

INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION UNITED NATIONAL ATOMIC ENERGY AGENCY UNITED NATIONAL ATOMIC ENERGY AGENCY

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE CENTRATOM TRIESTE

H4.SMR/638-27

College on Medical Physics: Imaging and Radiation Protection

31 August - 18 September 1992

An International Approach to Dose Reduction in Diagnostic Radiology

P. Ortiz-Lopez

International Atomic Energy Agency Vienna, Austria

AN INTERNATIONAL APPROACH TO DOSE REDUCTION IN DIAGNOSTIC RADIOLOGY

DIAGNOSTIC RADIOLOGY: HIGHEST CONTRIBUTION TO COLLECTIVE DOSE OF ALL MAN-MADE RADIATION SOURCES. (90-95 % OF THE MEDICAL SOURCES)

FOR THE SAME EXAMINATION, DIFFERENCES BY A FACTOR OF 10 OR EVEN 100, HAVE BEEN REPORTED. (ICRP-60)

GREATEST POTENTIAL FOR DOSE REDUCTION WITHOUT LOOSING DIAGNOSTIC INFORMATION

INEXPENSIVE METHODS FOR DOSE REDUCTION HAVE BEEN OFTEN REPORTED

IN MANY CASES, THE DOSE REDUCTION IS ASSOCIATED TO A REDUCTION OF THE X-RAY TUBE LOADING, WHICH MAY RESULT IN LONGER X-RAY TUBE LIFE

SOME OF MAJOR CAUSES FOR LARGE DOSE DIFFERENCES

- 1.- PATIENT THICKNESS
- 2.- SPEED-CLASS OF THE IMAGE SYSTEM (UP TO F=2 TO 4)
- 3.- FILM-PROCESSING (UP TO F=2 TO 3). TEMPERATURE, REPLENISHMENT, (TIME IF MANUAL PROCESSING)
- 4.- INADEQUATE BEAM QUALITY (KV, FILTRATION) LACK OF FILTRATION (F=2 OR HIGHER, IN SKIN DOSE)
- 5.- FIELD SIZE (affects the imparted energy to the patient)

IAEA-CEC CO-ORDINATED RESEARCH PROGRAMME

- 1.- INCREASE AWARENESS OF THIS POTENTIAL FOR DOSE REDUCTION
- 2.- PROMOTE METHODS FOR DOSE REDUCTION. PILOT EXPERIENCE
- 3.- DRAW CONCLUSIONS. PROPOSALS FOR FURTHER IMPROVEMENTS, DESIGN TRAINING PROGRAMMES BASED ON OWN EXPERIENCE

PILOT PROGRAMME

SELECTED HOSPITALS WILLING TO CO-OPERATE

SELECT SIMPLE, BUT MOST USED X-RAY EXAMINATIONS (CHEST, ABDOMEN)

DEFINE THE PROCEDURE:

- 1.- ASSESS DOSES.
 DOSE INDICATOR: PATIENT ENTRANCE DOSE
 FIRST MEASUREMENT ON A SAMPLE OF PATIENTS.
 COLLECTION OF RELEVANT PARAMETERS FOR
 FURTHER ANALYSIS
- 2.- DEFINE AND IMPLEMENT A PROGRAMME OF OUALITY ASSURANCE
- 3.- REASSESS THE ENTRANCE DOSE. LESSONS LEARNED. PROPOSAL FOR FURTHER IMPROVEMENTS.

OPTIMIZING THE PATIENT ENTRANCE DOSE AND IMAGE QUALITY

FILM VIEWING BOX.

- 1- Measuring Entrance Dose
- 2.- Analyse and Controlling all steps (Q.C.)
- 3.- Re-assessing the Entrance Dare

EXAMPLE DATA FOR THE FIRST APPROACH (PILOT PROGRAMME)

- 1.- EQUIPMENT: GENERATOR, X-RAY TUBE Model
 Single Phose, Three phose ...
- 2.- IMAGING SYSTEM
 Film (Type)
 Intensifying screen (Type, G. Class)
 Processing...
- 3 .- PATIENT: Age, Sex, Weight, Tickness
- 4.- TECHNICAL FACTORS (or exam. protocol)
 Examination type. Proyection
 Distance: focus-skin, focus-film
 Field size (Film size).
 KYP
 MAS, (or mA and time)