INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION UNITED NATIONAL ATOMIC ENERGY AGENCY # INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS I.C.T.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE CENTRATOM TRIESTE H4.SMR/638-27 College on Medical Physics: Imaging and Radiation Protection 31 August - 18 September 1992 An International Approach to Dose Reduction in Diagnostic Radiology P. Ortiz-Lopez International Atomic Energy Agency Vienna, Austria ## AN INTERNATIONAL APPROACH TO DOSE REDUCTION IN DIAGNOSTIC RADIOLOGY DIAGNOSTIC RADIOLOGY: HIGHEST CONTRIBUTION TO COLLECTIVE DOSE OF ALL MAN-MADE RADIATION SOURCES. (90-95 % OF THE MEDICAL SOURCES) FOR THE SAME EXAMINATION, DIFFERENCES BY A FACTOR OF 10 OR EVEN 100, HAVE BEEN REPORTED. (ICRP-60) GREATEST POTENTIAL FOR DOSE REDUCTION WITHOUT LOOSING DIAGNOSTIC INFORMATION INEXPENSIVE METHODS FOR DOSE REDUCTION HAVE BEEN OFTEN REPORTED IN MANY CASES, THE DOSE REDUCTION IS ASSOCIATED TO A REDUCTION OF THE X-RAY TUBE LOADING, WHICH MAY RESULT IN LONGER X-RAY TUBE LIFE ### SOME OF MAJOR CAUSES FOR LARGE DOSE DIFFERENCES - 1.- PATIENT THICKNESS - 2.- SPEED-CLASS OF THE IMAGE SYSTEM (UP TO F=2 TO 4) - 3.- FILM-PROCESSING (UP TO F=2 TO 3). TEMPERATURE, REPLENISHMENT, (TIME IF MANUAL PROCESSING) - 4.- INADEQUATE BEAM QUALITY (KV, FILTRATION) LACK OF FILTRATION (F=2 OR HIGHER, IN SKIN DOSE) - 5.- FIELD SIZE (affects the imparted energy to the patient) #### IAEA-CEC CO-ORDINATED RESEARCH PROGRAMME - 1.- INCREASE AWARENESS OF THIS POTENTIAL FOR DOSE REDUCTION - 2.- PROMOTE METHODS FOR DOSE REDUCTION. PILOT EXPERIENCE - 3.- DRAW CONCLUSIONS. PROPOSALS FOR FURTHER IMPROVEMENTS, DESIGN TRAINING PROGRAMMES BASED ON OWN EXPERIENCE #### PILOT PROGRAMME SELECTED HOSPITALS WILLING TO CO-OPERATE SELECT SIMPLE, BUT MOST USED X-RAY EXAMINATIONS (CHEST, ABDOMEN) DEFINE THE PROCEDURE: - 1.- ASSESS DOSES. DOSE INDICATOR: PATIENT ENTRANCE DOSE FIRST MEASUREMENT ON A SAMPLE OF PATIENTS. COLLECTION OF RELEVANT PARAMETERS FOR FURTHER ANALYSIS - 2.- DEFINE AND IMPLEMENT A PROGRAMME OF OUALITY ASSURANCE - 3.- REASSESS THE ENTRANCE DOSE. LESSONS LEARNED. PROPOSAL FOR FURTHER IMPROVEMENTS. #### OPTIMIZING THE PATIENT ENTRANCE DOSE AND IMAGE QUALITY FILM VIEWING BOX. - 1- Measuring Entrance Dose - 2.- Analyse and Controlling all steps (Q.C.) - 3.- Re-assessing the Entrance Dare # EXAMPLE DATA FOR THE FIRST APPROACH (PILOT PROGRAMME) - 1.- EQUIPMENT: GENERATOR, X-RAY TUBE Model Single Phose, Three phose ... - 2.- IMAGING SYSTEM Film (Type) Intensifying screen (Type, G. Class) Processing... - 3 .- PATIENT: Age, Sex, Weight, Tickness - 4.- TECHNICAL FACTORS (or exam. protocol) Examination type. Proyection Distance: focus-skin, focus-film Field size (Film size). KYP MAS, (or mA and time)