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1. Introduction

The prediction of the three-dimensional structure of a protein from
its amino acid sequence and ambient thermodynamic conditions is an
unsolved problem in several fields of science. A robust predictive method
would aid medical science 1) by providing deeper insights into the
structure/function relationship in biomolecular activity and 2) by
establishing rules for the design of target-specific drugs. In physics, the
protein folding problem presents a paradox for modern theories in
statistical mechanics. Unlike other heterogeneous "disordered” systems
such as glasses, proteins are found in a unique structure. The
thermodynamic stability of these "native" conformations has been studied
from many experimental and theoretical perspectives, but only a few
efforts to understand the long-time kinetics of folding have been
undertaken.

The protein folding problem originated from a set of experiments
by Anfinsen, et al, that demonstrated the reversible denaturation of
ribonuclease in vitro. Anfinsen’s protocol involved chemically trapping
ribonuclease with improper disulfide bonds, then oxidizing the improper
bonds to allow folding to occur. The experiments set the foundation for
the thermodynamic hypothesis of protein folding: the native conformation
is the one in which the Gibbs free energy of the whole system is lowest
(Anfinsen, 1973).

A paradoxical argument arose later in which Levinthal presented
folding as a deviously simple counting probiem (Levinthal, 1968).
Assuming that each of the N residues in a protein has two local

conformations, a protein has 2" possible states. Assuming that a protein
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could search 10" such states per second (a generous figure) then a 100-

mer would require 10" seconds to fold if each conformation is searched
with equal probability. Since protein folding takes place on a 1 second
time scale, it must be assumed that no more than 10"*® of all states are
visited by the collapsing polymer. Based on this, some have suggested
that proteins must follow a well-defined (if unknown) sequence of events
during folding, in apparent contradiction to the thermodynamic
hypothesis (Kim & Baldwin, 1983).

The conflicting results of Anfinsen and Levinthal have catalyzed
interest in the protein folding as a problem in the basic physics of
diffusive molecular self organization. The simplicity of protein folding

- "theorem" (if sequence then structure) entices one to believe that a "proof”
should follow from a purely theoretical approach once all relevant
quantities have been define. Folding information must be contained in the
sequence and in environmental parameters. It need not be assumed that
most amino acid sequences meet the necessary thermodynamic and
kinetic criteria; for most sequences, then, there is no paradox because
there is no observed folded structure, and Levinthal's argument is
justified. However, biological proteins beat the paradox. A resolution of
this paradox must address the kinetics of folding.

It should be mentioned that the standard "theoretical” approach to
protein structure and function is molecular dynamics. Based on heavily
parameterized potentials stemming from a wide variety of quantum
chemical calculations and spectroscopic and thermodynamic data,
molecular dynamics has given insights into the temporal evolution of

proteins on a nanosecond time scale and shorter. However, in dignifying

every conceivable degree of freedom, the Newtonian N-body approach has
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rendered itself unfeasible for studies of large proteins or long times.
Specifically, since the folding of small globular proteins occurs in about
one second, the nanosecond domain of molecular dynamics is not useful
for protein folding theory.

The protein folding problem is sufficiently complex that it has
spawned two major classes of simplifying formulations: analytical and
lattice treatments. Analytical efforts based on mean field theory and spin
glasses and have predicted the character of the denaturation transition
(Tkegami, 1977; Dill, 1985; Shakhnovich & Finkelstein, 1989,
Shakhnovich & Gutin, 1989), nucleation and the existence of multidomain
proteins (Dill, 1985; Bryngelson & Wolynes, 1990), a frozen misfolded
state (Bryngelson & Wolynes, 1987), and mean first passage times for
protein folding (Bryngelson & Wolynes, 1989). Lattice theories, on the
other hand, have preserved specific sequence information which is
"averaged over” in statistical theories. These models have investigated
sequence-energy-structure relations through exact enumerations of
compact structures (Chan & Dill, 1989; Chan & Dill, 1990; Chan & Dill,
1991; Shakhnovich & Gutin, 1990; Covell & Jernigan, 1990; Crippen,
1991) and have characterized folding pathways through lattice kinetics
simulations of noncompact chains (Skolnick & Kolinski, 1989; Skolnick
& Kolinski, 1990; Sikorski & Skolnick, 1989; Miller, et al, 1992). The
complementary features of analytical and lattice approaches invite
attempts to unify the kinetic results of the former with sequence- and
structure-specific aspects of the latter.

Analytical protein theory has concentrated on thermodynamic
quantities such as temperature of denaturation and heat capacity changes

associated with the denaturation transition. The phase transition models
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did not address questions of kinetics, which we know must be an
important feature in folding. With the recent introduction of stochastic
methods (Bryngelson & Wolynes, 1989), kinetic arguments could be made.

The treatment of proteins as spin glasses was first suggested by
Stein in a simple model of side chain antiferromagnetic interactions in
the compact state (Stein, 1985). Stein’s model invoked the fully-frustrated
state of antiferromagnetic systems to describe packing and local
rearrangement of side chains. Bryngelson & Wolynes (1987) later used
the random energy model with superimposed ferromagnetic ordering in
proposing the principle of minimal frustration. "Frustration,” a spin glass
term, gives rise to many equivalent minima, but Bryngelson & Wolynes
.supposed that the uniqueness condition of folding could be obtained if an
artificial term would be applied in the Hamiltonian. The result was a
phase plot predicting three thermodynamic states of proteins: folded,
unfolded, and frozen misfolded. The frozen misfolded phase corresponded
to the frustrated limit in which the superimposed ferromagnetic order
vanished. In a later effort (Bryngelson & Wolynes, 1989), they formulated
a one-dimensional Fokker-Planck equation related to a master equation
with Monte Carlo rates, calculated the mean folding time, and showed
that in the "frustrated" limit the mean folding time diverged. The
divergence of the mean equilibration time with the emergence of
frustration, the hallmark of spin glasses, may lead some to think that
proteins are not spin glasses. Indeed, this is certainly true, but spin glass
theories provide a rigorous framework for quantifying frustration --
minimal or not -- where more traditional polymer statistical mechanics
has been silent.

In the same vein, Shakhnovich and Gutin analyzed the random
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energy model in the absence of a ferromagnetic term and predicted that

ten percent of gll proteins with a Gaussian-distributed set of random
chain-chain contact energies have unique

conformations (Shakhnovich & Gutin, 1990).

The two main limitations of the mean field work are the absence
of conformational correlation intrinsic to rea} polymers and the inability
to make sequence specific calculations, Not coincidentally, these are the
two strongest points of the lattice methods described below.

Trading the atomic resolution of molecular dynamics for longer
time simulations, lattice models have proved useful in addressing protein

i and polymer collapse and kinetic reconfiguration. Two lattice methods

have been developed to address the problem: 1) kinetic simulation and 2)
exact enumeration of conformations,

thermodynamically-stable

Early lattice simulations by G& demonstrated that the 129-residue
enzyme lysozyme can fold from a random coil if native nonbonded
contacts are selectively stabilized and all other contacts are not (Ueda et

al, 1978). More recently Skolnick & Kolinski have shown that a kinetics

simulation using a full 20-letter hydropathic coding with no native

tertiary preferences but with modest natjve secondary preferences can
obtain the low resolution structure of the 99-residue protein plastocyanin
(Skolnick & Kolinski, 1990). In each case, information about the native
structure was written into the energy function, but the fact that folding
occurred at all is notable in light of Levinthal's famous argument.

The approaches of G0, et al, and Skolnick, et al, used knowledge of
the native structure in designing their respective parameter sets, Without
this knowledge, but on g much simpler problem, Shakhnovich, ez al,
carried out lattice kinetics simulations for the 27-mer parameterized by
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random interactions (Shakhnovich, et al, 1991). From an exhaustive

search of compact conformation space, the minimum energy conformation
was known to be a 3x3x3 cube. Shakhnovich, et al, have seen that only
ten percent of proteins with thermodynamically-stable, randomly-
parameterized chains were observed to fold in a kinetics simulation.
Coupled with the earlier result that ten percent of all randomly-
parameterized proteins have a thermodynamically-stable conformation,
it can be surmised that roughly one percent of all randomly
parameterized proteins will have a unique, stable, accessible "native”

conformation.

A second lattice method involves exact enumeration of lattice
i . structures. Recently, Chan and Dill (1991) have argued using exact

enumeration that secondary structure can arise as & result of the

compactness phenomenon in proteins. Covell and Jernigan (1990) have

applied enumeration in a restricted space in searching for alternative
folds of known small globular proteins.

In this thesis, I show that the analytical methods of spin glasses
and stochastic processes and the exact enumeration techniques of lattice
theories can work hand-in-hand to solve the problem of protein folding
kinetics -- in the absence of explicit kinetic simulation trajectories. Lattice
kinetics trajectories, like molecular dynamics trajectories, are simulated
solutions of temporal equations of motion. For molecular dynamics, the
equations of motion are exact. For lattice simulations, the equations of
| motion are stochastic. Written explicitly, the lattice kinetics equations

form a very high-dimensional master equation. This work seeks to

formulate the protein folding problem in terms of & master equation for

diffusion in a well-characterized, high-dimensional, rough-well potential.
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Since the protein is described on a lattice, sequence specificity and
excluded-volume are preserved. Since the kinetics are solved in terms of
a detailed master equation for a wide variety of conformational
interconversions in compactness space, the multiple time scale features
of analytical treatments are also maintained.

* * * % *

Since the statement of Levinthal’s celebrated paradox, several
groups have attempted to salvage the concept of the global minimum by
arguing that the requirement of compactness (Dill, 1985) and native state
biasing (Zwanzig, et al, 1991) reduce the size of conformation space. Nei-
ther requirement is fully satisfying, since compactness alone does not
solve the paradox and native state biasing cannot model the multiple
minimum problem. One must conclude that a resolution of the Levinthal
paradox is possible using a kinetic rather than a thermodynamic
approach to the folding problem. Folded proteins are not (necessarily)
equilibrium entities; rather, they are metastable with lifetimes longer
than (or perhaps about equal to) their functionally-significant lifetimes.
To overcome the Levinthal problem, proteins must have a broad
conformational focussing property to direct folding to a unique, locally-
stable, kinetically-accessible conformation.

In this thesis, I introduce the concept of protein folding funnels, a
kinetic mechanism for understanding the self-organizing principle of the
sequence-structure relationship. The concept of a folding funnel follows
from a few general considerations (Figure 1). First, proteins fold from a
random state by collapsing and reconfiguring; second, reconfiguration
occurs diffusively and follows a general drift from higher energy

conformations to lower energy conformations; and third, reconfiguration

T oW W

o W WET Y

W EEEY Y TY W

T



8
lc
y @ , 103,346

maximally
Random coﬂ"1 dom | compact

conformers
dense state

F M\ @ @
f w l——i\(\
1Foldin @, @ i @
Funnel| !\

i Reconfigurational metric
q@ (distance betw. conformers)
l

merelgl P8

Mean first passage time of

Native diffusional interconversion
Conformation

A schematic representation of the folding process. The
denatured coil (A) collapses to a random dense structure (B),
which is approximated by a set of maximally-compact
conformers (C). A reconfiguration distance (D) is defined
betweeen compact states and is used to sort pairs of cubes for
calculation of the MFPT for interconversion (E). The kinetic
structure of conformation space (F) shows a folding funnel
leading to a unique, locally-stable, kinetically- accessible state.

Figure 1. Schematic of protein folding.
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occurs between conformations that are geometrically similar, i.e., global
interconversions are energetically prohibitive after collapse, so local
interconversions alone should be dominant. I define the folding funnel as
a collection of geometrically-similar collapsed structures, one of which is
thermodynamically-stable with respect to the rest, though not necessarily
with respect to the whole conformation space. Amino acid sequences
having only one sizeable folding funnel leading to a unique, stable
conformation are said to be foldable. Conversely, nonfoldable amino acid
sequences may have multiple folding funnels leading to equally stable
and accessible conformations.

Three major simplifications are made in order to describe the long-
time f:inetic behavior of a protein. First, a lattice model is used in order
to restrict discussion to the most important degrees of conformational
freedom (Figure 2). Second, consistent with the low resolution structural
description, the chemical identity of the protein is depicted in a simplified
M-letter hydropathic code, where some number M of amino acid types is
chosen to enable any degree of heterogeneity for residue-residue
interactions. Each residue is located at the vertices of the chain and may
be considered to represent clusters of real amino acids (Figure 3). Finally,
the dynamics of the folding process can be simplified as a collection of
discrete "hopping" processes between local minima. Since conformational
dynamics is governed by the same residue-residue interactions that drive
the initial conformational collapse, it is possible to divide motion into two
types: relatively fast, sterically-constrained chain motions that do not
involve the breaking of many chain-chain contacts, and slow activated
motion across energy barriers associated with larger structural

fluctuations. The time scale separation proposed for the interconversion
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C-terminus N-terminus

@ hydrophobic () hydrophilic

& acid ¢) base

The 27-unit heteropolymer is made up of a sequence of
amino acid types. Here a four-letter code is used to ascribe
chemical identity to each monomer. The conformation
exhibits subdomains in the front-upper-right and
rear-lower-left octants. Each subdomain can fold
separately from the rest of the protein.

Figure 2. A maximally-compact 27-mer "cube”.

il o A P LAy e e




11

A depiction of the supposed backbone of a protein whose cubic
conformation is given in Figure 2. The cubic model is valuable only
as a very low resolution approach to the structure. "Helices" are

straight lines of length two; “sheets" are consecutive unit-long
segments that reverse the trajectory of the backbone.

Figure 3. A schematic showing how a real protein backbone could be
mapped into a cube.
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process can be used to divide the set of all collapsed conformations into
"compactness cells". Within a compactness cell, conformations
interconvert quickly; between compactness cells, conformations
interconvert slowly. The rates for slow interconversion can be found by
calculating the average time the protein spends in any cell before a
thermal fluctuation moves the chain over a conformational barrier into
another cell.

The division of conformation space into compactness cells is valid
for any model for protein structure, whether on- or off-lattice. A difficulty
arises when attempting to define compactness cells for specific sequences.
To show how such difficulties can be managed through an approximation
technique, I will focus on a simple lattice model. But first we must
investigate basic facts of lattice models.

Levinthal’s argument shows the simple power of counting methods,
which are ubiquitous in polymer theory. In fact, a list of counting
techniques provides an excellent organizing tool for understanding the
methods and approximations of polymer theory. In the interests of
introducing the field and putting this work in context, I will review the
various perspectives on enumeration in chapter 2. The important result
is that conformational enumeration is possible when constraints are
imposed. Also in the second chapter, basic results of lattice polymer
representations are reviewed and several useful conformational metrics
are defined. Compactness cells are introduced in order to divide compact
conformation space into identifiable subsets. In the third chapter, chain
energetics and mode of sequence representation are introduced. The
concept of compactness cells is extended to provide a low resolution view

of the energy landscape of compactness space. In the fourth chapter, the
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kinetics of interconversion between compactness cells is defined in terms
of a ri:5ter ey .ation. L mean first passage time for diffusion between
compactness cells is calculated and related to long time scale diffusional
rates. In the fifth chapter, the results of the kinetic calculations are
compared to lattice simulations. In the sixth chapter, several unanswered
questions on the protein folding problem are reviewed, including the
inverse folding problem, the M-letter hydropathic representation, and
parametric robustness. In the last chapter, the contributions of this thesis
are evaluated.




II. Proteins on Lattices: Geometrical Considerations

In this chapter, counting problems are examined on a more detailed
level and the concept of compactness cells and the reconfiguration metric
are proposed. Both will be employed later in the search for foldable
protein sequences.

A. Counting Problems. There are two main types of counting:
sequence and conformation. Sequence counting can be done exactly.
Sequences of N-mer proteins represented by an M-letter hydropathic code
have exactly M" manifestations. On the other hand, conformation
counting is usually approximated. Motivated by the discrete nature of the
Qihedral space of real proteins, the conformational counting problem is
marked by v local structural states corresponding to secondary structural
features like a-helices, 8-sheets and turns. State or conformation counting
draws its intellectual origins from efforts to evaluate partition functions
where each monomer has v possible states (2<v<10) (Poland & Scheraga,
1970).

State counting can be divided into two categories: noninteracting
and interacting. In the first case, there is no monomer-monomer repulsion
or attraction, and the counting problem is identical to sequence counting,
viz, for an N-mer with v states per monomer, there are V¥ possible
conformations. While this model permits nonphysical conformations in
which monomers “overlap" in space, it is analytically tractable. In the
second case, an explicit monomer-monomer potential affects the number
of allowed conformations. The simplest interacting polymer model is the
hard-sphere excluded-volume model. Flory showed that there is a special
case of the interacting model (the "theta" state) that reproduces the basic

14
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results of the noninteracting model. It should be emphasized that

covalent connectivity between monomer i and i+1 is assumed in both
cases,

Spacial dimensionality of the Protein plays an important role in
formulating the counting problem. The one-dimensional cage may seem
pathological because it does not permit the motion of any monomer of the
protein. However, it is of interest because it incorporates helix-coil
transition theory. When interactions are only permitted between
monomers i and i+I and v=2, the simple Ising model results. For the
same case with v=8, Zimm-Bragg theory is recovered (Zimm & Bragg,
1959). In all Ising-like problems, exact solutions can be obtained.

In two and three dimensions, the general counting problem of the
interacting polymer cannot be solved analytically. Lattice models are

often used to discretize conformation space, where the dihedral_

discretization index v is interpreted as the coordination number of the
lattice. Numerical approaches can give exact results for short chains, and
several kinds of constraints must be imposed to make enumeration of
longer chains feasible. A useful restriction for the protein folding problem
is the volume constraint in which the self-avoiding walk must remain
within specific volume. For longer chains, functional integration can algo
be used to evaluate numbers of conformations with a one or two
constrained chain-chain (Chan & Dill, 1990a).

For higher-dimensional models, the excluded-volume interaction
vanishes, Unfortunately, there is no physical meaning to these models.

In keeping with the spirit of this discussion, it is interesting to note

that "zero-dimensional protein” can be associated with a mean-field

, formulation. The meaning of the "zero dimensions" refers to the averaging
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of primary structure information. Contrary to this name, however, mean
field theories can be calculated in any dimension, with or without the
excluded-volume interaction.

The conformational "trajectory” of a lattice model of a protein is
described as a nearest-neighbor walk on a cubic lattice. In the
noninteracting case, a simple estimate of the number of conformations of
a polymer of length N on a lattice with v nearest-neighbors is Q@ = vV,
since there are N-1 subsequent steps after the first monomer has been
laid down. For a cube v=6, so a 10-mer has 6° ~ 107 conformations. The
superscript ” indicates that the value of Q is calculated without
éonsideﬁng excluded volume, i.e., two monomers may inhabit the same
lattice site. A first correction posits that a more realistic lattice walk may
not reverse itself, so each succeeding monomer has v-1 possible positions
and QY = (v-1)¥!, For the 10-mer, QP=5°2 x 105, five times smaller than
the non-interacting case. This value still represents an overestimate of
the number of conformations because the long-range excluded-volume
interaction is ignored; sites i and i+ will not overlap, but sites i and j
(i<j-I) may coincide. One may imagine that inclusion of higher order
corrections may further reduce the effective coordination number. Sykes
has shown that the asymptotic expression of Q for large N is
Q% NUN-1), where the base p=v-1-§ is the effective coordination
number of the lattice. The constant pn is the value to which the base
converges after excluding all higher order excluded value interactions and
in the limit as N approaches infinity. The dimensionality constant y is
valid for all lattices of a given dimension, independent of coordination
number. For the 10-mer example given, Q®**~1.56 x 10°. The exact
solution for the 10-mer on the cubic lattice is 1,853,866.
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Biologically-important single domain proteins have between 50 and
200 monomers. If these proteins are described using a three dimensional
cubic lattice, the Sykes asymptotic formula gives Q®**\(50)~10% and
Q**X(200)~10'*. Even if lower coordination number lattices are used, the
number of conformations is of astronomical proportion: 2%°=10" and
2"°=10%, motivating Levinthal to pose the famous paradox already
described in chapter 1.

However, all folded proteins inhabit a relatively small part of
conformation space corresponding to dense, compact lattice walks. The
packing density of protein crystals is between 68% - 82%, about the same
as th;a packing density of hard spheres (75%), indicating that compactness
is at the limit of the CPK values of atomic/molecular radii. Crystals of
small molecules have values between 70% and 80%. Thus it is an
experimental fact that folded proteins are dense (Schulz & Schirmer,
1979),

This fact can be used to great advantage in the counting approach
to folding. Constraining a self-avoiding walk to lie within a volume
greatly reduces the number of conformations. Not surprisingly,
constraints also increase the degree to which the long range excluded-
volume interaction affects the properties of allowed conformations.
Results from compact enumerations give the Sykes-like formulae Q(me<t
~ 1.8"1, Flory (Flory, 1949) and Sanchez (Sanchez, 1978) have provided
estimations of countings based on a mean field approach. Translated into

the language of lattices, the excluded-volume-constrained counting gives
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where R represents the Euclidean distance from the N-terminus to the C-
terminus and v is the coordination number of the lattice. For maximally-
compact conformations R=N"",

These estimates can be checked using explicit numerical
enumerations of constrained lattice walks. For a cubic lattice, there are
48 ways of rotating and reflecting a given conformation so as to maintain
the same nonbonded contacts but to generate 48 different sets of
coordinates for the same geometrical structure. While it is natural for an
enumeration to remove this degeneracy, the mean field estimations must
be divided by 48 in order to make an accurate comparison.

The success of the mean field counting model is evident for a
number of small, exactly-countable geometries. For polymers of length N,

‘the number of conformations is a steep function of the constrained
volume. When the constraining volume is exactly equal to the sum of the
volumes of each of the monomers, the conformation is said to be

- maximally compact. In lattice models, each monomer has a volume of one
lattice site, so a maximally compact N-mer is enclosed within a (not
necessarily unique) volume containing N lattice sites. If N is a perfect
cube (8,27,64,....) then the maximally compact walk can fit inside a cube
of edge N3, Otherwise, ambiguities may arise. If N is the product of
three similar integers, N=a x b x ¢, a~b~c, then maximally compact
volume is a parallelopiped of sides a,b,c. If a>>b~c or if N is not the

product of three non-unitary integers, then the shapes of maximally
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compact conformation is ambiguous. We shall not comment on the
ambiguities here except to say that the success of the mean field counting
method assures us that 2 reasonable estimate of the number of
conformations is possible.

When the constraining volume R® is greater than the N lattice
sites, the volume is said to possess RS-N holes, or inclusions. The mean
field model predicts an exponential increase in number of configurations
with the number of holes. The difficulty in enumerating non-maximally
compact conformations poses & serious problem for the analysis of
arbitrarily- (but not maximally-) compact polymers. How can we

. understand the behavior of & random compact polymer if the effort
involved in specifying its conformation requires many more degrees of
freedom than we believe practical? Without this detailed information, how
can two random compact polymers be distinguished? What is the
"conformational distance" between them? Before addressing this problem,
we must re-examine the importance of compactness in the protein folding
queston.

B. Models of Folding. As discussed in the last chapter, the basic
mechanism of protein folding is still unknown. All models include some
form of diffusive driving force, although at different levels of the process.
The diffusion-collision school posits that secondary structure is "driven”
on & short time scale and tertiary structure arises from the diffusive
assembly of secondary structure pieces. On the other hand, the collapse-
reconfiguration model suggest that a random hydrophobic collapse to 2
compact structure precedes & global rearrangement into a unique "native”
struceure (Dill, 1985). In the framework model, a particularly stable piece

of sacondary structure acts as 2 nucleation site and catalyzes the build-up
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of secondary and tertiary structure around it (Kim & Baldwin, 1982).

For each of these models, arrival at a compact state occurs at a
different stage during folding. In the collapse-reconfiguration model
compactness happens first. In the framework model compactness happens
during buildup, and in the diffusion-collision model compactness occurs
after secondary structure has formed. Consequently, the use of nonbonded
interactions as a driving force for folding is different in each case. In the
collapse-reconfiguration and (arguably) diffusion-collision models, the
number of nonbonded contacts is constant during the folding process.
Nonbonded contacts act as the catalysts of folding; bad contacts are
exchanged for good, preferentially stabilizing structural elements during
ﬂuctuai;ions. In the framework model, the number of nonbonded contacts
increases linearly with the size of the nucleation site, stabilizing the parts
during the piece-wise transfer of residues from the highly entropic solvent
medium to the dense protein medium; nonbonded contacts do not define
the energy surface of folding except in the gross sense of preferring the
native state (but not other compact states) over the random coil state.

Lattice kinetics simulations on small systems (N=27) indicate that
folding is a strong function of non-native contacts and would therefore
support the assumptions of the collapse-reconfiguration or renormalized
diffusion-collision models. Other simulations of large systems (N~100,
Skolnick & Kolingki, 1990) are used to defend the framework model,
however it is clear that if the temperature is low enough or the parameter
distribution is sufficiently degenerate, nonbonded contacts will favor the
collapsed state and folding will proceed on the nonbonded contact energy
landscape.

This excursion into protein folding theory has been meant to
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sharpen the focus on the problem of compact conformational geometry
and its generally overlooked role in defining the features of the folding

energy surface. If -- as collapse-reconfiguration models supposes --

collapse happens early in folding, then the whole problem becomes a one
of interconversion between compact conformations. If -- as the diffusion-
collision model supposes -- secondary structures form first then aggregate,
dense phase interconversion occurs on a renormalized level, with helices
as primitive units instead of residues. In either case, protein folding
dynamics must traverse the energy surface made rough by the
heterogeneity of nonbonded interactions and by excluded-volume
condition.

Thus it is critical to be able to understand the mathematical
properties of compact conformation space, to define distances between its
elements, to quantify similarities in structures and to give an overall road
map to the geometry of compactness. As usual, all work will be written
in the language of lattice models. This effort is a logical precursor to the
later work of assigning energies to each of the structures, from which we

will then derive kinetics and ultimately, foldability.
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