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A) Hermitian Geometry and Volume Forms

For z = (z,,..2,) € C® define the complex differential operators
) 5 a 3 P2
= —— z . = —_— z
u=1 3z, M p=1 3%, ¢

and the real operators

d =29+ 3, d¢ = (aniy 1(6-8§ ,

so that dd® = (1/2n)83. If m =1, and 2z = x+iy, then

dxady = (i/2)dzadZ, and dd¢ is related to the Laplacian by
dd¢ = ! ( o + & ) dxad '
2n | ox2 | ay? ad

In Cartesian and polar coordinates, respectively, d and d¢ become

d 2% ax, + 2 ay) B 2 ar, + 2 4
= [ b4 —_ = — r J—
p=1 9x, (o ay, Yy p=1 or, H 80, H
ac 18 m% ax, + 2 ay 12 % w -1 ar
= — - — dx _ = — — - — dr
an u=h 9y, H " Yu an p=1 H ar, u H 96, H
h +1 164 ith 6, € R
= =
where z, X,+iy, r,e wit Rye Yyo Yye 0y .

Let X be an m-dimensional compliex manifold. Locally at every
point on X, a (1,1)-form ¢ can be written

] -
o = (1/2) ¥ f,,(2) dzndE,

It is called smooth if the coordinate functions fuv(z) are €%, real
if at each z € X the matrix Mz = (f”v(z)) is Hermitian (which is
equivalent to ¢ having real coefficients, when it is expressed in terms
of the real differentials dqudxu, dqudyu, dYuAdYu), and positive if

M, is positive definite Hermitian.

Throughout these notes, we will assume differential forms are smooth.

The positive (1,1)-forms on X are in one-to-one correspondence
with Hermitian metrics. Specifically, if Ti(X) denotes the holomorphic
tangent space to X at =z (the set of C-linear combinations of the

operators 9/dz,), a Hermitian metric on X is a family of positive




s

definite Hermitian products
ds? : T,(X)eT,(X) =+ C

depending smoothly on z. Thus, ds2 can locally be written

ds? = $ h, (z) dz

M, P=1 My

where the hpv(z) are smooth, and the matrix (huv(z)) is positive
definite Hermitian for each z. Applvying the Gram-Schmidt process,
locally near any z one can find a coframe, an m-tuple of (1,0)-forms

u@div

(ol,m,mm), such that
as? = § o 85
s = u§1 ©uSOy
Writing m“ = ap+13u, where au and Bﬂ are real differential forms,
;2 - 2 & _
ds ugl(a“®a” + ﬂﬂeﬁu) + iugl( au®Bu + Bﬂ@aﬂ)

Hence, taking the real and imaginary parts of ds2, one gets an ordinary
inner product. and an alternating guadratic form, respectively, on the
underlying real vector spaces. The real part of ds® is a Riemannian
metric on X; wusing it, one obtains notions of length, volume, etc. on
the Real manifold underlying X (the volume form is Uy ABy AAC ABL) .
The imaginary part of ds? determines the {1,1)~-form
[ ] [} - 2

¢ = uzla”AB" = (1/2)”§10nhﬁu = —4Im(ds“)
which is seen to be positive using the middle expression. Conversely,
ds? can be recovered from ¢, since if H(u,v}) is any Hermitian inner
product on €™, and E(u,v) = Im(H)(ua,v), then

H(u,v) = E{(iu,v}) + 1iE(u,v)

Now specialize to the case m = 1. Let X be a compact,
connected Riemann surface: e.g. the complex points of a complete
non-singular curve. Let ¢ be a positive (1,1)-form on X, and let
ds?2 be its associated Hermitian metric. Then ¢ is itself the volume
form on X determined by the Riemannian metric Re(ds?): specializing
the formulas above, locally near every point there exists a coframe
@ = a+iB such that ds? = a®aq + 8®3, and the volume form associated to
ds? is precisely aaB8 = ¢. For this reason, a positive (1,1)-form on a
curve is called a volume form. A volume form ¢ 1is called normalized if
it satisfies

B) Green's functions.

Arakelov introduced Green's functions in number theory in order
to complete the intersection pairing on an arithmetic surface, so that
it behaved well under linear equivalence. His idea was that specifying
Hermitian metrics on the archimedean fibres of an arithmetic surface was
like specifying a model at the finite fibres. Most nraturally, Arakelov's



Green's functions arise as extensions ¢of Néron's local height pairing at (:>
the archimedean fibres; and, as has become clearer through the work of
Harbater ([Ha]), Rumely ({R]), and Zhang {([Zh}l), it was a historical
accident that because of the close relation between intersection theory
and Néron's pairing, they could be forced to give an extension of the
intersection pairing.

In the literature, Green's functions come in two flavors:
additive and multiplicative. The additive ones, "Green's functions with
logarithmic singularities", are the ones which mesh with intersecticn

theory most readily:; they are usually denoted gp(-), or g(-,P), with
a small "g". The multiplicative ones are exponentials of the additive
ones, and are usually written with a large "G": more precisely
- (-,P)
G(.,p) = e IF

As will be seen, the function G(Q,P) for P, Q € X 1s symmetric,
continuous as a function of two variables, and has a simple zero along the
diagonal; it is comparable, above and below, with a metric on X.

There 1s a good deal of variation in the literature concerning
the notation for, and normalization of, Green's functions. The wvariation
comes from trving to avoid different normalization constants which arise
in differential equations, in applying the product formula from number
theory, or in comparing with absolute values. Our gp{-) agree with
those in Lang ({L2]}) and Gillet-Soulé ([GS]), but are the negative of
those in Gross ([CS],Ch.XIV), and are -2 times those in Faltings ([F])
and Arakelov ({A1])}.

Fix a Hermitian metric on X, and let ¢ be the corresponding
normalized volume form. For each P € X, the Green's function gg(-)
assocliated to ¢ 1is the unique function

gp : X\{P} - R
satisfying the axioms

{G1) [Logarithmic Singularities] On some neighborhocod U of P,
there exists a smooth function a{(z) such that for all z « P
gp(z) = -log(|z-P|?) + a(z)

(G2) ([Uniform Laplacian] On X\P, g, satisfies the eqguation
ddc(gp) =@
(G3) [Normalization] * gp @ =0

Assuming ¢gp exists, the first two axioms determine it up to an additive
constant, as they show the difference of two such functions extends to a
bounded function on X which is harmonic on X\P, and such a function is
necessarily constant. The third axiom eliminates the ambiguous constant.
This normalization is important for the Adjunction Formula and Faltings'
Riemann Roch, but In many contexts it can be ignored.

Granted enough machinery, the existence of g, is easy. The
basic problem is to solve a certain PDE; the fundamental tool needed is the



dd®-Lemma. Let X be a compact Kshler Manifold, and let p,q 2
77w be a {p,q)-form on X which is exact, e.g. « = d¢ for some

form ¢. Then there exists a (p-1,g-1)-form # such that

adt(3) = w.

A Kahler Manifold is a complex manifold with a Hermitian metric ds?
whose associated positive (1,1)-form ¢ satisfies de¢ = 0. Curves are
trivially Kshler, since their cohomology vanishes in dimensions 2 2.
More general?Tzaggftprojective algebraic varieties are Kiahler. The
ddC-Lemma is a direct conseguence of the Hodge decomposition of
cchomology; see ([GH],p.149) for a proof.

To prove the existence of dp for curves, fix the volume form o,
and let |||, be any (smooth) Hermitian metric on the line bundle 0y(P).
This means that in any local coordinate patch U; on X, there is a
positive function h; (z) giving the square-norm on the fibres: |if

s 1is a section of 0yx(P) over U then for each z € Uy,

ir
Is(z)lig = h;(z}Is(z)|?;

if Uj is another coordinate patch, and P j is the transition

function, then h,;(z) = Iwij(zllzhj(z). The first Chern form of [-|l 1is

the smooth {(1,1)-form on X defined in the coordinate patch U, by
p = -dd®(lnjisfly) = -da®(1n(h;(2))
It is independent of s, since s{(z) is holomorphic, which implies

ddc(logls(z)|2) = 0; it is well-defined on X since the transition
functions are holomorphic. By Stokes' theoremn,

{ p = deg(0y(P)) = 1.
We now seek to modify |I-||, to obtain another metric ||} whose first

Chern form is the specified volume form ¢. To do this, note first that
p-¥ 1is exact: Since X is a curve, the deRham cohomology group

HZ(X,C) = (2-forms)/d(1-forms) 1is 1-dimensional, and by Stokes' theorem,
for any 1-form @6, { d6 = 0. Therefore, since { {p—¢) = 1-1 = 0,
there must be a form ¢ such that d¢ = p-¢.
Applying the dd°-Lemma, we find a function ( = (0,0)-form ) &
such that dd% = p-¢. Let || = eBu-uo. For any section s,
-dd¢(1n|sfi) = -dad({1n(ebjs|iy)
= -da®(s) - 4ad®(injsll,)
= @ep+tp = 9
If "1" denotes the canonical section of ox(P), then the function
-injj"1"Y| satisfies axiom G1), since "1" wvanishes only at P, and

has a simple zero there. It satisfies axiom G2) by the computation
above. To satisfy the normalization G3) it is only necessary to add on
an appropriate constant. Thus, for an appropriate C, we may take

gpl-) = -lnf"1") + ¢

There are many other proofs of the existence of Green's functions.



The chief defect of the proof above is that it fails to establish one of (j)
the main properties of g(Q,P), which is that off the diagonal it is
continuous as a function of two varlables. To prove this, it seems
important to build in continuity from the start. Generally, one first
constructs the Green's function for a specific volume form and shows it
is continuous, then obtains the continuity of the Green'’s functions for
other volume forms by a change of metric formula.

There are many proofs of the existence of Green's functions.

Arakelov's original proof, found in ([Al1l)), ([Sz],8IXII), ([L2].Ch.II.2),
constructed g(Q,P) as the section -1n||"t"|| for an appropriate metric
on the line bundle Oy x(A)., where A is the diagonal embedding. He

also noted its role as the kernel function for Green's operator inverting
the ¢-Laplace operator on ¢€%(X) (see {SS]). Rumely ([R],§2.1,§2.3)
gave a construction using the Prime Function of a marked Riemann Surface.
Both of these proofs establish the joint continuity. Hriljac ([Hr]) gave
a construction using theta-functions and the embedding of a curve in its

Jacobian; this proof is given in ((L1],Ch.13.5). Coleman gave a
construction using differentials of the third kind, which may be found in
(fL2),8II.4).

Gillet and Soulé's proof of the existence of "Green's forms with
logarithmic singularities” for higher-dimensional varieties ([GS]) is a
generalization of the proof above, based on the dd®-Lemma. It uses
many other tools, in particular Hironaka's resolution of singularities.

Recall that the Green's function depends on the choice of
Hermitian metric. For curves of positive genus, two metrics seem favored
arithmetically: the "canonical metric", gotten by pulling back the flat
metric on the curve's Jacobian using the Abel map; and the "“constant
curvature metric”, gotten by using the uniformization theorem, and
projecting the flat metric on € or the Poincaré& metric on the unit
disc. The canonical metric is required for the Adjunction Formula and
Faltings' Riemann-Roch, while the constant curvature metric behaves well
for deformation-theoretic arguments.

The Green's functions for the constant curvature metric also
have the advantage that one can construct them more-or-less explicitly,
thus providing examples for the theory, and giving arithmetic information
about them. For curves of genus 0 the formulas are classical; for
genus 1 they were known to Néron, and for genus ¢g > 2 they are due to
Hejhal, Gross and Zagier. 1In the remainder of the paper we will give

these formulas.

Case 1. Curves of Genus 0.

Over €, any curve of genus O becomes isomorphic to Pl(cC),
the Riemann sphere. We identify Pl(C) with CiY{e}, letting z bde

the coordinate function on €. By stereographic projection, pl{c)
becomes isomorphic to a sphere with diameter 1 and south pole placed on



the origin. Up to scaling, there is a unique Hermitian metric on the

©

sphere invariant under the rotation group U(2,€), the Fubini-Study metric.

In the affine patch €, the Fubini-Study metric and its associated

normalized volume form are

a2 dzedz i dzadz
s8¢ = , e = — —
(1+|z] %) 2 2n (1+|z| %)%
For P, z € C,
|1z-P|2

1
g{(z,P} = -1n{ ) - 1, g{z,w) = -ln(m) -1

(1+121%) (1+(P|9)
Direct computations show that g(z,P) satisfies dd®(gp) = ¢ and is
invariant under the action of U(2,C) on Pl(C). Hence, to verify its
normalization, it suffices to take P = 0 and compute £ dg @ which
can readily be done using polar coordinates.

Correspondingly, G(z.P) = efnz,P" where
|z-P|

P = v
=2l a+iz| O np 9

igs the chordal metric. It has the geometric interpretation of being the
length of the chord between the points corresponding to P and Q, when
PI(C) is identified with the unit sphere via stereographic projection.

Case 2. Elliptic curves: g = 1.

An elliptic curve is isomorphic to a complex torus ¢C/{~,11],
where <t 1is a point in the upper half-plane, and [7,1}] 1s the lattice
Zt®Z; Im{t) is the volume of a fundamental parallelogram. The flat
Hermitian metric ds?® on € is dzedz; projecting to the torus, the
corresponding normalized volume form is

i -
Q¢ = EEET;T dz  dz
The Welerstrass o-function is

o(z;x) = z I (1 - z/e) elz/0)+3(z/0)2

Wk
welv,1]
Let n,. n, be the periods of {(z) = 8/8z (ln o(z;tr)) wunder =, 1
respectively. By the Legendre relation, n,t-n; = 2ni. Given 2z € C,
we can uniquely write =z = t;T+t, with ¢t,, t, € R. Define

nlz) = tyny + tyn,
and let
£(z) = e 121(2) G(z;q)
Then by the functional equation o(z+w:T) = ¢ eM(©) (2+30) 5(7.7) (where

the plus sign applies if 40 ¢ L, and the minus sign if not)
”"itz —ﬂitl
e{z+t) = -€ -R(z), R{z+1l) = -e -R(2Z)
Consequently |#&(z)| is periodic for L. Since o(z,L}) is holomorphic,
dd® (-1nje(z)|) = ad®(izn(z)) = 3¢

Further, o(z:;L) has a simple zero at each lattice point, so it follows



that up to an additive constant, the Green's function g(P,z) is given
by -2-1n|#&(z-P)| (we identify points of the elliptic curve with their

pre—-images in €}.
The constant can be determined by using the g-expansions for

o(z;r) and the modular form A(7r). Specifically, let g, = e2miT
q, = e2™1Z2  We have
s = (2m)12.q T (1-aD 24
olz:t) = (zui)'leinzzfqg—q;*)nﬁl(1-q2qz)(1—q2q;1)(1—q2)“2
and 1/12 B,(Im(z)/In(7)) @
(*) A{T) &(z) = q (l-qz)nﬂl(l-ngzlil*ng;l)
where B,{t) = tz—t+t is the second Bernoulli polynomial. Then

g(z.,P) = —2-1n|A(T)1/12£(z-P)| .
This formula apparently goes back to Néron: it is given by
Gross in ([CS], Ch.XIV) and Lang in ([L2],Ch.II.5). The proof that
{ g(z.P) ¢ = 0 comes down to showing that each of the terms arising )
from (*) vanish. For the Bernoulll term this follows from the fact that
ngz(t) dt = 0: for the others, it follows because the Taylor expansion

of 1n(1-w) has constant term 0. The details may be found in ([L2]).

Case 3. Curves of genus g 2 2.

Curves of genus g > 2 can be uniformized by the unit disc, or
equivalently, by the upper half-plane % = { x+iy : y > 0 }. For any
such curve X, there is a Fuchsian group ' c PSL(2,R) of the first-~
kind, a discrete subgroup with no elliptic or parabolic elements, such
that TI'\% & X. The Poincaré metric vy 2 {dx®dx+dy®dy) is invariant under
PSL(2,R) and has constant negative curvature; it is the Riemannian
metric associated to a Hermitian metric

ds? = 1Im(z) 2 dzedz

with volume form ¢ 2dxady. The volume of T\% 1is 2w(2g-2). Thus, the

constant curvature volume form on X is

1
-2
= [ ——— dx Ad
P 2n(2g-2) Y AQy

Gross has given a formula for Green's function of T\% relative

using a Poincaré series formed from Legendre functions of the
This formula, which is also valid with slight modifications

to ¢,

second kind.
when I has cusps or parabolic elements, was important in the Gross-

Zagier Theorem. We present it here, following Gross's exposition in
({CS],Ch.XIV) and the more complete exposition given in ([GZ)). The -
formula was known earlier to Hejhal ([He),vol.II,Ch.6} in the context of

the Selberg Trace Formula.

&



\
One's first thought for constructing the Green's function might éi
be to use the function gy (z,P) = —log}(z—P)/(E-P)lz, which is harmonic

on 9x% minus the diagonal, and invariant under PSL{(2,R}. However,

z,7P
}"Ei:f' 91( 7P)

diverges, and anyway if it converged it would have Laplacian 0. Gross's
idea was to introduce a complex parameter s, and look for a family of
functions gg(z,P}, such that gg(z,P) o g,(z,P}) as s - 1. One could
then hope to subtract off the polar part of the series formed from
gs{(z,P) as above, and be left with the Green's function.

More precisely, one wants a real-analytic function gg{z,P) on
$x% minus the diagonal which satisfies

1) ggl{rz,P) = gg(z,P) for all » € PSL(2,.R):
2} gg(z,P) ™~ -loglz—Pla as z - P, for each s;
z

3) A,9.(z,P) = s(s-1)g (z,P) where A, = y2(8/8x2+3/8y?)
- is the hyperbolic Laplacian in =z,
for each fixed w

The desired PSL{2,R)-invariance of gs(z,P) means that it must be a
function of the hyperbolic distance

= -1 | z-w| 2
r = cosh “( 1 +
2 Im(z) Im(w)

Putting g.,(z,P) = f(cosh(r)), one finds that f satisfies the Legendre
differential equation

(1 2)2i§ aw 3 | o 1)f 0

-u - a — sS(s- =
du du

The solution with the correct pole on the diagonal and slow growth at
infinity is the Legendre function of the second kind,

[ ] -8
f{u) = 2 Qg_;(u)y = 2 6 ( u + Y u?-1 cosh(t) ) dt,
for u > 1, (This differs by a sign from Gross's formula, because our

Green's functions are the negatives of his). Put

(z,P) = 2 Q._.(1 + |z-P| ® )
9siZ. s-1 2 Im(z) Im(P)

Now suppose Re(s) > 1. As shown in Hejhal ([He),vol.II,Ch.6.2),
the series

6, (z,P} = ygr gg(z, yP)

converges absolutely. Thus, it satisfies properties 1),2) and 3) above.
It can be meromorphically continued for Re(s) > 4. and has a simple pole
at s = 1 with residue 2/(2g-2) independent of z, P (see [Hel).
Again for Re(s) > 1, it can be shown (see ([GZ})) that for each fixed P,
-2 4an
[ f gg(z,P) y %dxady = —0
% 5(3—1)

Taking account of the volume of TI'\%, it follows that



- 2/(2g-2})
(**) J I 8 ,(z,P) yidxady = ——————
We can now define the Green's function. Put
2/(2g-2)
z,P = 1lim & {(z,P) - — ~
gl ) s =1 €8sl ) s{s-1)
Then g(z,P) is symmetric and invariant under I in both variables. It
satisfies g(z,P) ~ -log|z-P|2 as =z - P. From the differential
equation 3) follows
2/{2g-2) 2/(2g-2)
A ¢ _{(z,P) - ———— = sg{s-1)-(&_{(z,P}) - ——moH+ + 2/{(2g-2
2 ®5(z,P) s (s—1) -(®g(z,P) ryPecemll (2g-2)

Passing to the limit as s -+ 1 shows that A,g(z,P) = 2/(2g-2), which is
equivalent to
ddCg(z,P) = ¢

Finally, the passing to the limit as s 4+ 1 1in (**) shows that
&g(z.P) ¢ = 0
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The Green's function for curves uniformized by the upper half-plane

Béngdict H. Gross

Don B, Zagier

The purpose of this note is to show how the Green's function for curves
uniformized by the upper half-plane can be calculated as a limit of Legendre
functions of the second kind, This is not a new result (a nice exposition
may be found in [Hejhal, chapter 6 1), but the connections with Néron's
theory of local heights [Gross, §9] and the holomorphic projections of

modular forms [Gross and Zagier, chapter V] make it worth reconsidering.

§1. Let M be a compact Riemann surface of genus g , together with a
. Riemannian metric ds2 which is compatible with the complex structure on
M . Then da2 is the real part of a unique Kidhler metric on M . Let dyu

be the volume form of this metric, scaled so that J’dU(P) =1.
M

There is a unique function G(p,q) on MxM with values in Ru{®} |,

calied the Green's function, which satisfies [Gross, §6]:

(1.1) G(p,q) = G{(q,p)

(1.2) G(p,q) 1is real analytic for p # q and satisfies the partial

differential equation



2'\
4 Cleag) ('(f_q) = Zﬂi(du(p)-éq) where Gq is the Dirac
9pdp current at q

(1.3) 6(p,q) ~ loglf(q)|l as q'+_p , where f is a uniformizing para-

meter at p and for z ¢ €° , |z| = 2z = fz,z .

(1.4) fG(p.q)du(p) =0
M

fﬁe function G depends on the choice of metric d32 in the conformal
class of the complex structure. However, 1f a = Emp(p) is a divisor of
degree zero on M the function ga(q) = ZIﬂ)G(p,q) depends up to a cons-
tant only on the complex structure of M . This is a Creen's function
aggoclated to the divisor a; if a = div(f) then

8,(2) = logle(p)] - floglff(q)lldu(q) . I b=1Im(q) is a divisor of
M

degree zero which is relatively prime to a , then

(1.5) <a,b>, =g (b) = qu 8q,(0) = Emp qu(p,q)
1s a formula for Néron's local height pairing [Gross, §6]l

§2, We now suppose that the Riemann surface M 1s uniformized by the upper

half-plane 5;,- {xtiy € € : y > 0} and that the metric ds2 arises from the

2 2
invariant Poincaré€ metric 254%?2— of constant negative curvature on 5; .

¥y
Hence there 18 a Fuchsian greup I < PSLZCR) of the first kind, with no



elliptic or parabolic elements, such that F\€i= M. In particular, the

genus satisfies g2 2, so y(M) = 2-2g <0 . (We will consider general

Fuchsian groups of the first kind in 85)

The volume of M with respect to Poincaré measure _d_:g;_lx is equal to
y

=2mrx(M) , so du on M is equal to ____ﬂ?_(_ﬂy_z__ on . Let
-2m x(M)y

2 2

A= yz(_ﬁ_+__§_) be the standard hyperbolic Laplacian. Then the differen-
“\9x ay

tial operator 33 on f;. takes a function F(z) to the 2-form

AF(2) 2’5‘% = miy (M)AF (z)du(z)
21y

To find the Green's function of M , we represent p and q by points

z and w 1in 5 , and look for the unique function G(z,w) on ﬁxé« which

satisfies:
(2.1) G(z,w) = G(w,2)
2,2) G(yz,y'w) = G(z,w) all vy,y' el

(2.3) G(z,w) 1s real analytic for w ¢ 'z and satisfies the differen-

tial equation AG(z,w) = 2/x(M) in that region.
(2.4) G(z,w) ~ loglz-w| as w2z

(2.5) fc(z,w)du(z) =0,
r\ﬁ



In the next two sections, we will construct G(z,w) as a limit of

resolvant kernel functions -Gs(z,w) for Re(s) > 1 .

-

§3. Fix a complex number s with Re(s) 21 . We.begin by looking for a

point-pair invariant gs(z.w) on 5’_ xg, which satisfies:
(3.1) 8,(z,w) = g_(w,2)
(3.2) gg(vz,YW) = g (z,w) for Y e PSL, (R)

(3.3)' gs(z,w) is real analytic for z ¥ w and satisfies the differ-

ential equation: Ags(z.w) - s(s—-l)gs(z.w) in that region
(3.4) gs(z,w) ~ logllz-w| as w+ =z .

By (3.1) and (3.2) ga(z,w) is a function of the hyperbolic distance

fz-w]

d(z,w) = r . We will write ga(z,w) fs(cosh r) fs(z Im(z)I(wT"'l .

The reparametrization via the hyperbolic cosine is suggea'ted by moving w
to the point 1 ; then the points z of hyperbolic distance r from 1

in ‘5, lie on a Euclidean circle with center = 1+(coshr) and

radius = (sinhr) . We shall also require that:

(3.5) g, has "slow growth" as d(z,w) + = .



We rewrite the Laplacian in polar coordinates

(3.6) A = (sinh r)“lﬁg— sinhri+ (sinh r)-z—-a—
r or 882

and look for eigenfunctions gs(z,w) = fs(cosh r) which depend only on r .

Writing t = coshr sc tz-l = sinhzr , we see that fs(t) must satisfy

the ordinary differential equation:
' df
4?1y =8| = s(s-
(3.7) dt[(t 1) dt] s(s l)fs

Writing th-is out gives Legendre's gecond order equation of index s-1

[Lebedev, (7.3.1)]
(3.8) (l—tz)f:(t) - th;(t) + s(s—l)fs(t) =0 .

The general solution of (3.8) has the form fs(t) = APs_l(t) + qu_l(t) .
where Ps 1(1:) is the Legendre function of the first kind, Qs—l(t) is the
Legendre function of the second kind, and A and B are constants. (We

remark that for s =1 an integer, Ps_l(t) is a polynomial of degree

t+l (t)

(s-1) and Qs_l(t) —%—10g[-€_—l P__1 is a polynomial of degree s-2).

The equation (3.8) has 3 regular gingular points (t =1, -1, ), and the
solutions with slowest growth as t + ® have the form fs(t) = BQS_l(t) .
The correct constant (B = -2) can be determined by (3.4) and the exact

logarithmic singularity of Qs_l(t) at the point t =1 .



In summary, the unique point pair invariant g, (z,w) satisfying

(3.1)-(3.5) 1s given by the formula:

.ﬂz-WH
(3.9) BS(Z.W) = =2 Qs-l( 7 Im(z) Im(w) +1
If 8 =1, then Qo(t) w -;—log{f-%], 80

(3.10)_ 8; (z,w) = logﬂé{%

is the standard PSLZ(R)-invar:lant harmonic function on 5_"5_ with a
logarithmi¢ singularity on the diagonal.

Now assume Re(s) > 1 ; we shall prove the integral formula:

dxd ~47
(3.11) [fgs(z'") :Zy " s(s-1)

for fixed w . By (3.2) we may assume w = 1 » B8O

2
- dxdy - ff ( Jz-il, ) dxdy
I Ifgs("“’ S 25' i\ + 55 J2
5’ 2
- 2 2
If we make the substitution t = 1+.IZT;J__ then x2+ (y=t)" = t"-1 .

Hence:

-7



x = “tz—lcose
y = t+ J,tz-l sin 0

-

dxdy _ _dtd®

)
y £+ \Jtz—l sin 0

« 2m
do
I= -2[ Q (c)[ de .
s5-1
1 0 +Vt21smo

we find:

27
Using the formula: f df 21

A+B 8in O =
0 \f AZ-Bz

I = —‘OTTL Qs-l(t)dt »

o

go we are reduced to proving the formula[ Q (t)dr = —t . To do
1 s-1 s(s-1)

this, we recall the integral formula for stl(t): [Lebedev, (7.4.9)]

Qs__l(f-) -f (t + Jtz-—l cosh u)-adu
0

oo

dx

-8
= x r‘—
f \’ 2 where x = t+ tz-l coshu
o+ \ftz_l x -2xt+l
dx = qu“sz_l du

Substituting in, we find:



[ ~8 dx dt
X —
1 t+ U t2-1 “ x2-2xt+1

o0 2x
= f xns de dx
1

1 Vx2~2xt+1

[+ +]
- =8 x-1 dx = N
1 x x s{s-1)

§4, We continue with the notation of the last section‘, and with the assump-

tion that Re(s) > 1 . The resolvant kernel

(4.1) G (z,w) = Egs(Z.YW)
T

is then absolutely convergent [Hejhal, 6.2 ]. By (3.1)-(3.4) and (3.11),

this function on 5 xg« satisfies:
(4.2) Ga(z,w) - Gs(w,z)
(4.3) Gs(Yz,Y'w) = Gs(z,w) all y,y'er

(4.4) Ga(z,w) is real analytic for w ¢ I'z and satisfies the differ-

ential equation AGS(z,w) = (8) (s~1) Gs(z,w) in that region



(4.5) Gs(z.w) ~ loguz—w" as w =+ z
' 2/x(M
(4.6) IGS(z.W)du(z) - E‘(ﬁ”-T)l .

g

As 8 * 1 the function Gs(z,w) has a simple pole with residue equal

to 2/x(M) (Hejhal, chapter 6]. This suggests defining:

4.7 - G(z,w) = Lim {Gs(z-“)"é%ﬁé%%} ’

s+l

By (4.2)-(4.6) this function satisfies (2.1)-(2.5), so 1is equal to the

Green's function for M with the Poincaré metric.

§5. We may generalize the construction of the previous section to Riemann
gurfaces M = F| *  where I 1is an arbitrary Fuchsian group of the first
kind. At each elliptic point or cusp p of M , we let ep = 2.,3,...,®

denote the order of its cyclic stabilizer subgroup Fp c . If we define

X(M) = 2-2g~1L 1--l— , then the volume of M with respect to the Poincaré
e

P .
measure Ei%l is equal to -2nx(M) . We will take the (singular) metric
y
d82 on M with volume from du(z) = ——9592——5 .
2wy (M)y

If we define Gs(z,w) by (4.1) and G(z,w) by (4.7), properties

(2.1)-(2.3) and (2.5) continue to hold. Properly (2.4) must be replaced by

G(z,w) ~ ep logﬂz-w" as w2z



~10-

if z 1is in the orbit of an elliptic point p . We remark that G(z,w)

has a singularity at each cusp of M. If o is a cusp and

¥

(5.1) E ) = 2 (Imyw)®
r_AT

is the associated Eisenstein serles of weight zero, then (Hejhal,

AHEB(W)
1-2s

é5.2) Gs(z,w) - yl_si-O(e-y) as z + o |

Since Es(w) has a simple pole at g = 1 with residue equal to

~1/2m¢(M) = 1/Vol(M) , we have

(5.3) G(z,w) ~ 2/x(M) log y as z + « ,

Similar formulas hold at the other cusps. We remark that formula (1.5) for

Néron's local pairing continues to hold in the 1imie, when a and b have

cuspidal support.
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