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Calculation of a class group

René Schoof

Dipartimento di Matematica
Universita degli Stud) di Trento
1-38050 Povo (Trento) ITALY
Email: schoof@itnvax.cinecs.it

In this note we illustrate the theory of algebraic number fields by means of an explicit example.
Let g(T') € Z[T] be the polynomial

g(Ty =T+ T? + 5T — 16.

It is easily checked that g has no zeroes in Z. By Gauf’s lemma it is therefore irreducible in Q[T].
Let F be the field Q[T]/(g(T)}) or, equivalently, let F' = Q(a) where a denotes a zero of g(T). We
will calculate the ideal class group of the ring of integers of F.

As we will see below, most of our information about the arithmetic of #' will be deduced from
the values of ¢ at the first few small integers. Therefore we begin our calculation by computing a
table of the values g(k) at the integers k with —10 < k < 9. The contents of the last column will
be explained below.

Table 1.

k gk) | (a—k) k g(k) (o — k)
G)| 0 -2 5 (ki) [ -1 -3.7 papr
Gy | 1 —3? o’ (xii) | -2 -2-3:5 P2PiPs
(i) | 2 2.3 PaPa (xiii) -3 —7? pir?
(iv) | 3 5.7 psph (xiv) | —4 —2%.3.7 pipaph

(v) | 4| 2¢2-3-7| wlpipt ((xv_rg -5 —3.47

(vi) 5 3.53 xvi -6 —2.113
(vity | 6 2.7-19 | p2brhrs (xvii) -7 -3-5-23 Papspaa
(viii) | 7 3.137 (xviil) { —8 —2%.3%.7 piph e

(ix) | 8] 2°-3-5% | pipaps’ (xix) | -9 —709
x)| 9 839 (xx) | =10 | —2-3-7-23 | papap7pss

For instance, the fact that none of the values g(0),g(1),4(2),...,¢(10) is divisible by 11 implies
that g has no zeroes modulo 11. Therefore it is irreducible in F11[T] and we have another proof
that g is irreducible in Q[TY.

To evaluate the discriminant of g(T), we compute the sums p; of the ith powers of its roots.
Using Newton’s relations, these can be expressed in terms of the symmetric polynomials sy = —1,
sp = 5 and s3 = 16 in the roots of g(T). We have

po =3,

pr =8 = -1, .

pr =257 +p1sy =-2-54+(-1)-(~1)= -9,

P = 380+ pasy — prsa = 316+ (=9) (1) — (=1)-5 = 62,

ps = —454 + pysy — pasa + pisy = —4- 0462 (1) — (=9) -5+ (-1) - 16 = —-33.
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This gives us

3 -1 -9

det (—1 -9 62 ) = —8763 = -3 -23-127
-9 62 -33

Since 8763 is squarefree, the discriminant Ap is equal to ~8763, and the ring of integers Op is

equal to Z[a]. It is easily verified that the polynomial g(7T') has precisely one zero in R. Therefore

riy =1 and r; = 1 as well. We conclude that Minkowski’s constant is equal to

34
37 = V/8763 = 26.4864.

This implies that the class group of Op is generated by the classes of the prime ideais of norm less
than 26. The prime ideals of Op all occur in the factorization of the principal ideals (p) of O,
where p is an ordinary prime number. By means of the following proposition we can explicitly
calculate these prime ideals.

Proposition. Let g(T) € Z[1] be an irreducible monic polynomial, let « be a zero of ¢ and let
F = Q(«). Suppose that Z[a] is the ring of integers of F. Then

(p) = HP;‘

where p; = (p, wi(a)) is a prime ideal of Op and the ¢y (T),...,p:(T) are the irreducible factors of
g(T) in the ring F,[T].
Proof. Since

Or/pi = Zla]/(p, vi(a)) = F,[T]/(:i(T)) -

is a field, we see that the ideals p; are indeed all prime ideals. Tt is easy to see that

I ei(e)) c ().
=1

Since the norms of both sides are equal, we conclude that the ideals are equal. This completes the
proof of the proposition.

With the aid of the values of the polynomial g(7") at the first few integers, given in table I
above, we easily find the zeroes of ¢ modulo p. This gives us the factorization of g(7") modulo p.
Using the proposition it is then easy to obtain the factorizations of the ideals (p}) in the ring OF:

Table II.

p (p)

2 Paps pp=(a,2) and p; = (e +a+1,2)

3 pivs | pa=(a+1,3)and pj=(a-13)

) PsPos Ps = (Cr + 2, 5) and Pas = ((12 - a4+ 2, 5)

7| pip? | pr=(a+1,7),p5 =(a—~3,7) and p¥ = (@ +3,7)
11 (11)

13 (13)

17 (17)
19 P1ePasi pis = (a —6,19)
23 Paabha p2a = (@ +7,23) and phy; = (a + 10,23)




Now we explain the contents of the third column of Table I. For k € Z one has that g(k) =
N(k —a) and hence that |g{k)| is the norm of the principal ideal (£ —a). Using these norms and the
explicit descriptions of the prime ideals of O, given in Table II, it is easy to find the factorization
of the principal ideals (k — ).

For instance, since g(4) = 84 = 22 .37, the principal ideal (o — 4) is only divisible by prime
ideals with norm a power of 2 or 3 or 7. It remains to decide which prime ideals actually occur.
Since, by Table II, we have a — 4 € p; but a —4 ¢ ps we see that p; divides a — 4, but p; does not.
Similarly, p; does not divide a: — 4, but p} does. Finally, the only prime of norm 7 that contains
o — 4 is p. We conclude that the factorization of (o — 4) is given by

(a — 4) = p3pip7.
As we have seen above, the class group is generated by the classes of the prime ideals of norm less
than 26. Using the relations that are implied by the factorizations of the principal ideals (a — k),
we can reduce the number of generators of the class group. For example, entry (xx) tells us that

1ty —1

me ~ (Pzpnp-: ’

i.e the ideals phy and (p2pspy)~" belong to the same ideal class. This implies that the class of p,
is in the group generated by the classes of pa, pa, and p7. Similarly, entry (xvii) says that

P2y ~ (paps) .

We conclude that the class group is already generated by the classes of the prime ideals dividing
the primes p < 19. Continuing in this way, we can eliminate many of the generators, each time
expressing the class of a prime ideal as a product of classes of primes of smaller norm.

By entry (vi), we eliminate pi1g; by means of the entries (iii), (iv) and (xi) we eliminate the
primes over 7. Entry (xii) implies that ps can be missed as a generator. Since pa5 ~ p; ', we see
that pss can be missed as well. The prime py is taken care of by the relation implied by entry (i1).
Since p§ ~ pf we don’t need the prime p} either. Finally ps ~ p;‘.

We conclude that the class group of O is generated by the class of the prime p;. Entry (i)
implies that

p3 ~ (1).

This shows that the class group is a quotient of Z/4Z.

Further attempts turn out not to give any new relations This leads us to believe that the class
group is perhaps isomorphic to Z/4Z. To prove this, it suffices to show that the ideal p2 is not
principal. Since, by entry (ii) we have that p} ~ py 2 ~ p2, this is equivalent to showing that the
ideal p} is not principal.

Suppose p; = (7) for some ¥ € Op. By entry (ii) of Table I, we would have that (7)? = (a—1).
Therefore

v u=a-1 for some unit u € O%.

In order to show that this cannot happen, we need to know the unit group O%, or, at least, the
units modulo squares. By Dirichlet’s Unit Theorem, the unit group has rank 1. Since ¥ admits an
embedding into R, the only roots of unity in F are 1. Therefore

OF = {xe* . k€ Z)

for some unit ¢ € OF.



To find a unit different form 11, we exploit the redundancy in the relations implied by Table I.
Consider the principal ideals generated by (a — 1)(a — 2)* and 9a. Entries (i), (ii) and (iii) of the
table imply that both these ideals factor as

pipish”.
Therefore ((a — 1)(a — 2)*) = (9«) and
_ - 4
£ = (a 1)(0 2) = 402 + o — 13

Sa

is a unit. In fact, its multiplicative inverse is equal to 129a? + 346« + 1227, but we won’t use this
fact.
Consider the images of ¢ and —1 under the following homomorphism:

#/(OF) — (Or/pa)* x (Or/p:)* /((Or/p:)*) = Z/2Z x 2/2Z
€ — (~1,4) — (1,0)
-1 — (—1,-1) — (1,1)

Since the vectors (:‘) and (:) are independent, we conclude that ¢ and —1 generate the unit group

+ modulo squares.
Therefore the unit u is, modulo squares, of the form

u = te*
for some k € Z. The equation satisfied by o now becomes
tef 4l =a -1 for some y € Op and k € Z.
Consider this equation modulo ps. More precisely consider the image in the following group of

order 2:
(O%/ps)* /{(OF/ps)*)?.

Since —1 is a square mod 5 and since ¢ = 4 (—2)2 — 2 — 13 = 1 is square modulo ps as well, the
left hand side of this equation is trivial. The right hand side, however, is congruent to —2 -1 =2
which is not a square.

We conclude that the equation has no solutions and hence that the ideal class group is cyclic
of order 4.
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