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SHEAVES AND SCHEMES.
Philippe NUSS.

INTRODUCTION.

The starting point of the algebraic geometry is the study of the solutions of polynomial equations in
several indeterminates

fa(z‘la'--azﬂ)zo (1)

where fo belongs to k[zy,...,z,], o runs through a certain set, and # is in the beginning the field of real
numbers R.
This is however too restrictive. In fact, if we consider the equation

zi+eled.=0.

There are of course no solutions in R. So one has to enlarge the field, and to look for solutions in C (for
example, (0,1) is such a solution).

On the other hand the diophantine problems suggest to restrict ourselves to the rational solutions, that
is to take k¥ = Q. To simplify the problem, one may restrict it by considering only solutions modulo p (p
prime in Z), that is by taking k = 2/pl, or even modulo p”, that is k = Z/p"Z (remark that for n > 1, k is
no longer a field!), and then to pass to the ring of p-adic integers Z, = hmZ/p"2, or to its field of fractions
Q.

The above remarks show that one has to take the coefficient ring k as general as possible. The study of

. the solution-sets of the equations of the type (1) (the so-called algebraic sets) leads naturally to the notion

of schemes.
We do not give here the proofs. They may be found in the book of R. Hartshorne (see the bibliography).

VARIETIES.

Affine algebraic sets and affine varieties

Let k be a field which we shall assume, for simplicity, algebraically closed. As usually, denote the space
k™ by A": it is the affine space of dimension n. Denote by V(fe) the set of zeros in A® of the equations (1):

v(fa) = {2} = (tls'- '1£ﬂ);va1 fa(:") = 0}

This set V(fy) is called the (affine} algebraic (sub)set defined by the (f,)’s.

If S is any subset of the polynomial ring k[zy,...,z,], denote by V(S) the subset of A™ of those z such
that f(x) = 0 for each fin S.

If S = (fa) is the ideal of kfzy,... »Zn] generated by the (f,)’s, it is easy to see that

V(fa) = V((fa)).
Let, on the other hand, be X a subset of A", Set
I(X) = {f € klz1, ..., zn);Vz € X, f(z) = 0}.

Clearly, Z(X) is an ideal of k[z;,...,z,]). If X = V(I), then it is clear that Z(V(I)) contains I. The
relationship between Z(V(I)) and I is given by the



Theorem (Hilbert Nullstellensatz). Let I be an ideal of k[z,,...,z,], then
V) = VI

{recall that VT is the radical of the ideal I, consisting of the elements of kfz, ... :Zn] such that some power
liesin I.)

One can prove the general results:

Proposition. Let I, J, I, be ideals of k[z,,...,z,] and X, Y be algebraic sets of A™. Then:

IcJ=v(I)ov(J) XCY=>I(X)DI(Y)
I(XUY)=Z(X)NZI(Y) I(9) = k[zy,...,z,]  I(A™) = {0}
vInJd)y=v{IJ)=v(HuV(J) Viklzy,...,z.])=0 V() = A"

VO la) =[V{la)

The two last lines prove that one can take the V(I) (with I ideal of kfzy,...,2,]) as the closed sets of
a topology on A", called the Zarisks fopology. One endows ecach algebraic set X with the topology induced
by the Zariski topology of A™.

Proposition. Let X be any subset of A", then
V(Z(X)) = X (the closure of X).

Remark: There is a one-to-one correspondance between radical ideals of k{z;,...,2,] (that is, ideals I
such that I = +/T) and algebraic subsets of A". One can easily prove that X = V(I) is irreducible if and
only if [ is a prime ideal.

An affine variety is an irreducible closed subset of A" with the induced topology. A quasi-affine variety
is an open subset of an affine variety. For example A" is an affine variety.

Let X = V(I) be an algebraic subset of A". Each polynomial f in k[z;,...,z,] determines a function
on X by
f: X — k
z=(%1,...,8n) — f(z1,...,24)

The restriction of f to X is called a regular function on X. The set of regular functions on X is an algebra
isomorphic to k[zy,...,2a]/Z(V(I)) = E[z1, . ..,2.)/VT and is called coordinate ring of X. This algebra is
denoted by O(X). It is a finitely generated noetherian k-algebra, which is reduced (that is, there are no non-
zero nilpotent elements). Moreover X is irreducible if and only if O(X) is an integral domain. Conversely,
any finitely generated k-algebra which is a domain is the coordinate ring of some affine variety.

Proposition. An algebraic set is determined by its coordinate ring.

Proof: The points of X are in one-to-one correspondance with the k-homomorphisms from O(X) to k.
For, to € X one associates the evaluation f ~— f(x). Conversely, to a k-homomorphism ¢ : O(X) — k,
one associates the point (z;,...,z,) in X, where x,,...,z, are the images by ¢ of a fixed set of generators
uy, ..., un of O(X). °

Let X be an algebraic subset of A", and z a point of X. A rational function f € k(xy,... ,2n) 18 called
regular or defined at z, if f = I, where u and v are polynomials, and v(z) # 0. So f(z) = %g} is well
defined. By definition, a rational function f' on X is the restriction of a rational function on A™. Hence f’

is not defined everywhere on X, but its domain is an open set in X.

If U is an open set in X, one defines the ring ['(U, Ox) consisting of rational functions on X regular at
every point of I/. The assignment I/ — I'(U, Ox) has all the properties of what we shall later call a skeaf.
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Proposition. Let f € O(X). Denote by X, the open subset
Xy ={r€X;f(x) #0}.
Then, the following isomorphism holds:
T(Xf,Ox) = O(X);.

(here O(X); Is the localization of O(X) with respect to f.)

As a corollary, one gets;
I(X,0x) = O(X).

Let X = V(I) be an algebraic subset in A". The Hilbert Nullstellensatz proves that the set Max@(X)
of maximal ideals of O(X') (the so-called mazimal spectrum) is in bijection with the set X.

Hence one has canonical bijections:

Homy_ag(O(X), k) ~ MaxO(X) =~ X.

Morphisms of affine varieties,

Let X and Y be two affine varieties. A morphism v : X — Y is a continuous map such that, for every
open subset V C Y and every regular function f : V — k, the function fo ¢ : ¢~ !(V) — k is regular.
We get now the category of affine varieties over k, Watr/k. One can prove that there is a bijective mapping
of sets

Morfﬂct/k(Xa Y) = Homk—-!llg(o(y)s 0(X))

As a corollary, two affine varieties are isomorphic in Wac/k if and only if the k-algebras are isomorphic.
This means that the category War/k is equivalent to the opposite category of finitely generated integral
domains over k.

We are now in the following situation: We have a subset X defined by an ideal I of the ring k[zy,...,z,)
It is completely determined by its coordinate ring @(X). On X there is a topology, and to each open subset
U of X, one associates a ring of functions, this assignment having nice properties (it is a sheaf). In particular,
if we take for U the whole space X, we recover (J(X). ,

This situation is pretty usual in mathematics. Instead of dealing with polynomial functions, if one takes
continuous (resp. differentiable, resp. holomorphic) functions, we are in the framework of topology (resp. of
differential geometry, resp. of analytical geometry).

The next step is to generalize the above comstruction for k[z;,...,2,] to arbitrary rings, for exam-
ple Z, and to give a general setting of the algebraic geometry. This program was achieved by Alexander
GROTHENDIECK with the theory of schemes. Before doing this, let us consider the projective case.

Projective varieties.

Instead of the affine space A", we work with the projective space P" over k, and instead of rings, we use
graded rings. Recall that a ring S is graded when there exists a decomposiiion § = @Sd of S into a direct

d>0
sum of abelian groups Sq, such that 3.5, C Sy, for any d, e > 0. An element in S is called homogeneous of

degree d. An ideal I in S is called homogeneous if I = @(IﬂSd). The ring of polynomials S = k[z;,...,z,]
420
is naturally graded.
Now we can paraphrase the affine case by replacing rings by graded rings and ideals by homogeneous
ideals, the only thing to take care of is that a polynomial (even homogeneous) in § = k[z),...,2,] does not
define a function on P", but nevertheless it makes sense to see whether a homogeneous polynomial is zero or
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not on an equivalence class defining a point in P". Hence the zeros of a homogeneous polynomial are defined
and we can form

WT)={PeP"¥fecT, f(P)=0}
Here T is any set of homogeneous elements of S. This set V(T) is called the (projective) algebraic (sub)set

defined by the T.
If ¥ is a subset of P*, one can define the homogeneous ideal T(Y) of Y in 5 = k[z1,...,zs] by

I(Y) = {f € §; f is homogeneous and VP € Y, f(P) = 0}.

-

An algebraic set Y is irreducible if and only if Z(Y') is prime. For example P" is irreducible.
The homogeneous Hilbsrt Nullstellensatz insures that if 7 is an homogeneous ideal such that V(I) # §,
then

v = VI
Moreover there is a one-to-one correspondance between algebraic sets in P*, and homogeneous radical

ideals of § = k[z1,...,2n] not equal to 54 = @ Sa.
d>0
If Y is an algebraic subset of P?, the homogeneous coordinate ring of Y is the graded ring

S(Y) = k[zy, ..., 2a)/I(Y).

As in the affine case, one can define the Zariski topology on P™ by taking the closed sets to be the

algebraic sets.
A projective variety is an irreducible algebraic set in P® together with the topology induced by the
Zariski topology of P*. An open subset of a projective variety is called a quasi-projective variely.

Proposition. A projective (resp. quasi-projective) variety has a covering by open sets which are homeo-
morphic to affine (resp. quasi-affine) varieties.

One has the analogue of regular functions: they are locally defined as quotients ¥, where v and v are

homogeneous polynomials of same degree.

SHEAVES.

Presheaves.

Let X be a topological space, and € a category, which will be either the category Ab of abelian goups,
the category Rings of commutative rings, or the category k — 9Mo® of modules over a fixed ring k.

A presheaf F on X with values in € is the following data:

-to every open subset U in X, one assigns an object F(U/) in €

-to every inclusion V' C U of open subsets in X, one assigns a morphism pyv : F(U) — F(V) in €
called restriction morphism
subject to the conditions:

pvou  F(U) — F(U) is the identity map

if W C V C U are open subsets in X, then pyw = pvw ¢ prv.

A nice way to see that, is using the categorical language. Let Top x be the category whose objects are
the open subsets UV of X. The morphisms between U/ and V are

the inclusion map U -V if UCV

Homgyy, (U, V) = { 0 otherwise

A presheaf 7 on X with values in € is then nothing but a contravariant functor from Top, to €.

If U is an open subset in X, an element in F(U) is called section of F over U. An element in F(X) is
called global section. One usually denotes F(U) by I'(U, F).
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Ezample: Let X be an affine variety. The assignment U +— I'(I/, @x ) is a presheaf of rings.

A morphism of presheaves ¢ : F — G is a morphism of functors. This means that for each open set U/
in X, there is a morphism in €, p(U) : F(I') — G(U), compatible with the restrictions, te if V C [/, the
diagram

w(U)
FU) —  GU)

UV i l PUV

Fvy 2 g

commutes.
Denote by P(X) the category of presheaves over X.

Presheaves on a base of open sets.

Let B be a base of open sets in X. This means that B consits of open subsets of X such that, for each
open subset A in X, there exists a covering of A by elements in B. We see 'B as a full subcategory of Top x-

A presheaf F on B is a contravariant functor from B to €. (One can replace this definition by the
”down-to-earth” one, by replacing in the first definition of a presheaf ” open subset” by "open subset belonging
to B”).

A morphism ¢ : F — G of presheaves on B is a morphism of functors. The category of presheaves on
B is denoted by P(B).

The presheaf on X associated to a presheaf on B.

We keep the same notations as above. There are adjoint functors
resg : ‘»n(X) — P(B)
extX : P(B) — P(X)

The definition of the restriction resey is obvious: just forget about the open subsets in X which do not
belong to B.

Define now the extension extX. Let F be a presheaf on B. Then F' = extX (F) is defined on an open
subset U in X by

FI(U) = lim F(V)

where the inverse limit is taken over all the V € B contained in U. So, an element s’ € F'(U) is a family
(SV)ve%,VQU such that, if W C V with V,W ¢ 8, then pvwisv) = sw.
If already U belongs to B, then F'(U) = F(U).

Stalks.

Let F be a presheaf on X and z a point of X. The stalk of F at z is the object of € denoted by F,
and defined by

Fo = lim F(U)

where the direct limit is taken over all open subsets U/ in X containing z. For each U containing z, one
has a canonical homomorphism F(U) — F.. If 5 is a section of F over U/ , the image of s under this
homomorphism is denoted by s,.



>

Sheaves.

A presheaf F on X is a sheaf if the two following conditions hold:

1) For each open subset U/ in X and for each open covering (Uy)aea of U, if for each sections s and ¢
over U, all the restrictions s := pyo, (3) and to := pyo, (1) agree, then s = €.

2) For each open subset U/ in X and for each open covering (Uy)aca of U, if for each family {s, €
F(Uqs}, a0 € A} such that py_v{(sa) = pu,v{sg) for each open V C U, N s, then there exists a unique
5 € F(U) such that pyy, (s) = s4 for all e

A more compact way to express that is saying that a presheal F on X is a sheaf if and only if, for each
open subset {7 in X and for each open covering (I/s)aea of U, the diagram

FU) ST FWe) = [[FWanUp)
a vz g

is exact. The map u is a restriction map and the maps v; and vy are products of restriction maps. (Recall
that the above diagram is exact if Imu = Ker(v;,v2) := {z € Hf(Ua);vl(z') = vy(z)}.)

A morphism of sheaves is a morphism of presheaves. So one gets the category of sheaves on X, denoted
by &(X) which is a full subcategory of ‘B(X). One can define in a similar way the category &(B) of sheaves

on a base B.
Ezample: Let X be an affine variety. The assignment I/ — I'(I/,Ox) is a sheaf of rings.

The sheaf associated to a presheaf.

Let F be a presheaf on X. There is a sheaf 7 , and a morphism 6 : ¥ —+ F with the universal property:
for any sheaf G and any morphism ¢ : F — G, there is a unique morphism v : ¥ — G such that
@ = Yo 8. This pair (F,#) is unique up to isomorphism. F is called the sheaf assoctaied to the presheaf F.

The construction of F is the following. Denote by E the disjoint union of the stalks F,. There is a
canonical projection p : E = UT,: —— X with p~!(2) = F.. Let U be an open set in X and s € F(U/).
Denote by & : I — E the map defined by (z) = s,. Then po§ = id. One makes E into a topological space
by giving E the coarsest topology for which all the maps 5 are continuous. Denote then by F(U) the set of
continuous functions from U to E. Thus an element of F(U) is a family (s..):cr, where (s.,) € F. ¥z € U
and for each = € U, there exists an open neighbourhood V of # contained in U and s € F(V) such that
s, =8y forallyeV.

One can easily prove that F with the natural restriction maps is a sheaf satisfying the universal property.

Remark 1: For each point z € X, we have an isomorphism F.>F,.
Remark 2: If F is already a sheaf, then F = F.

We have thus a functor

ass: P(X) — G(X)

F — F
which is left-adjoint to the forgetfull functor &(X) — P(X)

The direct image of a sheaf.

Let f: X — Y be a continuous map between topological spaces and F be a sheaf on X. One defines
a presheaf f.JF on Y by setting
LV, fF) =T(f~1(V), F)

for V an open set in Y. One can show that f.F is actually a sheaf, which is called the direct image of F.
We have thus two functors

Jo 1 PX) — B(Y)
fo 1 6(X) — &(Y)
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Restriction of a (pre)sheaf to an open subset.

Let F be a presheaf on X and U an open subset in X. Then the F(V') for which V' C U form a presheaf
on U, called the restriction of F to U and denoted by F |y. If F is a sheaf, then F |y is also a sheaf.

Ringed spaces.

A ringed space (in french espace annel€) is a pair (X,Ox), where X is a topological space and P is a

sheaf of rings (called the structure sheaf).
A geometrical space is a ringed space (X, Ox) such that, for each £ € X, the stalk Ox . is a local ring.

Ezample: Let X be an affine variety in A". Then (X,0x)} is a geometrical space. Indeed, let a =
(a1,...,a,) be a point of X~ Let m be the maximal ideal corresponding toa : m = (x;, —ay,...,z, — a,).

Then
Ox.a={0(X))m

((O(X))m is the localization of the coordinate ring O(X) at m.)

A morphism of ringed spaces (X,0x) — (Y,Oy) is a pair () : X — Y, 9! : Oy — ¢.Ox), where
Y is a continuous map and ! is a morphism of sheaves. Denote by RingGp the category of ringed spaces.
For each z € X, ¢! induces a homomorphism of rings

VL Oy ) — Ox.z
given by the composition

Ovyy = lim Oy(V) — lim $.0x(V)= lim Ox(¥~'(V)) — lim Ox(U) = Ox,..
Vay(r) Vay(z) Vay(x) Uax

A morphism of geometrical spaces is a morphism of ringed spaces, such that the above homomorphism
induced on the stalks is local. Denote by @eomGp the category of geometrical spaces.

SCHEMES.

The spectrum of a ring.

Let A be a ring (ring means always commutative ring with 1). As a set, let X = SpecA be the set of all
prime ideals of A. (Recall that p C A is prime if and only if ab € p implies a € p or b € p, which is equivalent
to the fact that A/p is an integral domain.) Let a be any ideal of A. Set V(a) = {p € Specd;p D a}.

Lemma. The family (V(a)) can be taken as the closed sets of a topology on SpecA, called the Zariski
topology.

Proof: If a and b are two ideals of A, then V(ab} = V(a) U V(b).
If {a;} is any set of ideals of A4, then V(3" a;) =\ V(a;).
V(A) =@ and V(0) = SpecA. o

Remark: If a and b are two ideals of A, then V(a) C V(b) <> /a 2 vb.
Define now a sheaf of rings Ox on X = SpecA, called the structure sheaf Let U be an open subset in
X. Define
Ox(U) = {{zp)eev € ][] Aw;Vp € U,3V neighbourhood of p contained in U,
wEU
3a,b € A such that Vg € V,b ¢ q and zq = 3 in Aq).

Note that this definition is very similar to those of regular functions on algebraic sets, except that here the
functions take their values in the different localizations of A, instead of the fixed field k.
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Lemma. Oy is a sheafon X.

The ringed space (X = SpecA,Ox) is called the spectrum of the ring A

Let f € A. Denote by D(f) the complement of V({f))}. It is by definition an open subset in X. We have
D(f)y = {p € SpecA;p F f}. It is easy to see that (D(f));ea is a base of the Zariski topology of SpecA.

Theorem. Let A be a ring. One has the following resulis:

1} For any p € SpecA, Ox , = A,
2) For any element f € A, T(D(f),Ox) = Ay
3) In particular, T'(SpecA, Ox) = A.

As a corollary, (X = Sp;:cA, Ox) is a geometrical space.
There is an other way to define the structure sheaf, namely set Ox (D(f)) = A;. Then Oy is a presheaf
on the base (D{(f))sea. One can show that

Ox = ext®* (Ox).

Functorial properties.

Theorem. 1) A ring homomorphism ¢ : A —+ B induces a morphism of geometrical spaces
(f, f1) : (Y = SpecB,Oy) — (X = Spec4, Ox).

2) Conversely, any morphism of geometrical spaces (f, f1) : (Y = SpecB,Oy) — (X = SpecA,Ox) is
induced by a ring homomorphism ¢ : A —+ B as in 1).

Let us just construct (f, f1) in 1). The map f : Y — X is given by f(q) = ¢~ '(q). It is continu-
ous because, for each ideal a in A, f~1(V(a)) = V{(g{a)). The definition of the structure sheaves gives a
morphism of rings fI(V): [(V,0x) — I'(f~1(V), Oy) for each open subset V in X, induced by the local
homomorphism of local rings @, : Ay-1(p) — By.

Schemes.

An affine scheme is a geometrical space (X, x) isomorphic (in the category BeomSp of geometrical
spaces) to the spectrum of some ring A. A scheme is a geometrical space (X, O x) locally isomorphic (in the
category @eom&p) to an affine scheme. This means that each point z in X has an open neighbourhood I
such that (U,Ox |y) is an affine scheme. A morphism of (affine) schemes is a morphism in the category
BeomSp. One gets the category AffSch of affine schemes and the category Geh of schemes.

Let X be a scheme and 2 € X. The residue field of z on X denoted by x(x) is the quotient
k(z)=Ox /m;

where m, is the maximal ideal of the local ring Ox ..

Let z be a point of a scheme X. The point z is called closed if the closure {z} of {z} is {z} itself. The
point z is called generic if the closure {z} of {z} is the whole space X.

Examples.
Ezample 1: Let k be a field. Then the topological space Speck has just one point: {(0). The structure

C
sheaf is k. Suppose that K # L are two fields. This inclusion yields a morphism of affine schemes (SpecL =

{*},L) — (SpecK = {x},K). On the level of the topological spaces it is of course an isomorphism
(homeomorphism), but it is net an isomorphism of schemes!



Ezample 2: Specl.

As a set, SpecZ is in bijection with {0 ;prime numbers p € Z}. From the topological point of view,
the closed subsets are V(n) = {p prime € Z;p | n}. So p € V(n) <= n € (p). The elementary open sets
are D(n) = {p prime € Z;p [n}. The sheaf O 7 is given by ['(D(n), Og . 7) = {778 € L,5s > 0} =12,
{(localization with respect to n).

Stalks

1) at p prime.

Oxp =1imI'(D(n), Oy . 7) = imZ, = {%,p Yt} =: I, (localization at the prime ideal (p))

plh rhh
Hence the residue field of p prime is k(p) = Ly /() L) = Z/pL = F,.
ii) at (0). ~
Ox,0=1limZ, = Q, hence the residue field of (0) is x(0) = Q.

nEo

It is easy to see that the closure {0} of {0} is the whole space SpecZ. The point 0 is generic.
One can prove, that SpecZ is a final object in the category G¢h, ic each scheme admits a unique
morphism to SpecZ.

Ezample 3: Let R be a discrete valuation ring. Then the underlying topological space SpecR has two
points: one to which is closed, with local ring R, and the other point ¢, which is open and generic with local
ring K the field of fractions of R.

Ezample §: Let k be an algebraically closed field. Set A} = Speck[zy,...,z,]. The set of closed points
of A} with the induced topology is homeomorphic to the affine variety A”. There is also a generic point
corresponding to the ideal (0) of k[zy,...,z,).

Ezample 5: The schemes associated to the affine varieties.

Let S be a scheme. A scheme over S is a scheme X together with a structure morphism X — §. A
morphism from the scheme X over S lo the scheme Y over S is a scheme morphism from X to Y which is
compatible with the structure morphisms. The schemes over S constitute a category G¢h/S (the category
of the objects over the object 5). If A is a ring, we write Gch/A instead of Sch/SpecA. From example 2,
we see that Sch/Z = Seh.

Theorem. Let k be an algebraically closed field. There is a natural fully faithfull functor
t: BVac/k — Sch/k.

Proof: If X is a variety, the underlying topological space of t(X ) is the set of (nonempty) irreducible
closed subsets of X with the topology defined by taking as closed sets the subsets of the form {Y), where
Y is a closed subset of X. One defines a continuous map

a: X — HX)

P b m
Then it remains to show, that (£(X), a.(Qx)) is a scheme over k. °

The underlying topological space of X is homeomorphic to the set of closed points of t(X), and the sheaf
of regular functions of X is obtained by restricting the structure sheaf of t(V) via this homeomorphism.

Ezample: t(A") = A} = Spec(k[zy,. .., z,)).

Ezample 6: The scheme ProjS.

Let § = ) Sq be a graded ring and S, the ideal P Sa.

420 d>0
Let ProjS be the set of all homogeneous prime ideals p which do not contain the ideal S¢. If we set

for any homogeneous ideal a, V(a) = {p € ProjS;p 2 a}, then as in the affine case, the V{(a) define the
closed sets of a topology on ProjS. Define now a sheaf of rings on ProjS. Let p € ProjS. Let T be the
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multiplicative set consisting of all homogeneous elements of S which are not in p. Let S(,) be the ring of
elements of degree zero in the localized ring T-'S. Let U C ProjS be an open set. Define

oU)y={s: U — u S(p); ¥ € U, 3V neighbourhood of p contained in U,

pel

3 homogeneous a,b € A such that Vg€ Vb ¢ q and sq = % in Seqy}-

_ Then O is a sheal of rings.
. Proposition. The ringed space (ProjS, Q) is a scheme. The stalk O, at p € ProjS is the local ring S,

Ezample: Let A be a ring. The projective n-space over A is the scheme P% := ProjAlzy,...,zn) If k is

an algebraically closed field, then the space of closed points of P} is homeomorphic to the projective variety
P™.

FIRST PROPERTIES OF SCHEMES.

Morphism of schemes.

Let A be aring and (X, Ox) a scheme. One gets a morphism
o : Morgay(X,SpecA) — Hommings(A,['(X,0x))

in the following way:
Let f: X — SpecA be a morphism of schemes and 12 Ospeca — f.Ox the corresponding morphism of
sheaves. Then o(f) is obtained by taking global sections

F1(SpecA) : Ospeca(SpecA) = A — f.Ox(SpecA) = T(f*(SpecA),Ox) = I'(X,0x).

Proposition. The map o is bijective.

As a corollary, if X = SpecB and Y = SpecA are two affine schemes, then

MOI"S‘;'(X, Y) = Hompﬁ..,,(A, B)
Proposition. The category AffSch of afline schemes is opposite to the category Rings of rings.

Open and closed subschemes.

An open subscheme of a scheme X is a scheme U such that the underlying topological space of U is
an open subset of X, and whose structure sheaf Oy is isomorphic to the restriction Ox |o of the structure
sheaf of X .

A morphism of schemes f : X — Y is called an open immersion if f induces an isomorphism of X
with an open subscheme of Y.

A morphism of schemes f: X — Y is called a closed immersion if:

1) f induces a homeomorphism from the underlying topological space of X onto a closed subset of Y

2) the morphism of sheaves on Y, f1 : Oy — f.Ox is surjective.

A closed subscheme of a scheme Y is an equivalence class of closed immersions. (f : X —- Y is said to
be equivalent to f' : X’ — Y if there is an isomorphism i : X’ —» X such that f' = foi.)

Ezample: Let A be a ring and a be an ideal of A. Set X = SpecA/a and Y = SpecA. The canonical
projection A — A/a induces a morphism of schemes f: X — Y which is a closed immersion. Thus we
obtain a structure of closed subscheme on V(a).
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Fibre products of schemes.

Let S be a fixed scheme.

Theorem. In the category Sch/S, the fibre products exist. That is, for two schemes X and Y over S,
there is a scheme denoted by X x5 Y, called the fibre product of X and Y over S, verifying the universal
property of fibre products. Moreover, if X, Y and S are affine, say X = SpecA, Y = SpecB and § = SpecR
(thus A and B are R-algebras), then

X X5 Y = Spec{A Qg B).
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