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Cavity Theory

BRAGG-GRAY THEORY If a fluence &

of identical charged particles of kinetic energy T passes through an interface between
two aifferent media, g and w, as shown in Fig. 10.14, then one can write for the
absorbed dose on the g side of the houndary

dT
D, = «b[ E),,,]r (10.1)

n.-e[(2) | w2

where [(dT/pdx), | and [{(dT7pds), L] are the mass collision stopping powers of the
two media, evaluated at energy 7. Usually we may omit the brackets and subscript
T, evaluation at an appropriate energy T being implied.

Assuming that the value of % is continuous across the interface (i.e., ignoring
backscattering) one can write for the ratio of absorbed doses in the two media adjacent
to their boundary

and on the w side,

Dy _ (dTlpd).

= 10.3
D,  (dTipdx),, (10.3)

FICURE 10.1. (A} A fluence @ v charged particles is thown crossing an intseface between
media w and g. Assuming @ to be :ntinuous across the boundary, the dose ratio DJD, cquals
the corresponding ratio of mass collision stopping powcrs. (B) A fluence ® of ch. .ged plzrticles
passcs through a thin layer of medium g sandwiched between regions containing medium w.
Assuming @ te be continuous acrss layer g and both interfaces, the dose ratin D /D, is again
equal to the corresponding ratio of mass collision stopping powers.

W. H. Bragg (1910} and L. H. Gray (1929, 1936) applied this eguation to the
problem of relating the absorbed dose in a probe inserted in a medium to that in
the medium itself. Gray in particular identified th probe asa gas-filled cavity, whence
the name *‘cavity theory”. The simplest such theory is called the Bragg-Gray (B-
G) theory, and its mathematical statement, referred to as the Bragg-Gray relation, will
be developed next.

Suppose that a region of otherwise homogeneous medium w, undergoing irra-
diation, contains a thin layer or “‘cavity’' filled with another medium g, as in Fig.
10.1b. The thickness of the g-layer is assumed to be so small in comparison with the range of the
charged particles striking §t that its presence does not perturb the charged-particle field. This
assumption is often referred to as a *‘Bragg-Gray condition’". It depends on the
scattering properties of w and g being sufficiently similar that the mean path length
(g/em?) followed by particles in traversing the thin g-layer is practically identical to
its value if g were replaced by a layer of 1o having the same mass thickness. Similarity
of backscattering at w—g, g~w, and w-w interfaces is also implied.

For heavy charged particles (either primary, or secondary to a neutron field),
which undergo little scattering, this B-G conditinn is not seriously challer ged solong
as the cavity is very small in comparison with the range of the particles. However,
for electrons even such a small cavity may be significantly perturbing unless the me-
dium g is sufficiently close to w in atomic number.

Bragg~Gray cavity theory can be applied whether the field of charged particles
enters from outside the vicinity of the cavity, as in the case of a beam of high-energy
charged particles, or is generated in medium w through interactions by indirectly
ionizing radiation. In the latter case it is also assumed that no such interactions occur
in g. All charged particles in the B-G theory must originate elsewhere than in the
cavity. Moreover charged particles entering the cavity are assumed not to stop in
it.

A second B-G condition, incorporating these ideas, can be written as follows: The
absorbed dose tn the cavity is assumed to be deposited entirely by the charged particles ¢rossing it
This condition tends to be more difficult to satisfy for neutron fields than for photons,
especially if the cavity gas is hydrogenous, thus having a larg= neutron-interaction
cross section. The heavy secondary charged particles (protons, a-particles, and re-
coiling nuclet) also generally have shorter ranges than the secondary electrons that
resuft from interactions by photons of quantum encrgies comparable to the neutron
kinetic energies. Thus we see that the first B-G condition is the more difficult of the
two to satisfy for photons and clectrons, while the second B-G condition is the more

difficult to satisfy for neutrons.
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Under the terms of the two B-G conditions, the ratio of absorbed doses in the
adjacent medium w to that in the cavity g is given by Eq. (10.3) fcr each mono-
energetic component of the spectrum ot charged particles crossing g. For adifferential
energy distribution @, (particles per cm? MeV) the appropriate average mass col-
lision stopping power in the cavity medium gis

Tman
dT
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and linewise, for a thin layer of wall material w that may be inserted in place of g,
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Combining Eqs. {10.4) and (10.5) gives for the ratio of absorbed dose in w to that
in g, which is the B-G relation in terms of absorbed dose in the cavity:

b, A _ ..
> 5 = (10.6)

If the medium g occupying the cavity is 2 gas in which a charge Q (of either sign)
is produced by the radiation, D, can be expressed (in grays) in terms of that charge

as
_o(w
De = ( )‘ (10.7)

¢

where e { is expressed in coulombs, m is the mass (kg) of gas in which Q is produced,
and (W /e), is the mean energy spent per unit charge produced ( J/C; see Chapter
2, Section V.B, and Chapter 12, Section V). By substituting Eq. (10.7) into Eq.
(10.6), we obtain the B-G 1ciatio.n expressed in terms of cavity ionization:

| W\ -
p, =2 (—lﬂ) i (10.8)
£

m 4

This equation allows one to calculate the absorbed dose in the medium immediately
surrounding a B-G cavity, on the basis of the charge produced in the cavity gas,
provided that the appropriate values of m, (W /e),, and 8¢ are known.

Note that Q is generally greater than the charge Q' collected from the jon chamber,
because of ionic recombination , requiring a correction.
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FIGURE 12.25. lonization-recombination cerrection factors (P,,,) = /0, for continuous ra-
diation, pulsed radiation, and pulsed scanning electron beams. P, -values apply to the chamber
poetential Py when @1/Q; is the collected charge ratio for potentials P/P, = 2. (AAPM, 1983.
Reproduced with permission from R. J. Schulz and The American Institute of Physics.)

B-G theory also may be applied to solid- or liquid-filled ““cavities” g, using Eq.
{10.6) to calculate D, from a value of D, measured in some way. For example, me-
dium g might be a thin plastic film that gradually darkens as a knoewn function of
absorbed dose. Thus I, could be determined after an exposure by means of a den-
sitometer measurement. However, it is relatively difficult to satisfy the B-G con-
ditions with condensed cavity media, since the cavity thickness must be only ~0.001
times as great as for a gas-filled cavity at 1 atm to obtain a comparable mass thickness
of g. Thus a 1-mm gas-filled cavity is comparable to a {-um layer of a condensed
medium.

So long as ,,,:S‘: is evaluated for the charged-particle spectrum &, that crosses the
cavity, as in Eqs. (10.4)-(10.6), the B-G relation requires neither charged-particle
equilibrium (CPE) nor a homogeneous field of rachation. However, the charged-
particle fluence ® 7 must be the same in the cavity and in the medium w at the place
where D, is to be determined.



TABLE 10.2  Values of D /D, Calculated for Air Cavities by Spencer® from Spencer Cavity
SPENCER CAVITY THEORY Theory, vs. Bragg-Gray Theory

By the 1950s experiments had shown that the B-G cavity theory did not accurately

DD,
predict the ionization in air-filled cavities, especially with walls of high atomic num- d
ber. At the National Bureau of Standards, the preliminary results of Attix, De La Spencer
Vergne, and Ritz (1958) suggested to Spencer that é-ray production had to be taken Wall T, A (keV) = 2.5 5.1 10.2 IR 40.9 B1.8 Bragg-
into account (Spencer and Attix, 1955). Medium ' (keV) Range'{em)} = 0.0i5 0.051 0.19 0.64 2.2 7.2 Gray
In examining the inadequacy of the B-G theory it should be remembered that C 1308 1.001  1.002 1.003 1.004 §.00¢4 1.005 1.00%
the stopping-power ratio in Eq. (10.8) is evaluated under the assumption of the 654 0.990 0.991 0992 0.992 0.993 0.99¢ (.994
C3DA, upon which collision stopping powers are based. Actually § rays (energetic 327 0985 0986 0987 0988 0.988 0983 0.989
electrons) are produced in knock-on electron-electron collisions, and these 3 rays Al 1308 [.162  1.151  1.i41  1.134 1.128 1.123  1.117
Jointhe flux of electrons crossing the cavity. Their presence enhances the equilibrium 654 1.169  1.155 1.145 £.137  1.131  1.126 1,125
spectrum at the lower electron energies, since the kinetic energy of an electron 327 1.175%  1.161 1.151 1.143  1.136 1,130 1.134
i k - isiua iei i i it hi
unﬁergomg a noc.kion collh__s;l yie tmmedlate.ly shared with the electron {( hits. Cu 1308 1.456  1.482  1.381 1.359 1.340 1.327 1.319
Spencer’s goal in modifying thh B-G cavity theory was not only to incorporate 654 1.468 1.421 1.388 1363 1.345 1.399 1.397
the &-ray effect, but to do it in such a way that the obscrved variation of ionization 397 L1.485 1.436 1.400 1 °75 1.354 1.337  1.353
. . L b .
der_)s;ty :ul}; cgvny sc;zc could be accounted for, at least for cavities small enough to Sn 1308 (786 1.69¢ 1634 1502 1559  1.535 1508
satisfy the B- con ‘ll.IOI"IS. _ ‘ . 654 1.822 1.723 1.659 1.613 1.580 i.531 1.547
The cavity, containing medium g (typically air), is characterized with respect to 397 1.861  1.756 1.687 1.640 1.602 1.571 ] 595
size by a parameter A, which was ewh bi 1
of clegtrois havin projcciid rar: 5::_‘“:: ]:; at: clri::]]}z'ttaktn . :C e _mea“ e Pb 1308 - 2.054 940 1.865 LBl 1.770 1730
g ges ) g gh to cross the cavity. 654 — 2.104 31985 1.904 1.848 1.80L 1.796
The equilibrium spectrum, &4, of electrons {(including 8-rays) generated in the 327 — 2,161  2.030 1.946 1881 1832 1876
sur:.our:.:lng medium is arbitrarily divided into two components in Spencer’s sche- Personal communication. These data replace those given in Table Il of Spencer and Atix (1955), which did ot
matization:

take account of the polarization effect (see Chapter 8, Section 111L.E}.
el
a. The''fast’ group: electrons that have energies T2 A, and that can therefore In air.
transport energy. In particular they have enough energy to cross the cavity

. N BURLIN CAVITY THEORY
if they strike it.

Burlin (1966, 1968) recognized the need for a y-ray cavity theory that would hridge
the gap between small cavities for which the B-G or Spencer theory could be applied,
and very large cavities for which the wall influence is negligible.

b.  The ““slow’ group: elecirons with 7 < A. These are assumed to have zero
range, i.e., ta drop their ¢..rgy *'on the spot’’ where their kinetic energy falls
below A. Hence they - ¢ assumed not to be able to enter the cavuy, nor to
transport energy.

Table 10.2 gives values of D/D,, calculated by Spencer for air cavities having A-
values from 2.5 to 82 keV, in media of Z = 6 10 82 containing distributed mono-

energetic electron sources of Ty = 1308, 654, and 327 keV. For comparison the final s @
column (also calculated by Spencer) provides the corresponding B-G-theory values, —_— /{
which can be seen to agree most closely with the Spencer theory for the larger cavity g
sizes. The difference from unity generally increases with decreasing cavity size, be- w

cause of the influence of more and more &-rays.

FIGURE 10.5. The cavity-size transition in Burlin theory (sce text).

ey ®



Figure 10.5 iilustrates this cavity-size transition. A region of homogenesus me-
dium w is shown uniformly irradiated by y-rays. Three cavities containing medium
gare considered: small (satisfying the B-G conditions), intermediate, and large com-
pared to the ranges of the secondary electrons present. Using the terminology of
Caswell (1966), the absorbed dose in the small cavity (Fig. 10.5a) 15 delivered almost
entirely by “‘crossers’, i.e., secondary electrons completely traversing the cavity,
such as ¢,. The average absorbed dose in the intermediate-sized cavity in Fig. 10.56
isdelivered partly by crossers, but also by *“starters’’ like ey that originate in the cavity
and stop in the wall, *‘stoppers’ () starting in the wall and terminating in the cavity,
and ““insiders’’ (e,) that start and stop within the cavity. Note that the dose in this

case will in general nat be uniform throughout the cavity, but may depend on the
distance inward from the wall.

If a cavity is made large enougn so that the maximum-range stoppers from the
wall can affuct the dose in only a n~ligibly thin layer of cavity medium (the thickness
of whichisexaggeratedin Fig. 10.5¢), then the average dose in the cavity is p. actically
alldelivered by the insiders, ¢,, which are generaied by y-ray interactions in the cavity
medium g itself.

The Burlin cavity relation can be written in its simplest form as follows:
o, < i\
=g 541 - d) (10.41)
p

w

!

w

where d is a parameter related to the cavity size that approaches unity for . aall cav-
ities and zero for large ones, thus providing the proper values of Eq. (10.41) for the
limiting cases; Bg is the average absorbed dose in the cavity medium g; D, = (K,),
is the absorbed dose in medium w under CPE conditions (i.e., not within electron
range of the cavity); 5% is the mean ratio of mass collision stopping powers for g
and 1w, obtained either on the basis of the B-G or Spencer theory; and (_/p), is
the mean ratio of the mass energy-absorption coefficients for g and w.
Burlin expressed d as the average value of §,/%], in the cavity (see Fig. 10 6}

I3
S PP
Q

= _ -BL
s = % L =1 o (10.42)
“ S ¥, di
0

where [ is the distance (cm) of any point in the cavity from the wall, along a mean
chord of length L, which is taken as being equal to four times the cavily volume V divided
by its surface area S, for convex cavities and diffuse (1.e., 1sotropic) electron fields.
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FIGURE 10.6.

Elustration of the cxponential-decay and -buildup assumption in the Burlin
cavity theory. The equilibrium wall fluence of clectrons, &, is shown decaying exponentially as
they progress into a homogeneous cavity for which the wall w and cavity £ media are assumed to
be identical. The electrons under consideration are only those flowing from left to right. The
buildup of the cavity-generated electron fluence ®, follows & complementary exponential, asymp-
tatically approaching its equilibrium value b = @l

In applications involving air-flled cavities Budlin

: (1966) evaluated 8 (cm ™} from
an empirical formula due 1o Loevinger:

g = 16p
= M(Tm,, — 0.035)1,4 (10.46)

where p is the air density (g/cm®} and Tnax 1s the maximum value of the starting
energies Ty of the §-raysin MeV,

The Burlin theory has been found to estimate the average dose in cavities fairly
well over a wide range of sizes. It is particularly useful in relation to condensed-state
dosimet i rs, which typically have dimensions that are comparable to the ranges of
the electrons present. Ogunleye et al. (1980) measured the dose in stacks of LiF ther-
moluminescence dosimeters (TLDs), each 0.1 g/icm? thick, sandwiched between
equilibrium-thickness walls of various media and irradiated perpendicularty by #Co
¥-tays, as shown in Fig. 10.7. The data were normalized to the homogeneous case
where the wall medium also consisted of solid LiF.
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FIGURE 10.7. “’Co y-ray experiment to test the Burlin theory as applied to LiF TLD chips,
each 0.38 X 3.18 X 3.18 mm’, p = 2.64 g!cm’, stacked four per layerin 1, 2, 3, 5, and 7 layers.
The CPE buildup layer and backscattering medium were both made of the same wall material,
cither LiF, polystyrene, Al, Cu, or Pb. The spacer was adjusted to cqual the TLD stack thickness,
and for the results presented herc was made of LiF to produce a semi-infinite one-dimensional
cavity. (After Ogunleye, et al., 1980. Reproduced with permission of The Institute of Physics,
UK.

L~
K .
I
F Cu
0 i x

- : i LaF
Dg + 7
D 1 3% z Al
w
g

09 P
o Pb
¥ > Z Poly
ﬁ Pb
0.8 1 I | ] 1 1 J
Q 2 3 6 7

! >3 4
Number of TLD Layers

FIGURE 10.9. Comparison of the Burlin theory (solid curves) with the experiment referred to
in Figs. 10.7 and 10.8. The application of the theory in this case, as described in the text, differs
from that of Ogunleye et al. (1980).
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Simple Dosimeter Model in Terms of Cavity Theory

sV

FIGURE 11.1. Schematic representation of a
dosimeter as a sensitive volume V containing me-
dium g, surrounded by a wall of medium t and
thickness ¢.

A dostmeter can be defined generally as any device thatis capable of providing a reading
rthat is a measure of the absorbed dose D, deposited in its sensitive volume V by ionizing
radiation. If the dose is not homagencous throughout the scnsitive volume, then r
is a measure of same kind of mean value B_L,. Ideally 7 is proportional to D,, and each
volume element of ¥ has equal influence on the value of 7, in which case Bg is simply
the average dose throughout V.
A dosimeter can gcn-erally be considered as consisting of a sensitive volume ¥ filled
with medium g, surrounded by a wall {or envelope, package, container, capsule,
buffer layer, etc.) of another medium w having a thickness ¢ = 0, as shown in Fig.
11.1. Its resemblance to a cavity and its surroundings
is more than coincidental. A simple do<imeter can be treated in terms

of cavity theory, the sensitive volume being identific.! as the ‘‘cavity’’, which may
contain a gaseous, liquid, or solid medium g, depending on the type of dosimeter.
Cavity theory provides one of the most useful means of interpretation of dosimeter
readings, as will be seen in the following sections.

The dosimeter wall can serve a number of functions simultaneousty, including:

* being a source of secondary charged particles that contribute to the dose in
¥, and provide charged- particle equilibrium (CPE) or transient charged-par-
ticle equilibrium (TCPE) in some cases,

* shiclding ¥ from charged particles that originate outside the wall,

* protecting Vfrom “‘hostile’” influences such as mechanicat damage, dirt, hu-
midity, light, clectrostatic or RF fields, etc., that may alter the reading,

*® serving as a container for a medium g that is a gas, liquid, or powder, and

* containing radiation filters to modify the energy dependence of the dosimeter.

e

P

r

P
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GENERAL GUIDELINES ON THE INTERPRETATION OF
DOSIMETER MEASUREMENTS

" Ordinarily one is not interested in measuring the absorbed dose in a dosimeter’s
sensitive volume as an end in itself, but rather as a means of determining the dose
(or a related quantity} for another medium in which direct measurements are not
feasible. Interpretation of a dosimeter reading in terms of the desired quantity is the
central problem in dosimetry, usually exceeding in difficulty the actual measure-
ment. In some cases the dosimeter can be calibrated directly in terms of the desired
quantity {e.g., txposure, or tissue dose), but such a cahbration is generally energy-
dependent unless the dosimeter closely simulates the reference material .

IMPORTANCE OF Crc OR TCPE
It may be recalled from Eqs. (2.13), (4.6}, and (4.11) that under Cti and TCPE

conditions, respectively,
CPE "
D = K,=\If(ﬂ) (11.1)

and

TCPE

D = K1+u8=KB=1V¥ (“—p—) 8 (11.2)

for photens. For neutrons, referring also to Eq. (2.8), one has the corresponding
relationships:

CPE
D = K = &F, (11.3)

Consider now a dosimeter with a wall of medium w, thick enough o exclude all
charged particles generated elsewhere, and at least as thick as the maximum range
of secondary charged particles generated in it by the photon or neutron field. The
dosimeter reading r provides us with a measure of the dose D, in the dosimeter’s
sensitive volume. If the latter volume is small enough to satisfy the B~-G condition
of nonperturbation of the charged-particle field, and assurning that the wall is uni-
formly irradiated, CPE exists in the wall near the cavity. B-G or Spencer cavity
theory can be used to determine the dose D, there from that (D,) in the sensitive
volume. Then Eq. (1t.1}or (11.3) permits the calculation of ¥ or ® for the primary
field from the value of D,. More importantly, the dose D, in any other medium x
replacing the dosimeter and * - 'n an identical irradiation under CPE conditions can

be gotten from

12
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FIGURE 13.4. (. in graphite, as a function of photen energy, from czleulations of ¥ by Roesch
(1968} (sec Attix, 1979). This ¥ may be adequately approximated by 0.54 Regpa for the average
secondary-electron energy T = E, {0,./6). The lower curve gives values of P. =t + p, % the
upper curve is B, = 1 + p%. For chamber-wall applications, or at shaliow depths in a phantom
penctrated by a broad y-ray beam, values of B, approximate the lower limit. At greater depths
in the phantom, B, lies between the limiting values, tending to increase with increasing depth
and with cecreasing beam diameter. These results apply alse +~ fi, for other low-Z media.



D = D, for photons 11.5
f#mipsw P ( )
or
CPE -
F
D, = D, () for neutrons (11.6)
(F o)

The exposure X (C/kg) for photons can in turn be derived from the absorbed dose
D,;, (for x = air) through this relation (from Eq. 4.8):

XCEE D s = &_ (11.7
TR\ W /., 33.97 7

For higher-energy radiation (hv = 1 MeV or T, 2z 10 MeV), where CPE fails
but TCPE takes its place in dosimeters with walls of sufficient thickness, Eqs. (11.2)
and (11.4) replace Eqs. (11.1) and (11.3), respectively. Relating D, to ¥ or & then
requires evaluation of the ratio 8 = D/K, for each case. However, the value of § is
generally not much greater than unity (see Fig. 13.4) for radiation energies up to
a few tens of MeV, and it is not strongly dependent on atomic number. Thus for
media w and x not differing very greatly in Z, Eqs. (11.5) and (11.6) are still ap-
proximately valid. Equation (11.7) may be extended to higher energies, where TCPE
exists, by dividing D, by 8.

If the dosimeter in question has 100 large a sensitive volume for the application
of B-G theory, Burlin theory [Eq. {10.41)] can be substituted to calculate the equi-
librium dose D, in the wall medium at the point of interest, from the value of E‘
given b, the dosimeter readin,,. Then all of the preceding equations (11.1)-(11.7)
are still operational. Note however that the sensitive-volume-size parameter 4 is re-
quired to be known in this case, and it may not follow cxactly the simple forms sug-
gested by Burlin and others, leading to uncertainty in dosimetry interpretation.

ADVANTAGES OF MEDIA MATCHING
There are clear advantages in matching 2 dosimeter to the medium of interest 'z, and
also matching the media compaosing the wall (w) and sensitive volume (g) of the do-
simeter to each other. The most obvious matching parameter is atomic composition,
but the density state (gaseous vs. condensed) also influences the collision-stopping-
power ratio of w to g for clectron~ by the polarization effect. More adaptable guide-
lines for media matching will be discussed in following subsections.

14

a ws=g
If the wall and sensitive-volume media of the dosimeter are identical with respect
to composition and density, then D, = D for all homogeneous irradiations.

To the extent that w and g are at least madc similar to each other with respect
to composition ....d density state (i.e., gaseous vs. condensed), the influence of cavity
theory is kept minimal. Consequently the requirement for information about the
radiation energy spectrum to allow accurate evaluation of the terms in, for example,
the Burlin cavity relation (10.41) is lessened, allowing the use of convenient ap-
proximations without significant loss of accuracy in determining D,, from D

bh. w=g=
If a variety of homogeneous dosimeters (w = g) were available, it would be ad-
vantageous to choose one made of a material that matched the medium of interest,
x, as closely as possible. If they were identical, then the dosimeter would be truly
representative of that medium with respect to radiation interactions, and D, = D,
{(=D,)in Eqs. (11.5) and (11.6). To the degree that the dosimeter simulates the me-
dium x, the calculation of D, through the application of one of those equations is again
simplified by reducing the need for spectral informati.

Unfortunately, dosimeters are only available in a finite variety, and there are other
selection constraints besides composition that limit even further the choice of a do-
simeter for a partlcu]ar apphcauon Cavnty theorlcs can be lhought of as means of

the medium x, rclying on cavity thcory to calculate I, from 5:. Tiying to match
£ 10 x is generally made more difficult by the additional dosimetric requirements
imposed on the medium in the sensitive volume.

3. MEDIA MATCHING OF w AND g IN PHOTON DOSIMETERS

Since it is often infcasible in trying to devise a homogencous dosimeter to make w
and g actually similar in atomic composition, it will be helpful to point out the im-
portant parameters involved. The Burlin cavity relation (10.413 is useful in this con-
nection:

B _ ;. -
-i=d-msz,+(1—d)("—=“) ‘
D P/

"

It can be seen that the average dose Bg in the dosimeter’s sensitive volume will
be equal to the equilibrium dose D, in the wall medium if

£
W58 = (“—p—) =1 (11.8)

independent of the value of d, which varies with the size of the dosimeter’s sensitive
volume.

-

=
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In other words, the matching criteria between the media w and g call for
the respective matching of their mass collision stopping powers and their mass en-
ergy-absorption coefficients. When those parameters are each the same f{or the wall
as for the medium in the sensitive volume V, the need to evaluate 4 in the Burlin
equation {10.41} is climinated, providing a substantial simplification.

Moreover, since [, then remains equal to D,, which is the CPE dose value in
the wall medium at the point of interest, Eq. (11.3) may be used to calculate the dose
in medium x from the observed value of D, measured by the dosimeter, |

The requirements given in Eq. (11.8) are still quite stringent and difficult to
achieve, especially for a material w that is not identical to g in atomic composition.
A more fiexible and practicable matching relationship between media w and gisthe
following:

£
B
P/ w

where n is sorne constant, no longer required to be unity. In other words, the ratio
of mass collision stopping powers for g/w is only required to be equal to the cor-
responding ratio of mass energy absorption coefficients. Under these conditions the
Burlin equation simplifies to

L4

ISTIST

=dn+{(l —d)n=n (11.10)

irrespective of the value of d, as was the case for Eq. (11.8). However, now we see
that D_ is n times as large as D,

To understand how the value ofD_,', depends on n, we write the following Burlin

and
and obeys Eq. (11.8),

cquations for two dosimeters containing the same sensitive volume medium g,
given the same photon irradiation. Oune is enclosed in wall w,
while .the other is enclosed in w; and obeys Eq. (11.9):

D Y]
£ - B
—— =4 - LIS — iy =
b, w35, + (1 d)(p)w’ 1 (11.11)
b, - o
— =d- 5 -i-(l—*d)(ﬁ) =n 11.12
D.. . o). ( )
But D, and D, are equilibrium absorbed doses in media w, and w,, and areg related
by
n cr: ( )wu
] Fﬁn
- =] =n 11.13
D., o/ ( )

the last cquality having been derived from Eqgs. (t1.8)and (11.9).

16

Comparison with Eq. (11.12) shows that
D,, = D,,

and Eq. (11.11) then provides the equality

D, = D, (11.14)

This proves that the dose in the dosimeter's sensitive volume is independent of the

the equilibrium dose in the wall is inversely proportional to n, thus maintaining
D, constant. Thus the reading of the dosimeter gives a value of D, that is the same

as if the wall were perfectly matched o g

The practical case to which this approach is relevant occurs where photons interact
anly by the Compton effect in g and w. Then p,./p is nearly proportionat to the nurm-
ber of electrons per gram, M,Z/A. To a first approximation so is the mass collision

stopping power of the secondary electrons. Consequently Eq. (11.9)is approximately
satisfied, with n = (Z/4) /(Z/4),,.

Example 11.1. A dilute aqueous chemical dosimeter (assume =water)is enclosed
in an equilibrium-thickness capsuie of polystyrene and exposed 1o ®°Co y-rays. Cal-
culate the approximate ratio OFB‘ in this dosimeter to the dose (D,,,..) under CPE
conditions in water, assuming d = | and d = 0.

Solution:  (p.n/0)uuee = 0.0296 cn’/g; (U/p)pe, = 0.0288 cm’/g. The average
starting ele- ron energy from the Compton effect is

g,
Ty = =+ 1.25 MeV = 0588 MeV
[i]

The average equilibrium-spectrum electron energy is approximately

- T
7'5?“:0.3Mcv

Thus

dT 9
— = 2.355 MeV ¢m'/g
dx water, 0.3 MeV

a7

= 2.305 MeV cm?/g
dx
poly, 0.3 McV
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D 2.355 0296
L =dZI= 4 (1 - d) 2
ol 2.305 0.0288

1.022 4 + 1.028 (1 — o)

D, 5! ) Dpaiy _ D, (ﬁ)wly

Dwntcr Dpoly Dwmcr D P

waler

poly

_[,23%5 ., _ . 0.0296]0.0288
= 199305 T ¢ )0.0233 0.0296

2,355 0.0288
=d + (1
2.305 0.0296

=090 + (1 —d) = 1 — 0.006d

_d)

Thus we see that in this case Bf/Dwatcr isequal t00.994 whend = 1, rising to 1.000

for 4 = 0.

In this example polystyrene walls are seen to provide a close (<0.6%) match to

the water in the dosimeter’s sensitive volume.

P

W

o



