with values
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in {,, where 7 is a subrepresentation ${fLie 7) of finite dimension. In the
sequel we will denote by ¢ the natural (infinite dimensional) representation
of * on S(Lie G) and define a ¢, valued form on M to be a p-form with
values in £,, where p is a finite dimensional subrepresentation of S([Lie G).
We thus obtain a multiplication (@, 8) +— aAf on the vector space of all
{» valued forms. Since the bilinear map S(Lie G) @ S(Lie G) — 5(Lie (3)
with reference to which our exterior product is defined is associntive and
commutative we have

aAf = (—1)"BAa

for £, valued forms o and 8 of degree p and ¢ resg octively. In particular even
degree £,-valued forme commute with all other £, valued forms. Note that
if m is an integer > 0, §™(Lie G) is a2 G-submodule of §(Lie 7). We denotc
the representation as S™(Lie G) by o,.. If « (resp. 3) is a p-form {resp. ¢
form) on M with values in o, (resp. 0,,) then aAg ¢ Qr+e (.f,,.”m) .

Now the subalgebra Q,,x(£,) of even degree forms on M with values in
£, 13 a commutative algebra. It follows that one has a unique homomorphism

A:CITT = Qeenl€)

of the polynomial ring C[T] in 1 variable T over C into ,ye(£, ) such that
AT} = K. Since K, € Q¢,,), K% (= image T under A) belongs o
0%(¢,,)- (Also note that K% = 0 if 2gdim M so that all the elements in {
image of A take values in [locqcaim a2 o). Suppose now I : S%(Lic G) — C
is a G-invariant linear form. Then one can define a (scalar) 2g form TH{w) oy
setting

Ifw)=ToK?
i.e. by setting
Hw)(Xy--- Xg) = E(KI(X0 - X))

{recall that £ is the vector bundie morphism induced by I and is a homo-
morphism of &, (in which K7 takes values) in the trivial bundle. Now since
d,{K,) = 0 (Bianchi identity) one has d,(K?) = 0 and hence

d§ro Ki} = {ro(d(KD) = 0.

Thus for any invariant linear form [ on 5%(Lie G). I{w)-which is obtained
by “substituting” the curvature form in / is a closed g-form on M.
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Theorem {Chern-Weil). The deRham cohomology ciass of I(w) depends
only on the isomorphism class of £ and not on the connection w (and hence
may be designated [(£}).

Proof. Let w,w’ be two connections on £. Consider now the manifold M x R..‘.
We have on M x IR a natural bundle £ deduced from £ : P(¢) = P(¢)x R, (¢
)

(z,2) = (w(£)(z),t) and the action of G on P(£) is through the first factor.
We can then define on P(£) a connection @ as follows : let (v,af—t) be a

tangent vector to P(E) al the point (z,t); then
o (v,a%) = tw(v) + (1 — H)w'(v).

One checks easily tl.at this is a connection on € . If r; i = 0,1 are the smooth
inclusions £ — (z,1), one sees that one has canonical identifications of £ with
r1(€) and of r3(3) with ' and (&) with w. It follows that K, = ra(K=)
and K, = rj{K~) so that r;,(I(C'J) and J{w') are induced by the closed form
H&) on M x R through homotopic maps ry and to. It follows that J(w) and
1{0) define the same deRham cohomology class in H*(Q(M)).

The cohomology class I(£) determined by 7 is called the characteristic
class of £ associated to 7. The kth Chern class of a vector bundle £ is defined
as follows. Let £* be the G = GL(n,C)-bundle associated to ¢. The Lie
algebra Lie G of G has a natural identification with M(n, C). Let C denote
the homogeneous polynomial on Lie G which associates to each A € Lie (=
M(n, C)) the coefficient T7°~* in the characteristic polynomial det(T . Id —A)
of A (Then €} may be regarded as a G-invariant linear form on $*(Lie G)
as well). The kth Chern class of £ denoted cy{£) is defined as the 24th
cohomology class ¢, (£7). Where ¢, = ¢} /(2x)*.

We will calculate C; in a sample special case. Let ¢ be the Hopf-bundle
i.e. the GL(1,C) = C*-bundle whose total space is C**! \ {0}, the action of
C* on C™*!\ {0} is given by v — z for p € C**' \ {0} and z € C* (since
C* is abelian no distinction need be made between right and left actions)
and the base space is the quotient (C™*' \ {0})/C", the complex projective
space of complex dimension n denoted CP™ in the sequel. As is well known
the hyperplane z,4) = 1 maps complex analytic isomorphically onto a dense
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open subset of CP™ whose complement is infact a hyperplane in CP". The
Lie algebra of GL(1,C) is M(1,C)=C. HFaeC,a simple calculation
shows that the vector field g on P(§) = C"+1 \ {0} corresponding to « is
af2 Y zgZ+6/2 Y %8/8%. Letw C = M(1,d) = Lie GL{1,C)

1<i€ntl 18i€m41

valued 1-form on C"*! \ {0} defined by

w= ( 3 E.dz.-) /¥ = d,(log %)

1<i<n41

where r> = 3~ | z P . Then w{a) = & and that wlvg) = w(v)i=
1gign+1

Adg~"(w(v)) for any tangent vector v to C™*1 \ {0} and ¢ € C*. I follows
that w is a connection on £. The curvature from K, of this connection is dw
since Lie GL(1, C) is abelian and as w is a 1 form wAw = 0, Thus K,=dw=
(d, + dr)d,(log r') = dyd,(log r*) = dg{d,r?)/r? = Ldzd,r? — L(dsr?Ad,r?).
Now s already remarked z,,, = 1 maps analytically isomorphically onto an
open dense set in CP™ and on this open set {21+ 2a) serve as a complex
coordinate system. With respect to this coordinate system then, setting
p= Y 37 we have
1<ign

1 1
K, = =———(dsd, p*) — -7———(dypAd,p).
1+p1('fdp) (1+P2)2( TP P)
In the case n = 1, so that CP! is the sphere one has p =| 2, | so that
diphd,p =| 2} | dz,AdF, and hence
Kw = l—ﬂ’.TFdZ;Aal" I 5 |2 /(1+ 'Zl [“')zdzlAdE,
= 1/(1+ |21 |2)2 -dzlAdf1

so that 2K, /i is the standard volume form on the unit aphere in R® with
its induced Riemanian metric. Thus we see that 72 Jop K, = 1. In other
words the chern class ¢,(£) of £ in this case is just the fundamental class of
CP! = 5? with its orientation as a complex manifold.

From our definitions it is not difficult to see that the following holds :

(i) cof€) =1 for any vector bundle ¢,
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(i1} if £,n are two vector bundles,

alfdn =Y altl)

gk

where we have set ¢;{£) = 0 if i > rank §; in particular if £ is trivial,
(&) = 0 for 20,

(iii) e:(f*(£)) = F*(a(€)) for any smooth map f.

In fact these three properties along with the fact that the first Chern class
of the Hopf bundle over 5§? is the fundamental class of $? characterise Chern
classes.

§ 7. Complements.

In § 6 we defined characteristic classes for a principal G— bundle corre-
sponding to a homogeneous invariant polynomial I on Lie G. Evidently the
smaller the (G, the more the invariants available to us., In this context it is
clear that the following definition will be useful

Let f : H — G be an (analytic) homomotphism of Lie groups and ¢
a GG—bundle on M. A reduction of £ to H (following f) is a H bundle
{n together with a smooth map & : P({y) — P(£) such that n(fy) =
m({}o® and ®(z,h) = ¥(z) f(k) for all h € H. The following lemma though
elementary is very useful,

Lemma. Let H — G be a closed subgroup. A G—bundle ¢ admits a
reduction to H if and only if the following holds. Consider the quotient
P(E)/H of P(£) for the action of H and let #(¢)' : P(€)/H — M be the
natural projection. Then there is a smooth map o : M — P(¢)/H such that
z(£)o{m) = m for all m €.

Proof. Note that P{£)/H is in a natura] fashion a smooth manifold (this
is easily seen using the local triviality property of £). If £y is a reduction of
{to H, and P({y) — P(£) the smooth map compatible with the H-action.
We obtain by passage to the quotient a smooth map ¢ of M = P{ty)/ H
to P(§)/H. Evidently #({) oo is the identity on M. Conversely suppose a
smooth section o to x(£) is given. We define a H— bundle £y as follows.
The total space P{£y) will be {z € P(£) | »(¢)'(z) = ox(£)}(z)}. It is evident
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that P(£y) defined above is H — stable. Using local triviality it is not difficult
to see that it is a smooth submanifold of P(¢) and (consequently) that H
acts smoothly on it; the restriction of x(¢) to P(£y) is defined to be (¢y).
It is now easily seen that £y is a H—bundle and P(€) — P(£) gives us the
required reduction.

Of particular interest is the case when G is a Lie group with finitely
many connected components and / is taken as a maximal compact subgroup.
(It is well known that all maximal compact subgroups of such a (7 are all
mutually conjugate in G). The homogeneous space G/H is diffeomorphic te
euclidean space (of dimension dim G'—dim H). Further there is a smooth
map 7 : G/H — G such that 8o 7 is the identity (where 3 : ¢ = G/H is
the natural projection) and r{zk) = k~'r(z)k for z € G/Hand k € K UOne
has then the following.

Proposition. Let G, H be as in last paragraph. Let ¢ be a G—bundle on a
(paracompact) manifold. Then ¢ admits a reduction €y to H. Moreover if

£r and £} are two reductions of ¢ to H, ¢y and £y are isomorphic (as H—
bundles).

Proof. To prove the first assertion we need only construct a smooth section
M - P¢YH Lt U1 <r < cobea locally finite covering of M by
open subsets such that for each r there is a diffeomorphism &, of U x'jH
on x{£Y~Y(U,) with x(¢)'®,(m,z) = z for all m € U/,, Let V1 < =
be a shrinking of U,, 1 Sr < ooandlet F, = Ujcie, V. Then one suows
inductively that there is a smooth section o, over an open neighbourhood
of K, for the map =(¢). The passage from F, to F.,, is taken care of by
the smooth analogue of the Tietze extension theorem {note that this passage
from F, to F,,, is essentially the same as passing from F, NV, to V., and
over Vo411, P(£)/ H looks like a product V., x G/ H so that sections are same
as G{ H-valued functions and G/H is a euclidean space).

To prove the second assertion we will make use of the following fact (which
we will not prove):

Let £ be a principal H— bundle on a smooth manifold ¥ and fig: X ¥
be two smooth maps of a manifold X in ¥ which are homotopic to each other.
Then f*(¢) is isomorphic to g*(¢).

To use this result we make the following observation first. If £ is a
reduction of ¢ to H, we have as already remarked a section o : M — P H
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obtained from the H— morphism f : P(én) — P(£) by passage to the
quotient by f. Thus the diagram

Plu) -~ P
m(§m) L Lw(g)
M % P{EY/H

is commutative. In other words £y is isomorphic to the bundle induced
through ¢ by the fI— bundle y = (P(£),x(¢) : P(§) — P(£)/H) on
P(£)/ ). We see therefore that the two reductions §y, €y of £ to H are
oblained as induced bundles from the bundle n through maps ¢ and ¢’ of
M in P(£}/H. Thus it suffices to show that ¢ and o' are homotopic. This
is again done inductively by constructing homotopies between ¢ and ¢’ in a
neighbourhood of the closed sets F, for r = 1,2 - as was done for proving
the existence of the reduction: once more one uses the fact that G/H is a
euclidean space.

The proposition enables one to define characteristic cohomology classes
for a (7— bundle other than the ones defined by the invariant polynomials
on Lie G. If £ is a G—bundle, with G a Lie group having only finitely
many conne-ted components, { admits a reduction £y to a maximal compact
subgroup [/, the reduction being unique upto isomorphism of H —bundles.
Thus to § we can associate the classes of ¢y; and here we use invariant
polynomials on Lie H; and one may find some which are not restrictions of
invariant polynomials on Lie G.

The comments of the last paragraph are best illustrated by the follow-
ing example. Exactly as in the case of GL(g, C) one can set up a bijective
correspondence between isormorphism classes of GL{¢, R)— bundles and iso-
morphism classes real vector bundles on M. We say that GL(q, R)-bundle ¢
is orientable if it admits a reduction to SL(g, R); equivalently if £, denotes
the associated real vector bundle of rank g, ¢ AT £, is trivial. Now 50(q)
is a maximal compact subgroup and the Lie algebra SO(q) of 50(q) is the
Lie algebra of (¢ x ¢) skew symmetric matrices. Now if ¢ ia even, there is
a unique polynomial the Pfaffian, Pfaf:SO(¢) — R such that for AeSO{q),
det A =(Pfaff A)* and Pfaff (_]'y) = 1 where 1, is the (g x ¢) identity
matrix. Moreover Pfaff is a SO(q) (and not O{q)) invariant polynomial of
degree ¢/2. Nor is the Pfaffian invariant under SL(n,R). The substitution
of the curvature form K, of a connection in the invariant polynomial DFf: ™
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/{2x)%* thus gives rise to a 2¢ dimensional cohomology class. This is called
the Euler class of the SO(g)— bundle (g even); and for the tangent bundle
of a compact oriented manifold M this class is precisely x(M).[M], where
{M] is the fundamental class of M and x{M) is the Euler characteristic of
M. This last assertion is the celebrated Gauss Bonnet Theorem.
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