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PROTEIN CRYSTALLOGRAPHY

Crystals represent atomic or molecular aggregates which repeat themselves
indefinitely in space.

Repetition means an operation by which the system is brought into a state
indistinguishable from the initial state.

A crystal lattice is defined by a combination of three vectors, which must not be
coplanar, multiplied by all of the positive and negative integers.

A lattice has six defining parameters:
three distances a, band ¢
three anglesa,B,and y

The lattice is strictly a geometrical concept, and shouid not be associated with atoms
or molecules. Only in very special cases, such as in the structures of metals, will there
be any direct relationship between the lattice and the atomic arrangement.

In general, there are an infinite number of ways in which the vectors a, b and ccan
be chosen to represent any given lattice: for example -

. DN . .
As a rule, the vectors a, b and ¢, referred to as the unit cell transiations, are chosen so
that they are the shortest three axes not in the same plane.



If it is possible to choose the axes such that one or more of the interaxial angles are
equal to 90° then the choice is made on this basis.

A cell with only one lattice point is called a primitive cell (denoted by P).
In addition to the lattices which have only one lattice point per unit cell, it is

sometimes necessary to establish a lattice which has more than one lattice point per
cell in order to end up with interaxial angles of 90°.
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(Point in center belongs completely to the cell; points at corners are shared
with other cells and only 1/4 of corner points belong to the cell.)

In three dimensions, centering can result from either an extra lattice point in the
very center of the cell (body-centering denoted by the symbol I) or be centered on
the faces of the ceil.

Centering on faces can be of two basic types:

1. Centering on all of the faces (denoted by symbol F);

2. Centering on only the A, B or C faces {(where the A face is a plane
perpendicular to A, etc. If there is no lattice plane perpendicular to a given
axis, then this type of centering is impossible). Face centering of this type is
denoted by A, B or C depending on which face is centered.

e.g.

I Centering




it is useful to have a nomenclature describing all the possible sets of planes within a
lattice which can form crystal faces (and which, as we will see later, can also reflect X-

rays).

The planes are described by a set of three integers h, k |, referred to as the Miller

mdices.

The piane corresponding to set of Miller indices h, k, | divides the a axis into h equai
parts, the b axis into k equal parts, and the ¢ axis into | equal parts. Thus, the plane
intersectsthe aaxisatarh

b axis at b/k
c axis at ¢/l
e.g., take plane forwhich h =2
k=4 I'
| =3 j
written as 2 4 3. ".
(
!
c
b
§5W
i
Plane intersects a=12a 2
b=14b
¢c=13¢

If this procedure is continued to include the other sets of division points, a family of

paratlel planes is obtained.

The perpendicular distance between these crystal planes (denoted ash k 1) is an
important property of the lattice which can be measured by X-ray diffraction

techniques.

In real terms, the planes, like the lattice, have only geometrical meaning.



Most of what we know about protein structure has been learned by X-ray
crystallography. Crystallography can be used to determine the structure of any

material that can be crystallized.

The advantage of a crystal is that it contains many sets of molecules all arranged in
identical orientation. Thus, we are able to get diffraction effects and the diffracted
signals are amplified by the zillions of identical repeating units.

M SummaRy,

The scheme that establishes the repeating units in these crystals is the lattice, which
is a geometrical construction that describes the repeat vectors. There are 14

different types of lattice systems.

i L - .
in two-dimensions, it looks like: 'ﬂ
| I L

Each vector movement 3 or B takes us from a position to an identical position
elsewhere in the repeating array. We can define this lattice by the lengths of a and
b, plus the angle y between these two vectors.

For a three-dimension lattice, we would have an identical vector 7.'. These three
vectors 3, 'B' and 2 define a “box” which is called the unit cell. This unit cell is the
fundamental unit that is repeated throughout the crystal.

b
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This box can also be defined by lengths of -;', b and ¢ and the intervector angles a, B

and vy.



The complete crystal is then made up of the boxes or unit cells repeated continuously
by the three vectors ?, B' and T

No matter where you start in this crystal, whether on the edge of an oxygen atom, or
the center of aromatic ring, an identical position will be reached by any combination

!-,
of 2. B and? movements. . .
tarting point
» & [ ] L ]
pe -

A new position is reached by taking ® and moving it 23 . -t;’

What is found within these unit cells that are repeated continuously through a
protein crystal?

The unit cell can contain a single protein molecule. For example, in crystals of
calmodulin, which is a calcium-binding protein that we are currently investigating,
there is one single molecule in the cell, and the structure would be

al Cal Cal
b

Calesesae—3 Cal Cal
a

However, it is much more common to find an aggregate of protein molecules in the
cell. Each unit cell would have an identical set of molecules, which are then repeated
to define the crystal.

The individual molecules within this aggregate are generally related by symmetry, or
if the protein contains subunits, the individual subunits may be related by symmetry.

For example, a common symmetry element in protein crystals is the rotation axis.
These rotation axes can be 2-fold {very commaon), 3-fold, 4-fold, etc.



Consider 2-fold rotation around the z-axis of the unit ceil:

v

Every point in the unit cell at xy z will give rise to an identical point at -x, -y, Z.

Another common type of symmetry element that relates protein molecules is the
screw axis, which combines rotation with translation.

For example, a z-fold screw axis parallel to the C direction would combine a 180°
rotation around C with a transtation in the Cdirection of 1/2 C.

;.; z + % .
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rtzep step
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N 7.2 4
step 1: X, Y, Z=——dX, Y, Z
step 2: X,y 2 =——bX,y, 24 12C

Most unit cells contain combinations of symmetry elements, so that there are several
different molecules contained in the cell, all of which are related by symmetry

elements.



Only certain combinations of lattice types and symmetry elements are allowed. The
allowed combinations are called space groups and there are a total of 230 different
possible space groups.

The space groups are designated symbolically, like

P2,2124
¢ N NN
primitive lattice 2-fold screw axes paralleltoa, band ¢

Generally, the space group can be readily idenfied by examining the symmetry
present in diffraction patterns from the crystal.

If the space group is known, then it is only necessary to locate one protein molecuie
and the others can be generated via the symmetry elements.

Why do we observe diffraction when a protein crystat is placed in an X-ray beam?

X-rays are photons, and have wave properties. They can interact with electrons; the
electrons then scatter the X-ray photons in atl directions.

Photons interact with each other in a manner that can be explained in terms of their
wave character. Two extreme modes of photon interaction are constructive and
destructive interference.

1. Constructive interference: waves are in phase

\y wavelength A

photon 1

photon 2

A resultant wave has same phase
but sums of individual amplitudes




2. Destructive interference: waves are 180° out of phase

/\/—W\ .

Photon 2

The waves cancel each other and resultant amplitude is zero.

if the waves are partially out of phase, they will result in a wave that has an
amplitude and a phase angle (e.g., relative position of peaks and troughs) that are

intermediate between constructive and destructive interference.
etector

Phase 1

Photon 1

Phase 2

Resultant phase

The actual amplitude of the resultant wave can be measured as the amount of
darkening on a photographic film or the signal in a scintillation counter.

Unfortunately, there is no way at present to measure the relative phase angtles of the
waves - this is known as the phase problem. We will return to it later.

How does the presence of a repeating array, such as a lattice, affect the interactions
between X-ray photons? First consider a one-dimensional lattice:



Incident
wave front

Complete reinforcement will occur when the distance traveled by Wave 1 differs by
an integral number of wavelengths from the distance traveled by Wave 2.

re.,
S+t=ha h = integer

Sin (il -90° = S/a
-Cos ¥ =S/a

S=-Cos ju «a

Cosv =t/a
t=Cos Vv .a

S+t=-Cosp -a+Cosv »a=hAx

Cosv -Cos ¥ = hxr/a



When this geometrical relationship is satisfied the photons coming off of alf
adjacent points will be in phase and a signai will be observed on the film. If the
adjacent photons are even slightly out of phase, then they will eventuaily cancel
each other out over the trillions of repeats that are found in a crystal. Thus, there
will be a sharp “peak” abserved when their geometry is followed.

If we have a 3-D lattice, the other lattice translations b and c will generate
corresponding equations.

The complete set will then be
Cos va - Cosja = hr/a
Cos vb - Cosub = ka/b
Cos v¢ - Cosﬁc ={x/c
These are known as Laue’s equation.

When all three equations are satisfied, only a vector spot will appear on the film.

The integers h, k, | are known as Mitler indices and each individual spot can be
assigned to a set of these indices.

oin &= ¢ / 4 t= 3in & « d
for reinforcemsnt it = n )

or f[nas 24 -mﬂ
So all of the photon sets that come off of the unit cells are in phase with each other -
1.e., unit cell 1is in phase with unit cell 2, etc. And the directionsin which diffraction
can occur will be determined by the lattice repeats.

What happens within the unit cells?
If we have a cell full of atoms, we have a large number of electrons, all of which will

scatter the X-rays. There will be a variety of orientations, depending on the actual
molecular structure, and orientation of the molecules within the cell.

10



We will get interference between the photons coming off of the individual atoms,
and the extent of interference wili contain information about the atomic

arrangements.

direction of diffraction
determined by h, k, | and
lattice

photons from A and B
(&) interfere with each other

(&)

This same event happens within each cell in exactly the same way.

As a result, the intensities of the different diffracted beams will be different and witl
contain detailed information about the arrangement of atoms.

This information is all contained in the structure factor

IFh«il =,[Ihk|'

# atoms  _scattering power of each atom
incell /\& # of electrons

IFhkilz=( g ] Cos2n (hx,+hy,+|z,)).
i=1

# atoms
incell 2

+ (L fjsin2s (hx;+hy;+12)))®
i=1

Although we generally have many more structure factors than parameters, we are
not able to solve these non-linear equations directly.

11



A more direct representation of the relationship between the structure factors and
the molecular arrangement is the electron density map. Thisis a map that shows the
distribution of electrons in the unit cell. At atomic positions, the electron density is
very high, so such a map can be used to construct a model of the protein structure, if
the necessary information is available.

P(X)Y,Z) = L |Fhk||CosEn(1x+ky+iz)—ahk|]
all hk,l
vaiues

This gives the value of the electron density at the point xy z in the unitcell. If we
divide the cell into a fine grid of x y z values, and calculate the electron density at
each of these grid points, we would then have a “map*“ of the structure.

How do we get P(xyy492)?
We can measure | Fh k11 sinceitis the value of‘l Ihkl'
Unfortunately, we cannot measure a h k |, the phase angle for the h k| reflection.

There are various special methods for obtaining a h k|, but the one that is
commonly used for proteins is the isomorphous replacement method.

By this technique, one complexes metals or other heavy-atom multi-electron
complexes to the protein. By measuring the change in | Fhk!|when the metal is
bound, it is possible to establish where in the unit cell the metal is going and to use
this information to establish the a h k| values. The heavy atoms are generally
diffused into the protein crystals, through large aqueous channels that permeate
these crystals.

12



Normally, there isn't much that can be done with the native data alone. However,

there are several exceptions:

1.

If the malecule possesses non-crystallographic symmetry, Patterson search
methods can be done to locate the symmetry elements; e.g., if the molecule is
a subunit enzyme which possesses a rotation axis, the axis may or may not
correspond to a crystallographic symmetry element. If not, the Patterson may
be searched using a rotation function to determine the orientation of the

non-crystallographic element. Then a translation function can be used to
determine where in the cell the symmetry element is placed.

. Molecular replacement. If one has a new crystal form of a molecule where the

structure has already been determined, it is possible to search the Patterson
for the orientation and position of the molecule. Given this, and assuming
that the molecular structure is approximately the same in the 2 crystal
environments, one can then take the new coordinates, calculate phase angles
and use difference Fourier maps to refine the structure.

However, usually it will be necessary to prepare heavy-atom derivatives of the
protein in order to determine its structure. We will study this in great detail, but
for right now, we will examine the principal steps:

1.

One or two crystals are transferred to 1ml of a solution in which they are not
soluble. Usually, this is a solution of normal mother liquor, with a slightly
elevated concentration of precipitating agent, e.g., if it crystallizes from 60%
A S, then the solution might be 65% AS.

A stock solution of the heavy-atom compound, in the mother liquor, is
prepared, e.g., 1ml of .1M of the heavy atom.

3. The heavy-atom solution is added to the crystal-containing solution (usually

gradually), until the desired concentration of heavy-atom is attained. Usually,
0.001M is a good starting point in a search.

If the crystal cracks, then lower concentrations would be tested. If the heavy-

atom doesn’t appear to bind (as evidenced by diffraction pattern), then
higher concentrations can be tried. Usually, 0.01M is the upper limit.

13



The idea is to find the concentration where the strong, specific sites will be
occupied, but where the multiple non-specific weak sites will be empty.

4. Soak time is often an important variable. The crystals should be observed
frequently to see if cracking or glazing is appearing. Usually, a photo will be
tried after 24 hours. Longer soak time may be required.

5. After soaking, the crystal is mounted as usual and a precession photo is taken.

Normally, one photo is sufficient, and one tries to select a centric zone if
possible.

If changes are observed in the intensities (or seen visuaily), then the derivative is
possible. Then it would be a matter of finding the concentration and time limits
for producing consistent changes in the pattern.

if no changes are observed, then the soak concentration might be increased and
the soak time lengthened.

Once the conditions are established, and the changes are convincing, data are
collected.

it is important to follow exactly the same data collection procedure as used for
native (e.g., reflections measured in same order, same standards used, crystal

mounted in same orientation, etc.)

The native set and the derivative set are then placed on a common scale.

Now we are ready to locate the heavy atoms and begin the phasing procedure.
Before going into the next stages, we need to digress somewhat and look at the
reiationship between the structure factors and phases in a slightly different way.

14



Nomenclature:
(a) Fp = structure factor for protein. Unless written as the absolute value, we are
talking about a vector of magnitude | Fp | and phase angle a.
Fp = Fp (hkl} - I'll leave off h k |.
(b) FpH = structure factor for the heavy-atom derivative of the protein.
(c) FH structure factor contribution of the heavy-atoms alone.
(d)aora(hkl) = the phase angle for the h k | reflection.
The structure factor (any of the above) can best be represented as a complex
number:
FihkD) =lF(hkhlexpliathk]
where i =4 -1

In the future, | will write thissimplyas F = | Fl exp. (i«) = | Fl eia

A complex number of this type can in turn be represented as a vector in the complex
plane or Argand diagram: 11\

\
,+

where the phase angle a can range from 0 to 27 (0 to 360°).

If one knew the magnitude, but not the phase angle, then one would only know the
length of the vector in the complex plane, but not its phase angle a.

15



vector is somewhere on thes circle

> +

Another way of representing exp (i a) is

eia = Cosa + iSina
A +i B

This is equivalent to the following for a structure factor:
i

B = |F| Sin a

a is the angle that vector makes
with real axis (horizontal axis)

A final structure factor is composed of the vector sum from all the component parts

(atoms or groups of atoms)
-

e .
F = Lfj where fj is a vector
i

Lfjexp(idj)
i
where the @'s are the phase angles for each of the individual components.

If we have a series of atoms, then the phase angle component for reflection hk | is
given by
Bi=2nlhxj+kyj+lzj)
and F =F(hkl)=ZIfjexp2ni (hxj+kyj+l1zj)
i

16



So that if we had three atoms, the vector sum would look like so-

F can also be broken down into individual real and imaginary components:
A

F = Zfj Cos2m (hxj+kyj+1zj)
+i§fj Sin2n (hxj + kyj +1zj)

Z;\ 9"=|}#-oﬁab-m.

F+A +iB

Again, this can be appreciated in vector notation:

i
T if3sin g
" £3 cos ¢3
£2/
wE281n ¢2 :
v ?.,B=flsin¢1+ £2 sin ¢2 + £3 sin ¢3
$2
£2 cos $2
£l
El sin ¢l
$1 : :
fl cos ¢1 —*
/... YRR

A=fl cos 1 + £2 cos 92 + £3 cos ¢3

17



Usually, all of the individual components that go to make Fp and Fpk are assumed to
be contained in a single vector

Fu= L fu expui (hxn + kyn + kzn) S%wmmﬁ\nw\}
heavy atoms GRow iKa,

and the relationship would be expressed as

-y
F?z:?zi-FH

In fact, usu:ally FH is very small relative to Fp and FpH and apaf apH

The origin of the complex plane has no meaning (a is really the angle that the vector
makes with respect to the real axis); the above situation can also be depicted as
follows:

ap

FH /(PH

If we knew the phase angle a for the vector Fp, then we could calculate an electron

density map using the equation
a'(xyz) =\£z L |Fp|ei~:ll exp (-2mi(hx + ky +12))
h k |

which can be reduced to

Pixyz) =tz |Fp|Co£11 (hx + ky + Iz)-aJ

all
reflections

HERE Ve T> T VOLUME o THE vart cew
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In order to determine the phase angle a we first have to locate the heavy atoms in
one or more derivatives, so that we can calculate the vector FH {both the magnitude
and the phase angle for FR). How do we locate the heavy atoms?

Obviously, we could find the heavy atoms by classical methods (Patterson, direct
methods, etc.), if we knew the modulus of FH}| FH I, since the FH's represent the

Fourier transform of the heavy-atom electron density.

Obviously, FH is composed of individual contributions from all of the heavy atoms in
a given derivative, i.e.,

£3

£2

Fy
£l

aH

If we knew the position of the heavy atoms in the cell, we could simply calculate the
modulus and phase angle for FH via

# of
heavy atoms

FH{hkl) = £ fi Cos2n (hx',,+ ky}+ lzj)
j=1

+iLfiSin2n(hxj +kyj+1zj)
FH=A +i8B
FHZ = A2 + B2

Frml =‘,A2 + B2'

tanaH = B/A

19



Patterson Techniques

If one carries out a Fourier summation using the absolute values of the measured
intensities in place of the structure factors, the result is called a Patterson synthesis.
The value of the Patterson function at a position u, v, w of the unit cell is then given
by

Pluv,w) =kz £ £ IfFhkil2 Cos2n(hu + kv + Iw)
eh k I

MNoTEL A v e s wan\mlﬂr‘*l“""

If P(u, v, w)is calculated for a number of points in thé"unit cell, the resultis a map
which contains information about the possible vectors between atoms in the unit
cell.

A large value for P will result when

u = Xj-Xi
\"} =Yj-Yi
w =2j-2i

where j and i correspond to any two atoms.

P will have a large value wherever these conditions are satisfied. Therefore, if there
are n atoms in the unit cell, there will be n2 positions at which P will have large
values.
e, j=1n
i =1,n
number of possible values for Xj-Xj = n2

The actual magnitude of P will be proportional to the product of the atomic
numbers {(i.e., number of electrons) of the atoms involved in the vectors. Thus, P
vectors between “heavy atoms” will be especially pronounced in a Patterson map
and may be easily distinguished from the lighter peaks.

As an example of the relationship between a Patterson map, take a simple atomic
arrangement and the corresponding Patterson:

T ATomrc
(oSIITIONS

-
—
(XY ]
we

X ——>
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The Patterson of this system would consist of nine peaks, three of which (vectors

between an atom and itself) would be superimposed at the origin:

u (v)

)
e 23 133

ST ® R "

.
™ Smip?

For a simple structure, it is sometimes possible to work back from the Patterson map
to the original structure.

A more usual application is the use of a Patterson to determine information about
the position of a heavy atom in the structure; e.g., if atoms 1 and 3 were heavy
vectors between these atoms would be especially pronounced and information
about the relative positions of the heavy atoms in the cell could be easily obtained.

21



The x, y, z coordinates of the heavy atoms are determined using Patterson maps.

if we simply calculated a Patterson map using | Fon 12 as coefficients, the heavy
atom vectors would be swamped by the vectors from the many protein atoms.

Consequently, we calculate “difference Patterson” maps in which the coefficients
are | FpH - Fp 2.

The resulting coefficient is mainly influenced by the FH component, since we have
separated out the Fp term.

What we are actually doing is assuming that
ben =2 I Fpu-Fp

which is crude, but it usually works! .
THe (ATTERSors MmAP SO FoR LoCaTIirc Keavy ATomS L5

'P(.U,V,W)‘-'Ji ;L,‘lc:- | Fpu- Fpl* Cor 27 CAuphv Qw)

Calculating an electron density map for determining the protein structure:

Once we know the x, y, z coordinates of the heavy-atom sites in a derivative, we can
begin to calculate the possible phase angles for the protein structure factors.

Given the heavy-atom coordinaﬁs from a difference Fourier map, we can actually
calculate the magnitude of the FH vector in an Argand diagram:

# of heavy
atoms

Irn(hk)l2 = [ £ fj Cos2m (hxj + kyj+12zj)]2
i=1

# of heavy
atoms

+ [Zfjsin2n (hxj+kyj+1zj)]2
j=1

IFH({hkI)! =JIFH(th)I2'

22



and oH = tan1(1~)

where B=ZfjSin2n (hxj+kyj+1zj)
A =FfCos2n (hxj+kyj+12zj)

then we know

Fy

Y, |
+
real axis

We also know the length of the F_gvector and the length of the F[;T-I vector, since
Iepth. k.l = (Ip (h, k, 1))172

where Ip (h, k, 1) is the measured diffraction intensity for the “, | reflection (after
corrections are applied and the Ip value is properly scaled).

Similarly, we know the magnitude of the FBT-I vector from the experimentai
measurement of the intensity of the h k| reflection from the heavy-atom
derivatives.

So, we begin the phase determination knowing
IFH
aH
1Fpl
 FpH i

23



To determine the phases that are consistent with these four parameters:

- :
1. Place the FHin the Argand diagram:
i

L.y
Jussidae Iy

. -
locus for Fp

real

I 4
locus tor Fpy

2. Draw acircle of radius | For | around the origi the Argand diagram.
(L AQourd THE ofIoelNr ofF TiHeE Fy YscTor.

. o
3. Draw a circle of radius | Fp | around the end of the FH vector.

4. The Fp and FpH circles will intersect at two points. Vectors from the center of
the | Fp | circle (i.e., the head of the FZvector), to the two points of
intersection of the Fp and FpH circles define two a p values that are consistent
with the IFHI, a"_O, IFpl, and IFpH | values.

To tell which one of these is actually correct, we would prepare a second heavy-atom
derivative, and repeat the process. The second derivative would then give new
values for | FHl, aH,and | Fpu |

The diagram for the second derivative would also give two possible phase solutions

for a p; only one of these would agree with one of the possible solutions based on
the first derivative - this would be the correct value forap !

24



Once a p is determined for all reflections (all h k | values), it is then possible to
calculate an electron density map that can be used to determine the structure of the
proten. Thisis accomplished by computing the Fourier summation:

Plxyz) =}

£ 2z IFhkilcosi2n(hx+ky +12)-a(hkl)]
Ve h k|

where
P (x.y, z) is the electron density at position x, y, z in the unit cell

Vcis the vofum'é of the crystallographic unit cell.
IFhkilisthe magnitude of F?:n for the h, k, | reflection
a(hkl}isthe a p value for the h k | reflection

and the summation includes the entire set of h k | reflections.
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