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Radiation Protection and Quality Control
in Nuclear Medicine

A. Benini

Nuclear medicine uses small quantitites of radioistopes in diagnostic
procedures which are now very widely applied. Benefits to the patient are
remarkable, the status and functions of organs deep into the body can be
investigated. With in-vitro radicactive techniques, information can be

obtained for the analysis of hormones, vitamins, drugs, etc. etc.

Because of the low levels of radioactivity the radiological hazard is
very limited, provided simple but important measures and “good sense" in
handling the radicisotopes are applied. The radiocactive materials used in
nuclear medicine are usually short-lived, and there are well established
procedures for transporting, storing and using them. In this field
"protective clothing" means no more than an ordinary laboratory coat and the
use of disposable gloves. In-vivo nuclear medicine radioiscotopes have to be
stored in shielded places and some shielded tools must be used. The
radioactive wastes are of low level and when necessary may be stored at the

hospital untii their activity is negligible.

Risk for the patient lies either in "interpretation" errors, or in
measurements made with defective or poorly functioning equipment. Faulty
diagnosis may then lead to ineffective or damaging treatment. Even in
advanced countries this is a difficult problem, requiring sophisticated and
well-dsiciplined procedures for quality control. In developing countries,
where working conditions are less favourable, the difficulties are much
greater. Just providing equipment is not enough, training and quality control
programmes are very important. The checking procedures of the images and of
the equipment are in a way a "self learning™ process; the users will get to

'know the egquipment better and will use it in a proper way.

One of the essential differences between X-ray and nuclear medicine
diagnostic investigations is that the X-rays are more or less limited to the
irradiated area, while with in-vivo techniques the administered radicisotope
spreads in the body acccording to its biochemical characteristics, and later

on in the environment.



Consequently, evaluation of the internal dose in nuclear medicine is more
complex and requires the help of sophisiticated analysis. Considering the
major possible damhge which ionizing radiation causes to children and pregnant
women, nuclear medicine investigations have to be carried out only when no
alternative investigation is available and only in case of absolute need.

Therefore, it is advisable to evaluate the dose and the risk in advance.

It is very important to avoid a repetition of the investigation for
erronecus interpretation, because of the repeated dose to the patients and the

waste of resources.

Attention has to be given to the selection of robust and proven
equipment, and to factors contributing to early breakdowns, such as unstable
electrical supply or bad climatic conditions. Devices to protect against

these have to be supplied with critical pieces of equipment,

Quality assurance procedures developed by the Agency for checking
analysis in radioimmunoassay have been demonstrated in training courses and
are in widespread use. Training is also given in the use of phantoms and
other testing devices for checking the quality of images generated by gamma

cameras and other diagnostic devices.

In case of treatment with radicisotopes the problem of radiation safety
is different, according to the different administered activity. The problem
of handling radiopharmaceuticals and wastes is, of course, heavier but always

at a "reasonable" level. Depehding on the total activity of the waste,

deposit tanks may be required.

When NM techniques are used the influence of radioisotope wastes in the
surrounding environment is to be considered according to the national and

international rules.



On the whole the rules for safe use of radioisotopes in medicine

summarized as follows:

- appropriate
- appropriate
- appropriate

- appropriate

radiation protection infrastructures
tests to check the equipment performance
instrument, compatible with the conditions

radiopharmaceuticals in order to keep the amount of

radioactivity as low as possible.

- correct interpretation of the examinations.

The IAEA TEC-DOC 602 is a very comprehensive guide for performing all

calibration tests.

can be

the
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Figure 29-14 Spectrum Component Produced by Compton Interactions within the Body
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RADIATION PROTECTION FOR DIAGNOSTIC USE OF RADIOISOTOPES

T-REGULATIONS

Any use of radionuclides is fraught with the danger of
inedvertently exposing an individual to radiation and,
therefore, to its attendent hazards. This is especially true
itt  the nuclear medicine laboratory where large amounts of
unsealed radiocactive sources are routinely handled. Each
time a generator is milked, a radiopharmaceutical dose is
drawn or injected, or a scan is performed on a patient.
There is the possibility of exposure and contamination to
the user as well as to the environment. To ensure proper and
safe use of radionuclides govermental agencies regulate
production, transportation, possession, use and disposal of
radionuclides. Local regulations for each country are based
primarily on the recommendations of two advisory bodies, the
ICRP-International Commission on Radiationm Protection and
the NCRFP-National Council on Radiation Protection.
Fecommendations from these groups do not carry the force of

Taw.

I-1) Restricted and Unrestricted Aresas

Regulations prescribe different maximum radiation
limits for restricted and unrestricted areas. Normally,
restricted areas are not accessible to the general public,
and they are occupied only by individuals whose employment
responsitbiilities require them to work with radioactive
materials. Such individuals are said to be occupationally
expased -e.g., nuclear medicine physicians, +technicians,

rharmacists etc.

I-2) Maximum Permissible Doses

Maximum permissible dose limits recommended by NCRFP
are given in Table-~1. An individual’s life time cumulative
occupational dose should not exceed (N-18)%*5 rems, where N
is the individual’s age in yesars.

These dose 1limits, which apply to occupationally
exposed personnel, are called occupational dose limits, but
ot include radiation dose received by medical examination.

Maximum permissible doses for persons under age 18,
and for persons in unrestricted areas, are reduced by a
fzctor of 10 from those for restricted areas Figure 1.

s
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I-4) The regulations also specify maximum permissible
concentrations for radionuclides disposed of into the sewage
water. An anual 1imit of one curie for the total amount of
radioactivity disposed is specified.

II) SAFE HANDLING OF RADIOACTIVE MATERIALS

I1-1) The ALARA Consept

Radiaton dose limits, maximum permissible values are
legal limits that must not be exceeded at any time. However
they should not be considered as thresholds below which the
hazards may be assumed to be "zero”.

Although the limits in the regulations are very small,
they are not assumed to be totally risk free, and any
reasonable technique for reducing radiation dose may have
potential benefits in the long run.

The guiding principle in the radiation protection is
that radiation doses should be “"as low as reasonably
achievable” (ALARA). The philosopy is to reduce radiation
levels in work places to as low a level as is economically
and technologically feasible, even the levels are well below
the legal limits.

I1I-2) Reduction of Radiation Doses From External Sources

i} Type of sources

External sources are those that deliver a radiation
dose from outside the body. The principle sources are gamma
and X-ray emitting radionuclides in patients, syriges,
vials, waste disposal areas, etc. Unshielded beta emitters
with sufficient energy to travel some distance in air (P-32)
also constitute an external hazard. .

ii) Exposure rate constant .

Several factors affect the exposure produced by an
external radioasctive source, as illustrated in Figure 2. At
this point, it 1is important to remember +the difference
between exposure {(milli roentgens) and exposure rate {milli
roentgens per hour). The exposure produced by a radioactive
source is related to the accumulated activity (micro curie-
hours), whereas exposure rate is related to the activity, A
fmicro curies), at a particular time. -

The number of photon per transition and photon energy
have characteristic values for each radionuclide. When this
factors are known, it is possible to determine the exposure
rate at a standart distance, such as 1 m. from a radioactive
sourcs. This exposure value is generally designated the
gamma constant (). The value of” gamma constant 1is the
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The effect of distance can have a marked effect on
radistion levels. Increasing distance always bhas a dose
reduction effect. Direct contact with radiation sources
should be avoided by any available means, e.g., by using
tongs to handle vials, Patient study areas {e.g., imaging
rooms) should be arranged to permit the technician to
operate instrumentation at reasonable distance {(e.g., 2
meters) from patient. Separate waiting areas should be
provided faor patient who have been injected with
radicactivity and for relatives, orderlies, and -patients not
requiring radiocactive injections. Table-3. Reception areas

should not be used as waiting areas for radiocactive
pratients.

Examples of effective use of shielding are lead ©pigs
for storage of vials and generators, lead~lined syringe

holders, lead aprons, lead bricks for lining storage areas,
and lead-lined drawing sations Figure 4. Leaded glass
provides comfortable viewing and radiations protection
simultanecusly, especially for low-energy gamma and Xx-ray
emitters (<200 keV). Dose calibrators should be enclosed 1in
a shielded area, using lead sheet or bricks, to avoid
UNNecessary exposure during measurement of radio-
rharmaceutical activity.

Skin doses to fingers in contact with syringes
containing radionuclides. (Radiation doses—-maximum
estimates—-when unshielded syringes are used) Figure 5.

TABLE-3
-1 -1
Nuclide Dose {(mrad 100 pCi min )
Te-99m 1-5
In-113 10-15
1-131 14-70
Au-198 8-20

I1I-3) Reduction of Radiation Doses from Internal Sources

Type of sources:

Nearly all nuclear medicine personnel are required at
one time or another to work with radiocactive sources in open
or poorly sealed containers. There is always the possibility
that in these operations some of the radioactive material
will find its way into the body, where it delivers- a
radiation dose as an internal radiation source. The cardinal
rule for keeping radiation doses from internal sources
“ALARA” is to prevent the entry of the radioactive material
into the body in the first place. To a certain extent, this
is a matter of careful design of laboratory facilities, but
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4. Wash basins and sinks should be conveniently available
where unsealed radioactive materials are handled. It is
desirable that sinks in hot labs have foot- or elbow-
operated controls.

5 The laboratory design should permit separate storage
of glassware and work tools (e.€., tongs, stirring
devices, etc.) not used with radioactive materials to

prevent needless contamination or mixture with similar
items used with radiocactive preparations. )

I1-5) Procedure For Handling Spills

Accidental spills of radiocactive materials are
infrequent occurrerices in well-run nuclear medicine
ljaboratories. Also, the quantities of radicactivity used in
nuclear medicine do not create "life threatening” hazards.
Nevertheless, radioactive spills should not be treated as
events completely without hazard, the laboratory personnel
chould be aware of the appropriate procedures to follow when
spilis do occur.

The steps to follow in dealing with a radioactive
spill are (1) to inform, {?)Y to control, and (3) +to
decontaminate.

1. Individuals in the immediate work area should be informed
that a spill has occurred so they can avoid contamination
if possible. Individuals outside the immediate area
should be warned so they do not enter it. The radiation
officer should be informed so that he/she may begin
supervising further action as soon as possible.

Ry whatever means are reasonably possible, without
risking further hazards to themselves, laboratory
rersonnel should attempt to control the spill to
prevent further spread of contamination. & flask that
has been tipped over should be uprighted. Absorbent pads
should be thrown over a liquid spill. Doors should be
closed to prevent the escape of airborne radicactivity
{gases, powders, etc.). The spill area should closed
off to prevent entry, especially by persons who might

[ab]

not be aware of the spill. Personnel monitoring for
contamination should be started as soon as possible, so
that contaminated and uncontaminated persons can be
segregated. To prevent the further spread of

radioactivity, contaminated individuals should be not
allowed to leave the area until they are decontaminated,
and uncontaminated individuals should not be allowed to
enter the spill area. Contamination monitoring should

be done using a sensitive radiation monitoring
instrument appropriate for the type of radiocactivity
involved. It is advisable that each laboratory have on

band a thin-window GM counter survey meter for handling
such situations.

*a



TLD, film badges are the dosimeters for personnel
menitoring. Pocket dosimeters that provide an immediate
readout of radiation doses one especially useful for
megsuring over short periods of time or when a rapid
indication of results is needed.

Well counter (for gamma emitting nuclides) or a liquid
scintilation counter {feor emitters) can be used for wipe

test.

IV. INSTRUMENTATION IN NUCLEAR MEDICINE

IV-1) Counting System

Radiation counting system are used for a variety of
purposes in nuclear medicine. In vitro (in glass) counting
systems are employed to measure radioactivity in tissue,
blood and urine sample for radioimmunoassay. In wvivo (in
living subject) counting systems are employed for measuring
radiocactivity in humun subjects.

At present, the most efficient and econcmical detector
for counting gamma ray emission is NaI(Tl). Most of the
systems are comprised of the detector and high wvoltage
supply, preamplifier, amplifier, one or more single channel
analyzer {(or a multichannel analyzer}, scaler-timer,
ratemeter or other data readout device.

A) NaI(Tl) Well Counter

The detector for a Nal(Tl) well counter is single
crystal of NaI(Tl) with a hole in one end for the insertion
af sample (Figure 6). The 4.5 cm diameter x 5 cm long
crystal with 1.6 cm diam x 3.8 cm deep well is the standard
detector and 1is the most frequently used in nuclear
medicine. Gamma rays absorbed in the crystal cause light
scintilations where in turn; give rise to electrial pulses
at the ancode of the photomultiplier tube. After the further
anplification and shaping, they are directed to puls height
analyzer and finally to readout device. :

In this type of detector, only a small fraction (<5 %)
of the radiations emitted by the sample escapes from the
sensitive volume of the crystal and, therefore geometric
efficiency approaches 95 %. The intrinsic efficiency of the
crystal depends on the size of the crystal- the larger the
crystal the higher the intrinsic efficiency of a given
energy Zamma ray.

The fraction of gamma rays escaping through the hole
at the end of the well deprends on the position of the source
in the well. The fraction is only about 5 percent near the
bottom of the well but increases to 50 percent the top and
iz even larger for sources outside the well Figure 7.
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DOSE CALIBRATORS

A dose calibrator is essentially a well-type
jonization chamber that is used for assaying relatively
large gquantities (i.e., mCi range) of gamma ray emitting
radioactivity (Figure 14). Dose calibrators are used for
measuring or verifying the activity of generator eluates,
patient preparations etc., similar quantities of activity is
+oo large for assay with NaI(Tl) detector systems. Although
the ionization chamber have no inherent ability for energy
discrimination, the different decay properties of
radionuclides are used for the activity measurement of the
different isotopes.

As it is stated earlier, if the radioactivity of the
source doubled, the number of photons emitted will doubled,
causing twice the jonization and twice as much electrical
current to flow in the circuit.

For example, a radioactive source of 1 mCi of I-131
will generate a current of about 10 =x10-12 amp in an
ioniczation chamber. A source of 2 mCi of I-131 will generate
a ourrent of about 20 +%10-12 amp. Thus the total current
cenerated 1is directly proportional to the aquantity of
radioactivity in the chamber. .

Radionuclides differ from one another in their made of
decay. For example, Cr-51 emits 10 gamma ray of 320 keV each
for every 100 radioactive transitions and Tc—-99m emits 88
gamma rays of 140 keV for every 100 transitions. Therefore,
more photons than for 1 mCi of Cr-51. Also photons of 140
keV are more likely to interact with the gas in +the ion-
chamber than are the more energetic 320 keV photons.

As a result of the variation of interaction
prebability versus photon energy and the fact that different
radionuclides emit different numbers of photons per nuclear
transzformation, a millicurie of one radioactive subtance
will not generate the same jonization current as a
millicurie of different radionuclide. Figure 15 is a graph
showing the relative ionization current versus milicuries of
radicactivity for several radicnuclides.

Different resistor values in the system electronic are
-zlibrated at the factory in order to measure the activity
of different isotopes.

Performance of a dose ralibrator depends on a number
of different parameters: the linearity over the activity
range, sensitivity of the chamber to different source
configuration, accuracy of the instrument, and precision of
reproducibility.

4
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Figure-12 Variation of the efficiency of a thyroid probe as a
function of the distance of the thyroid from the probe. The efficienc
drcps by a factor of 9 when the distance is increased from 10 to 30cr
but the uniformity of response within the thyroid (2cm thick) improve
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Figure-13 Compton scattering of gamma rays interferes with the
function of a collimator. Gamma-rays originating outside the field
of view from points a and b are able to reach the detector as a
result of compton scattering at points ¢ and d respectively.






