" INTERNATIONAL ATOMIC ENERGY AGENCY
‘ @ | UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LCT.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

@ UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION @

INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

c/p INTERNATIONAL CENTRE FOR MHEQRETICAL PHYSICS MIOC TIJESTE (ITALY) YiA GRIGNANC. ¥ IADRIATICO PALACE) PO BOX W6 TELEPHONE SI02NTT7 TELEFAX OM-ZM7H TLLEX Wdbe APH |

SMR/643 - 11

SECOND COLLEGE ON
MICROPROCESSOR-BASED REAL-TIME CONTROL -
PRINCIPLES AND APPLICATIONS IN PHYSICS
5 - 30 October 1692

PROGRAM DESIGN PRINCIPLES

D. MEGEVAND
Observatoire de Geneve
Ch. des Malllettes 51
1290 Sauverny
Switzerland

These are preliminary lecture notes, intended only for distribution to participants.

P\Dﬂra\u deS«‘%u Frihdple.o.

A gooo\ ?Dﬂlaw SLoufd be

+ Simple , undesstarchable
e religble
. adapl‘q ble

1! PoS?{Ue , without ih\Ltr.fera.ce on e
previous Pmu]’& it Shoulel be

. %GQJ‘

.« porhable

A good de&\"%u is the]&eﬂj o e
res pect o Yoz pcn‘u*s.’

Struehured Block

Mrece o-f tode. with 4 “‘P‘} and ‘.'.od?ui'
(a+ hod').

May be furtkes decouposed,

l

v

CD!MP‘&N‘IH O{Lau ca\jor#l«w

(%) & number of operchtg Hr a
gjm alaor}}&m

{(k) ~ oawpu'l'ahhu e \‘-’or*\t..g
mp|ewalnh'm. c{ e alsor{%\w.

) s e couplonhy of e dlgorn

O() B?S 0 wolkahm

1) € klg)) = 2 i Olao)
f(‘h) far order abl ot q(m)

() gows ko wore repidly Thas g(w)
g(w) should be as simpfe as possible.

Ex: 40 s O weaws “hat
“he alaof&h. Complerily i quadhe .

The h..ealmta;’j dtéblﬁ O(g(k)) Wwhvoduces

an awLiﬁw'l‘j . A qmd)mt‘c. a[ﬂor:"%u&

such a8 #(’h) = _[‘_?'_ s Cwuted
2

as well by gw)=n® as by gl)=n

9() : Bia -ﬂneta ho'tatfm.

-f(n) hasr Hhe tame ordu Ya 9(n)
r'f f(n) is @(g(h))

which s wv',ﬁ-’ea’ f{ thete trisk two
poshive n.t‘o_gy kK and h sucl et

R ¢ kfg)
and

/9(:1)/ < h/.f/n)/

gearc’n afgor;'“«ws

e Ouwe can show Hhat He bihanj eaicl is

te woth ﬁﬁewueul' afgor'l‘u«w widuu e
"KCH wmparism" alﬁorHLus.

. Alsod'uuus +)r Searclducj a sh‘u«5 in ancther

b'ﬂae/ S'}ﬁhj may be Wore GH-;'C,{&,.I',
-Skm's\.l' shring seacch : bad
worst case : O (M:N)

— Knuta - Horris- Prat : befles
wotst cat ¢ O (H+|\j)

— Boyer-Hoote = evew befles
worst ase : O (N)
« Otes Cowbinatioue c‘{. Hhere a‘aoﬁ%ms Mg
be Nuagiued for cartal tpecial ¢heatiout.

Rewords
Sor{'ika alﬂorﬂ‘&m‘s

o Rewrds are Likear hc+c!03cheous structures
EHvideuud o{ d'IHue«F alﬂmi‘{'lahf: (N-demkalm&)

e« In C &:hghaae , ‘Haeg are called shuctures.

. - 14
Worst Gase A\IC—(‘%C Case Each 6|wat 'S de‘FMEd W&L‘ a +HP€
Tnsechou sort WGO(‘“} M=O(hz) maj L'LSEH be a reword .
m
Selechim gork M;ﬂ_)d O(w) | N(N-A) . D(n*) Example :
Z 4, Declaeatas
Bubble sorf E(_N'i), O(h’) N(N-) O (u*) TYPE Nawme = RE(ORD
- 2 fiesk: ARRAY[48] OF cHAR
Quck Sork N(N13), O(h‘) MN&aN . O(lv.fﬁh)1 moL s CHAR
2 | Past: ARRAY [45] oF cHAR
Heap sork ?)NGEN-O(hIan) 3N{og N -O(ukau) END
Merae - sort) - TYPE Area = RECORD
“qe-sort | NeagN=Olnkgn) | Nlogh = Oluieye) city ¢ ARRAY [40] OF cui AR
2ip : LONG

stale: ARRAY [410] OF CHAR
END

- Usaﬂg

Records (owtinued)
TYPE Adress = RECORD
no: INTEGER
sheet : ARRAY [45] oF G
area : Area

END

TYPE Perton = RECORD
name . Name

adress: Adress
END

Person Brorin y Jack

Iaok.nam.&lsl' ;= Smith
Brown.adrcs's.area.iip 1= 80433
Brown. hawe . m.1 : = Jack. name . first [1]

Recards

(continued)

Tree - repesentation

Person

last

m_L

Intes hal rcpm{atoh

-harne.first.

N hame., last

pormsr=t adreS, KO

hé street

areo.

cdty 2ip state
(ex: 32 bit memory)
@ Dﬂdd!hq »{4:-' Q!;‘ihu‘gl‘*‘

(48 Bgl‘a)
(4 bgtﬂ)
(a5 bytet)

(2 bytes)

\ | adlress . Street

(K bytes)

_. adfcsr.area.c'rf'g (40 La*’d)

AR
S adress.area.zip (4 bytes)

Variauks o{ recards |

e To deseribe rclmleel, bul SllﬁL'Hu d;.ﬁ[e!ouf
recocd 5 ome may define vanauts of

s rct.ord :

e One of wore

) Felds may be a:{'nhe.d
53 Q (age... o{ " expression

Examp/e :

TYPE sex = (male,-{cmqk)
TYPE FReson = RECORD
name: Nawme
adress: Adress
CASE s:5ex OF
male. :wc'lgl‘"’- REAL.

female : size : ARRAY[3] OF INTEGER
END
END

Commen 1t::c-"')

\aclaut PA{

The {-,gug o{- Chaon back afe alwatds Presu.’r

The felds o niinud ;:::.:“S are oliserinaned b«:]
e 5 fild s

N'ﬂLL S}‘GCkS
Stacks ntlaldl oot cow be dm»n’ff"co/ in
Fwo Cn+eg0n‘e/! :

Errors

e Stack Lmdef.;é:ds defcud on Yie dala
in fe Sack aud fle proceduie acceting
Yhote dda.

o Slack overflow are kot Manda /on'/y due
fo awu emor , but axe Contequauces of
the liihabiong of W Shek.
Ore @un by Ff wikhuze Veir cffects
by special N B tueu fahins, or exaple

Stacks A and B gow offbs"ff:
direchions. This fechhic;ue is Saving
space , while mimmizhng overflows

—q{>

T is beftes than T +
A

1|

.

Towers O.F Hawnol

H as(nfug
A B C ' . HaSLiu3 s a scorcLiLg +chuJTw_ whose.
l—r‘%‘l “ Cou..pfexihd 1S ﬂ,\defx,‘daul- f n.
I l
1 .
The poblew « | e The idea is P qut b eock elewent 01
- Move all the discs fom departure peg A o a let a0 (ode , and b we His code

arrival bez C, with He fo”am\;g reles as a Pof\.tu o the elewedl

o Move Ohlnj owe disc at a Hwe.
» Never pul q larger disc Ow a Swalles oue.

We cau we luwediately tat | as e code
1g de nved 'FTG)M e eewent and psints
o b, He cewedt hat b be Uligue.

We can we Ve peg B asan auxi,\'aud Me}

aky Hime .

The ol how l:». reCLr&iEw

Move (N) A, B,C) + So ', Hads %‘cchw\que is b be used For
IF (N-g) THEN indexing wrayd o{, Wiague kcgs
Eué‘\-—bc .« For ecauply | Wb ocan be uwed fzr "‘“’*“*]"“‘“'“d
Move (N-1,A,C,B) 0u Mden of words, a table of key words
A->C

| L]
Move (N-4, 8, A C) [C&.P‘[ax e it)) ek .

Hashing (couhwued) Hag&juj (ahuued)
< EGOL katue UP m#oﬁ« ‘LS h‘ubwed i

A lmslm'uﬁ {«uc,ln‘m. s a k@cfcﬂ» be hoegsn a ML-oode_, whueh 15 a Paht, b e . rewd
ketp aud pm'kfus. kccr.kg He :\-F:mahk rdshre o Qs berth.
A hasling funchn should ke Suph oud quiek + We canwolt awd tat e fuml«%‘*rau&'foauc
to (ompute. +wo df{{uu,nk kawes Th 0 Sale hash-code.
- A Laﬂu\a FAMCLW should dishnbuty Lmr“{an.lj o Thal case 15 clled a Cnuﬁ&;ﬂ\, and (owe
He p&\fhs onts tee wemay area., meflod Wt lo wlpe k.
Exaw.pfe: S‘unmse we waut o hae a Carse Colligt resoluhmn
'fa'h "f— Recoads ﬁr fle PASSM-?J 01.
@ CaShFlkg, auwd we wé.u"a. k‘"ﬂ . The load {ACJOI‘ 8 e I‘Q,’\b Le}wea.k "HAL

quick acesr To thert reconds. wunber of kegs (K) and Yoo Uutubec f .
We @ ue Yo lawe C‘— eack Oup(aiez

P Gubuch o fask code, wifl o hosh-adrts (= e of alocald wewoy)
funchn. 2= K

H(kauue) =Z hawe () -t (med m) ~

wheae wm s e e 4 He M wiory allo catad The load {;c.[or should be ker}' 9‘“-.(.:&4(:1

o e recods pointus. swall b Ciuak Yo wuwle o wllivos,

r bu{' (tho" amh{hﬂﬂ_ ‘“ﬁﬂl \Ah"l Ll Ml

Colligow resole i (Lﬂahh-ued)

. TLL.S, we ponde a way o tolve Heose.

¢+ Oue way & Yo awgu o He key %dmﬁ
o a’readﬁ busy H-ode fhe Lent
avadlable wewory,
Oter wethods may be urd | bo wiwiuaze e

clultul\j obtai\ed b'a Hus J‘Cclabu‘d?l»t.

A good way 18 b fae Uuked Utle tandainiug
Hhe pobus fo The s, and a hasl-table
puhig o Ye luked lahs. Tlis is called
Chaiting @ndl can be rery %‘u‘a}.

Me/rge; - SD‘+

To wmeige two arays i the acho G\t
Cowloih;kg the elewenks O{ ot arrays

th @ Sikgle sorted arfay,

Whew 55{14 aifays are a'readﬁ &Of‘]'ed)'%\e
easier way iy to Cowpate the .Fhs?
elewent cacl gt awd to ﬁ;-:c](.uP
He smallex , thea Cowpare The
.G.}si' elovent 0‘1 eack e g
List y et ...

Example :

43,45, 22,25, 23,39 ,4%,55,44,68,90

Me rge - sort (LomHnUed> Mutua! exclugion

o The deo s ‘l‘o SP&'} an atrag R \Lwo' Par"g . ReSoufus accened bﬂ wore. thau 4 Ppij

Vi
sort Yete Par+s and Yheu mesge thew . should be pofected agaiuat siwe Haueous
* Back of fle pad is oA thw soited by aeeett
He sawe algot{‘}Lw. ¢+ Such rwvrees are clled arihcol resources
We cak do 'ﬂ-.nl' WT%DQ\[Suvp(ewg..lvauj gPam o The atcem Fvo{‘ec,k'u'u Y rmuw.lmﬂ wutual exclu b .

reﬂlu"&“"‘" {‘o keep "Hne Eub-dtra(ﬂs * o Tle P.;l-qi afocays Code accwi»ﬁ a cnheaf

@ H&!ﬁg CacL FO.Ir O* e]e.mewl-s resoufce 1§ @Ued o thcp‘t S'&de\v_

=> Soiled pairs Example: A procen P4 s atetng @ pﬂ'hb, a pocess
® Merge ech pair of corled basr3 P2 is acceuny a memory dlitk. Bof, proceses
=t Ssorked quadmy?es shoulel repoct ewort on a woutofe.
@ Huﬁt <ack P.‘r o:(. sorted quadru,ﬂ P PZ
=2 cocled §- upfes T Cribeal
v resoufce ;

. |\ Clode k- ' %f’wdﬁi }
Cﬂ"lual Scdﬂs'h *‘)"Ji -.3 — 4— Cowle
® Heae fe hwo st sbamag. A
A= sotlad array : Cousole

oy ™

Achre \Aiaj"iua_ | I \'uru'a}' I.uaxki\a%_

Cihwl retoure busﬂ =p Proces has b walt + Disable ‘"‘}Ur“f’* sgthewe wlule 0 crhial sechs.

W a loop wnhl the * No wort \\Jutuph = ho pocess Owluu ba b .
retouice betowes

avaulable . Mawy Pob'el«s anie. at this Paiul-:
* Ty shouldl wever be Nuplewested with cuhg owe

- Ihpul'/o\dpul‘ oPefaﬁ‘s\-S h i\-{ump}' wode
teoleaw Vanable :

are Mwpotinble W e cohed sechin.

Pe - leaw
1 %boea b“‘sg - I..tw.urls o be logh: .'E{. wore Yhau oue
whale buSI-J do eud 'lkLC.'ruP]' arnve clunhg He tobal wechm

busy :=
’ wsy += e | fon e pespheral, they wik be fott

8 : °)
Precescer i alfrivubed bo process P)
el / o p Th shored wewory wwlbpocesion sytlews , yoo

Pl con accem legqﬂg e retoutce (Lusg:%nlk)

P4 alto can atelt the reouice , becaux evew whew

P2 sels busy Wue it coaw't check it amdu.orc! e Meduply, becaus procerel aje rca)hé
o Tuplementaton Hrongl dwo vacebles caw be Sale . ererubng e o keously .

Thee at dffured lechuiques.
¢ Nob we auyway | becaut Washig csupuby +Hie!

cahwo b realize uwkal exclis isn b:j wslu\j

- r

Locks

Record Cm}m‘hiu.’:
o Booleaw renable
. LSH of waihlg procese. (qucue)

2 hak.-';mf-/»n pocedures: [ock |, Unlock-

o Huhia! exelusrn Pn‘;w‘ﬁm
o Never le!rufkd.

lock - Called al He Atgjhikg cf a Crhal Sechon.
- fock Opew —» Cloke it
= lock chid —> pocest pub in He quene

unlock: - called al Weo e oA a c.s.
Gueue cn’/, ~> Optu lock
= Queue hot enﬁy —> Schedule {Jr:/' process

Powibves can be executed witl, D.krru/a}s hasked
because : VU’g Short

* No T/o Spenbins.

geWaPLo res

« N crhal resoures allocation : locks dow-t .F:{-.

* Sewaplores pretewded by Diktha W 1968.

s Record (puh,‘ki\..s:

© Tuleger tountis

- pfocnnf.s que,uc,

« 2 Mujp.lcl\h onced.ures: ’P, Vv

Pr - talled ot He be;jhmd of & crhwl/ cechm.
— decremeuls tountu

- IF counly uaalsk -> poced s P‘“ in He Pueue

» Negative Countts: - o iore availabdle Relourte .
~ Num bes 0,(proceser b fhe Guewe .

V: —~ caled at Hhe eud o a eribcal sechin

= ihcrements counter
— if tounter non potibre > Schedule fireh process

o As for locks) priibves @h be execubed with Aemap}
Sg.rk& Arsab lod .

o Sewaphore uihalized fo 1: mubal exclusion.

Viocers sytchrouiza hon.

o Poan syudoowizmbin I8 ueeded whee

o (oo oden s rectured M Yhe \equeucn
o‘{ Opuqt'w

Some toole helr aklgahg sad..cl«)\ou‘\za]\h.

T T T Reword mfh{m\.:g a boolea
mualls and o pocen queue.

T hree PIOW ae wed b Mh}m&:ﬁ
the ek @ walt | b, reelt

. Sebﬁspl‘o“e:s : Jwihalized o ¢ #r E-P«: cex
%&-&du«hokjhbh

o Mowlors 1 MNodule, wiady Ye ddn ¢ buchue

Gk Pocndue_s Th.peu-e-kug e Ud‘d.l)-,

witalion weckamitus .
Procedues are polechid ag,cm.sl-
ruultabeow axeut. (Huhat eelusm.)

Pocm syuchaorabion (e)

gwbou;ktﬂn bj '“M dafa

e Madboes - A& wanable o which aue d:.‘[\\acl
fwo P.cw-. Send , Necedt

- Tle recee pocedure 1S Pul- L a Sleepilg
stabh ic Ye mailbox i A,

« Reudez-icut @ A wanable | awd too P\oceJAa-tyz
malipuahig oo Ple , Plv

wheie PZ.’E secds hth'm e h Process us Y2,

P1.2v receives i vamiable v a value {m...
Foceuu.g ?i

- The teceive procecliae PA7v locks e process
P2 umh! Ve wmaable Vv 8eb ve estage .

- The gewd Poaduu PZ./e éfoclcr ﬂe proces
P4 unh! pwda.re P17v “as been
aewtaa/ N Pocu-i 2.

Examp/e

of a

Concirren F PDH&L« .

We want o Tlupltl-uou" a daotowelis - wakeh
Hat Wl dJSPea.g on a touaud @reew:

- A wibalizab: 00:00: 00

Thea, keUL-ocw! “ohe- key" (owwand are ddﬁkﬁ Ve

?hs}mwcd s

W: s.chrowo —»swatch wmode selechon

C:
H:

MH> 4 60n 2

s.walteh —»s.chuo wode selechm
s.watch —» increweuks houts

S.walch — " iu heg

: s . watch — N seconds

s.wakh — T.watch
I".\'Jch - g, wch\
S.chouo —» T. chrowo
r.chiowo — 1. cheono

r. chiowo — {.duouo

S-waleh | 5. chiono . slpped walch £chiio ades
f. chomo 1 Uuuing wabeh 3 chmo Wades
t hhauediale display for 5 secomds
i oUstag for 5 gecmuds.

r. wald
{r chwo
{. chmuo

uM-ouo Stat: O\-cuk‘

=G Rlulnnius
k=T Waich

k’c kaw

Sbm k=R _ ﬂlﬂll\l'\s

Clso

ta5g

T
Haply

Peu Grph B Yo Cuows

Flosckart o{ He Ckhoui

T1:

T2

Dale ﬁo\a chedy

Procss dlecompasahivn .

Mo | « Acodig b DARTS | we hare b schet ta

dala fow trawfrus which wh rceve @ upuétz
pocest .
- T/ olereu.da.«aa : ClPtoccSS should be %/lrbu bo
tautfors T (keyboad Mput) and
to hauthan T6 (diplag oufpul).

— Tiue cahal {’wcl«m: houe

- me.hhml rtfi\qml'l: Wowe

— Funchimal hetin : Sqwe process '#N‘ T2 (walidata key)
auwd T3 (choo¥ mode)

-~ Teu.poral ket : TS (Coupule e ko d‘kr&n) is b
be pub i e sawe pocex a
T2 373 ,or a8 T4 . Hode alef&ch..}‘

= Pedodic emecubm ;T4 (cock) is h b erecutid ot
ek RT cdock fek. Flonld be
kerlr- e sermfz pocek.

Slide no: 1 .1

The Unix System Calls
Lecture Overview

Theme
Topic

A TETeT
+3e
+te

$935es

‘Y.f
32 o dteates]
e re T eIy,
sl

Architecture of the Unix System

THin,
$o2 54 20 py
et AT e o a TS
T LAt l e

s P52 Res

BRI R e B b b bbb

OO

3 boes
[SrEoC pssdsstes bs
At tetels laatiir

e sl it i

ENERGY AGENCY

ATOMIC
UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
1.CI.P, PO. BOX 586, 34100 TRIESTE, ITALY, CasLE: CENTRATOM TRIESTE
UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
NTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

INTERNATIONAL

o INTL (ATIONAL CENTRE FOR THEORETICAL PHYSICS Mi0D TRIESTE (TTALY) ¥LA GRIGNAND, ¥ (ADRIATICO FALACEI P.O BOX 38 TELEFHONE oiaINsR TELEFAX M0-248% TELEX aibest AP |

&)

s
g
A
£
: £
-t . a
] =] [+)
S -
o on ”
3 B @ o
~ mm m
m (FF-¥ m
() Rz o
zZ=™ @ "
0“82 3 8
N% 8 by
Ewo M > b
o< E §¢ H
=T =T) w2 g8
HES e - o2zl b
=L b 9
oa% S ~ SEE~E g
QRA O [Clt =
250 E Sa; B =
pa<dg 2 .
za 8 4 R
cag! : 5
Emms 5
SSS
]
QW
Sk
- 13]
&z
2E
oa
=

These are preliminary lecture note:

. . " * ame : e Unix Kernel de no: 1.3
Theme: (Course Introduction §lide no: 1.2 ™ The U Slide no: 1

. - Topic: Overview of Internals
ropic: Advantages of Unix .
What makes Unix Systems so popular? user programs
trap]7 libraries el

o Systemiswritten in high level language, thus portable. £ f;:;e;i’ive 7

(Less than 3% of the kemel in assembly) - System call interface \
® Simnple yet powerful user interface
® Hierarchical file system allowing easy implementation ’ . T

and maintainance inter—process

" file system procesis communication
ro
e Consistent file format (the byte stream) con
. :) X . hedul:
® Simple consistent interface to peripheral devices schegutng
® Multiuser, multiprocess system memory
management

® Provides primitives to permit complex programs h \ A

t0 be built from simpler programs

. . . bufferﬁz:ache
© Hides machine architecture
k 4 L]

character | block

devices devices
A A

y ¥]
hardware control

" Theme: The Unix Kernel (Internals) slide no: 1.5

eme: The Unix Kernel (Internals) Slide no: 1.4
pic: The Unix File System |

Topic: The Unix File System

Steps to be executed when reading/writing a file: Boot block
Super block
Opening the file
Zenerate entries into tables Inode list

® allowing a process to reference the file

e and allowing the kernel to know which file in the
system is open for read, write or both

® convert the filename into @ more eastly accessible
structure describing the file (inodes) Data blocks

® allocate new inodes

® allocate data blocks on disk

Writing/Reading a file
¢ Convertthe user's view of a file into a systems view Boot block: Needed to load and start Amunix
® Convertlocation inside the file to disk block numbers (the operating system image)
Super block: Describes the file system on a disk partition
Inode list: An inode describes a file.

The length of the inode list determines the
maximum number of files in the file system

Data blocks: Space available for user data

Theme: The Unix Kernel (Internals)

slido no: 1.6

Topic: The Unix File System

Theme: The Unix Kernel (Internals)

S1ide no: 1.7

'l'opi’c: The Unix File System

Reading/writing a Unix file
Theinode structure: data
blocks
owner/group ids direct S
ﬁle type bIOCk 0
permissions direct
; ; block1
access/modification = :
256
dates . block
ﬁle size ﬂmber 5
disk block addresses 4—s
direct —> —s
block 9
2ax file sizes: fmglle -
indirect
direct: 10Kbytes
single indirect: ~ 256Kbytes fiou.ble S =
double indirecr: 64Mbytes | indirect
triple indirect; 16Gbytes triple l 5 N
if 1 block 1024 bytes tdirect

Wridng or reading a Unix file
. «— Cht R
b
user’s file ffer _ user's view
.. B
system’s view
logical file ;
block 0 | block 1 block 2
inode J
26542 26542 Disk
data
example:
write buffer of size Ak
starting from file pointer at =~ 450

eme: The Unix Kernel (Internals) ;140 no: 1.8

Slide no: 1.9

pic: The Unix File System

Theme: The Unix Kernel (Internals)
topic: The Unix File System '

Converting a filename to an inode

The layout of a directory file
/
bin usr vmunix”
"/ \ -\
grep Is cc philip uli
/
trieste2 <« trieste
link
ample: get inode of lusriuli/trieste
inode | fil 4
:r;; e | filenamme (14 chars) abs referance:
17 . ! isknown to the
207 | vmunix system in a global
— 1| 118 | usr variable
34 bin
relative reference:
— | 118 The current directory
17 | - cnn be found in the
— | 20¢ | ull ess descriptor
— | 3 philip proc
— 204 | . — | 23
118 | .. 118 .
193 | trieste 193 trieste2

The Super Block
Allocating inodes (when creating a new file)

file system size

no of Jree dcta blocks
list of f. ee data blocks
index of next free block
size of inode list

no of free inodes

list of free inodes
index to next free inode
Tock field for free block
and free inode lists
modified flag

allocation of di.;k blocks

allocation of inodes

Algorithm: @ read free inodes from disk
® build a free inode table in memory
(type field = O means free,
remember last free inode on disk)
@ allccate inode from memory list until
exhausted, then read inodes from disk
starting a remembered position

Theme:. The Unix Kernel (Internals)

Slide no: 1.10

N
Cor e

theme: The Unix Kernel (Interna]s) 8lide no: 1.11

topic: The Unix File System Topic: Process Management
Process State Diagram
Descriptor tables of "open” files]
user mnmng
fd = open(“myfile.dat",0_RDONLY)
user file - reiurn to user
desc;'iptor tables file table inode table sys call, tu
: (system wide) interrupt/ / Telsn
proc A kernel
0 stdin @ running
1 stdout exit
preempt
2| sederr count] Read .
3 \ Zombie reschedule ’ Preempted
? ‘ cot;u (/etclpasswd) sleep process I g
cxmnt 1 Rd-Wre . ready to run
@ _— in memory
0 p'::: 7 ‘ Asleep enough memory
count £ weiTe leste 7
1 [stdowt oy mes in swap| | swap Created
2| seder count " . <«— fork
3 countl Leap 1 , : ‘ /
count] Read wh
Sleep, Swapped Ready to Run,
Swapped

fdis the index into the user file descriptor table

rhame:” The Unix Kernel (Internals) 4,4 L. 1.12

opic: Process Management

Layout of system memory

Possibility: Compiler generates
absolute addresses kernel
but: impractical

process 1

process 2

process 3

. Solution adopted: Compiler generates virtual addresses

which a memory management mechanism
transforms into (real) physical c_zddresses

The virtual address space is subdivided into reglons

i > .@
o

stack

~ .

Theme ;

The Unix Kernel (Internals)

Sli‘do no: 1 .13

Topic:

Process Management

Phys:cai memory is divided into equally sized pages

The paging system

A wrtuai address is converted into a page number and an offset

page 1

page 2

page 3

The region tables contain pointers to page tables

 virtual address
tex? 8K
data | 32K
stack | 64K L

201

297

v

132

8|8

theme: The Unix Kernel (Internals) S11ide no: 1.14

Theme: The Unix Kernel (Internals) S1ide no: 1.15

Topic: Process Management

Topie: Distributed Unix Systems

Memory management policies
d Swap pl ng] . . kernel

The entire process is copied
from memory to disk process {
When process 2

e creating new process

* increasing process region

* increasing stack space

* swapping in a process

® Demand Paging

Machines whose memory architecture is based on pages and
whose CPU allows to rerun failed instructions can support a kernel
with demand paging

Accessing a virtual address kernel

whosepcfge Is not resident

in memory generates a page] / pages
page fault of process 1 poge 2

The missing page is read :’j’f;“/"/

from memory and the

faulty instruction is rerun.

©® Hybrid systems

Both, demand paging and swapping,
Whanthekemdcmmotaﬁocammughmmoqpqgcs a complete
process is swapped out.

@ Satellite systems

One main processor contatming CPU, memory and peripherals
and several satellites with CPU and memory (+ communications)
only.

Programs and a (stripped down)

operating system are downline loaded.

Each satellite has an associated

stub process running in the main

processes treating requests for

system calls

T CPU .
peripherals memory \ |

system calls

downline
loading

CPU

L

memory

memory

- - -

e ——

theme: The Unix System Calls Slide no: 2.1

ame: The Unix Kernel (Internals)

Slide no: 1.16
sie: Distributed Unix Systems :

tropic: Introduction

Generalities on system calls
Che Newcasile connection

Each machine runs the full kemel (including treatment of System calls farm an integral part of the Unix kemel and are

system calls. File sharing is implemented trough an extension ' therefore

to the file nama: 4

] ; d in supervisor mode
meste! fusriuli/course ® executed in sup
. : : e ot be preempted
specifies file /usrfuli/course on machine "trieste ® cannotbep P

Needs special Clibrary in order to parse file names They are accessed through a "trap mechanisi’”

software interrupt)

[ransparent distributed systems (example: NF S) (softw

Aremote file system is mounted on a mount point Access to system calls

of the local file system

. licat
| local file system remote file system Application
| - /\ /fﬂ} / ~ Unix komel
| //b‘." j‘/s' / docs physics
~
- wire_chambers cherenkov
login | | Sandand S~
library

lusrisrciphysics/ cherenkov accesses the file on the remote
file system

theme: The Unix System Calls Slide no: 2.2

ropic: An Overview of the system calls

Theme: The Unix System Calls Slide no: 2.3

® Access to the file system:

open,creat
close
read,write
[seek
unlink

¢ Frocess handling

fork
exec
exit

wait

® Interprocess communication
signals
signalkill,alarm
pipesfifos
IPC package (Inter Process Communication)
messages

semaphores
shared memory segments

Topic: System Calls for File System Access

The same routines allow to access
® disk files
® pipes/fifos
® specialfiles” (device drivers)

open opens a file for reading or writing
creat creates an emptly file (shrinks an existing file to size zero)
{(in earlier versions of Unix "open” worked only on existing files)

fildes = open(pathname, flags, fmode])

flags: O_RDONLY O_CREAT
O_WRONLY O _TRUNC
O_RDWR O_EXCL
O_APPEND ..

mode: access permissions
fildes = open("myfile”,O_WRONLY/Q CREAT/O_APPEND ,0644)

opens "myfile”,
if non existant:
creates with permission
user group world
WX rwx rwx
110 100 100
else

sets file pointer to end of file.

eme: _he Unix System Calls slide no: 2.4

thewe: The Unix System Calls

pic: System Calls for File System Access

Sli-de no: 2.5

Writing and reading data to and from files

n_written = write(fildes,buffer,bufsiz)
n read = read{fildesbuffer.bufsiz)
eof is detected by n_read = 0
tncrements file pointer by bufsiz i

for efficiency reason use
@ rather big buffers (limits the number of system calls)

® buffers sizes being multiples of the natural disk
blocking factor (mostly 1024 bytes)

Random access to files

newpos = lseek(fildes,offset,direction)

long offset: specifies new position in file
int direction: 0: offset=nr of bytes from start
of file
1: offset added to current position
of file pointer
2: offset added to pos. of last
byte in file
example:
flsiz = Iseek(fildes,0L,2)
returns size of file

'l'opic':. Process Control

Process Creation

All new processes are created through a tork system call |
example: maift()

{

int pid;
printf(" Before fark\n");
pid = fork()
if (pid == 0)
pringf("'child process\n”);
else if (pid > 0)

pnntf("'parent process\n"’);
else

perror(' Fork returned error:\n"});

Fork creates a second instance of the same process. The program
code as well as the variables are identical in both processes.

before fork after fork

parent process
pid = child’s pid

Theme: The Unix System Calls

81ide no: 2.6

Thewme: The Unix System Calls Slide no: 2.7

topic: Qverlaying the Child Process with "exec"

Topic:, Signals

The "exec” family of system calls

The exec calls load @ new program into the calling process
memory space. The old program is oblitered by the new

ret = execl{path, arg0, argl,...(char *)0)
ret = execv(path,argv)

ret = execlp(file, arg0, argl,...(char *)0
ret = execvp(file,argv) ‘

path: must be a true program
file: may be a true program or a sheil script

Sequence of fork,exec,wait,exit calls
program a

Sending and recdving signals

On exception events ("C,illeagal instr. floating point exception etc.)
the kernel sends a signal to the process. This normally exits the
process. However a process may decide to catch the signal and treat it.

. Processes may also send signals to other processes.

SIGINT,SIGQUIT user interrupt

sendby SIGILL illeagal instr.

kemel SIGKILL forced exit (cannot be caught)
SIGPIPE write to pipe without end
SIGALRM time elapsed

— fork usage of walt and exit:
program a copy of
programa | pid - wait(&status)
wait exer .
b exit(status)

program a

continues et

after exit of

program b

With this knowledge we are able to create a shell H(CLD

sendby SIGTERM terminate child
process SIGUSR1,SIGUSR2 for free use by process
Catching a signal:
int catchit(); define an exception handler;
signal (SIGUSR1,catchit) ; connect the handler with the
signal
Each time the signal SIGUSR arrives "catchit” will be executed.
Sending a signal:
kall(pid SIGUSR1) since pid is needed signals can
only be sent to parent or offspring
(getppid returns pid of parent)

ey

me:” The Unix System Calls

sl 1de_ no 2.7a

theme: The Unix System Calls Slide no: 2.8

de: Signals

Topic: Pipes

émonatratea interprocess communication
sing signals

lude <signal.h> s
lude <stdio.h>

O

't pld.pepa; 7% process identifier */
"t n_char;

var charac[100];
it catchint();

‘intf("Creating a second procesa\n");
.d = fork();

" (pld > 0) {/* parent process *;
8ignal(SIGUSR1,catchint);
walt{(int *)0);

exit{0);

" {pld == 0} /* child procesa %/
papa = getppid();
while (1) {

N-char = read(0,charac,100); /* walt for character from stdin

*/
kill (papa,SIBUSR1):;
};

end of main »/

atchirt()

f {("Saw a User 1 signall \n"):

Apipe is a one way communications channel v_vhich Couples.
one process to another and is yet a generalisation of the Unix

file concept.
proctlipr

proc A stdowt —s> —> stdin

/* pipe implementation */
#include <stdio.h>
#define MSGSIZE=16

char fmage"Hi Triestel|";
main{)
i
char inbuf[MSGSIZE]:
int pl2],pid; /% pipe file descriptors */
/% open the pipe */
1f (pipe(p) <0) {
parror("pipe call ");
exit(1});

};

if (({pid=fark()) < 0) £
perror{”fork call ");
exit(2):;

i’F {pid == Q) { /* chlld process %/ Aﬂ! B
closs{p{1]); /* close write section »/ —
read(p[0], inbuf ,MSGSIZE):
printf{"Child read \"%s\" from pipe\n", inbuf}:

1f {pid > 0) { 7/* parent process =/
close({0]); /* close read section */
write{p[1].mag MSGSIZE);

}
exit{o);

Theme: The Unix System Calls

sl;de no: 2.9

theme: The Unix System Calls

Topic: P ipes

Topic: P ipes

Slide no: 2.10

Hfos or named pipes
Pipes can only be used between strongly related processes

(eg. parent child) because the pipe id is needed for reading
and writing.
Named pipes remedy this problem:

Anmedpl}pecanbegenemtedusingthemimodpmgm
The pipe is the opened as any normat file

$ mknod fifo p

$ ls -1 fis ‘

Pru-r--r—- 4 uli O Oct 12 18:47 fifo
$

We have two entirely Separate programs one opening the fifo
forwriting the othe one for reading:

/% pipae implementation =/
#include <fcntl.h>
%include ¢stdio.h>

#define MSGSIZE=16 mdinspmsmn
main()
i

char inbuf[MSGSIZE);
int fd,pid; /= pipe file descriptors =,
/* ppen the plpe =/ :

if ((fd= open("FiFo",O_RDONLY)) <0 {
perror(“pipe call ");
exit(1);

};

read(fd,inbuf,MSGSIZE):

Printf("Child read \"ga\" from pire\vn”, inbuf);

close(fd):

exit(0});

Here is the writing program:

/* pipes implementation */
#include <fentl.h)
#include <stdio.h>
#define MSGSIZE=16

char fmag="Hi Triestel|";
main()
{)
char inbuf{MSGSIZE];
int fd,pid; /#* pipe file descriptors =¥
if ((fd=open("fifo",0_WRONLY}) ¢ 0) {
perror(“"pipe call ");
exit(1);
Y
write(fd,mag ,MSBSIZE);
close(fd);
exit{0);

and the result:

$ fifia

2698 -

$ fif2s

2899

$ Child read "Hi Trieste!" from pipe

e

e

me: The Unix System Calls slide no: 2.11

ic: JPC Facilities

Theme: The Unix System Calls

Inter process communication facilities IPC)

VIPC constructs are provided by the kemel:

® Message passing
® Semaphores
® Shared memory

'PCfacilities are identified by unrique keys Just as files az >
‘dentified by file names

A set o"similar routines is available for each of the 3 mechanisms

The IPC get operation :|

takes the user specified key and retumns an id

(similar to openicreat) If there is no IPC object with the
specified key it may be created.

exarnple: msg gid = msgget((key_2)0100,IPC_CREAT)

|The IPC op cails:|They do the essential work

example: err_code = msgsnd(msg _quid,&message,size,flags)

Lme IPC ctlcalls: | get or set status information f. r the
IPC object specified or allow to remove it

exarple: err code = msgctl(msg_qld,IPC__R.MID,&msq__stat)

topic: IPC Facilities

Sending and receiving messages

Amessage has the form:

structmy _msg {

long mtype;

char mtext{LENGTH];
}

Such a message can be sent to a message queue who's
identifier has been determined by a msgget call:

retval = msgsnd(msg_qid,&message,size,flags)
it can be read by:

retval = msgrov (msg_qid,&message,size, msg_type, flags)

msg type=0: firstentry in queue
msg type > 0; first entry of this type
msg type < 0; first entry with lowest msg type

Slide no: 2.12

heme: The Unix System Calls Slide no: 2.13

Theme: The Unix System Calls Slide no: 2.14

opic: JPC Facilities

Topic: JPC Facilities

Shared memory segments

Normally data regions of different processes are separated.
The IPC shared memory facility allows several processes to
share a sectior. of physical memory. '

shmid = shmget((key,size,permflags)

creates such a shared memory section in physical memor -

memptr = shmat(shm_id,daddnshmﬂags)

e

attaches the shared memory section to the nrocess.

memplr is a pointer in virtual addresses where the process
can access the section

*memptr = "hello Trieste"”

will write this memory section.

err_code = smctl(semid,IPC_RMID, &shm_stat)

removes the shared memory section from the sy-tem

Shell commands supporting IPC facilities

There a two shell level commands treating IPC facilities -
ipcs: showing the state of all IPC objects in the system

IPC status from /dev/kmem as of Sat Oct 13 17:31:1g 1990
Message Queuss:

T ID KEY MODE QWNER GROUP

q 0 64 ~=Pu-rw-ryg- uli . users

Shared Memory

T ID KEY MODE OWNER GROUP
m o] QO ~=Trw——————— uli usars
Semaphoreas

T ID KEY MODE CWNER GROUP

*** No semaphoras are currently defined *%xx

iprn: allows to remove an IPC objecy from the system

eme: The Unix Shell

Slide no: 3.1

Theme: The Unix Shell

Slide no: 3.2

pic: Introduction

Topic: Simple Shell Commands

What is a shell ?

Ishell is a command string interpreter reading user input from
tdin and executing commands.
lowever shell commands may also come from a file.

The standard Unix shells {ex. Bourne shell) provides:

1/0 statements

{/0 redirection

pipes

vanables & assignment statements
conditional statements

loops

subshells

= Full blown programs may be written using onfy
shell commands (shell scripts)

Simple commands:

Single word, no parameters

who: prints all login processes
ps: pnnts all processes started by the user
on the standard output device (stdout)

. LI]] -
newline or ;" are separation characters

$ who
uli ttypo Oct 4 08:08 (:0.0)
uli ttypil Oct 4 08:08 (:0.0)
uli console Oct 4 08:07
$ ps
PID TT STAT TIME COMMAND
22692 co I 0:50 /usar/bin/X11i/mum
22693 p0 S 15:29 /usr/bin/dxterm -ls
22697 po I 0:05 ({(cah)
24984 pO S 0:00 (am)
24986 po R 0:00 (ps) .
22694 p1 I 19:05 /usr/bin/dxterm ~ls -n dxtermi
22598 p1 I 0:09 (cah)
24966 p1 T 0:52 {dxpaint)
s -
Pipes

Stdout of one program can be connected to stdin of another one

through a pipe

Example: We want to know the number of login processes on
our system . This can be found by counting the
number of lines outpw.t by who

$ who |we ~1
3
$

theme:

The Unix Shell

sl :hie no: 3.23

Theme: The Unix Shell

Slide n>: 3.3

fopic:

Simple Shell Commands

exaample: who |we -1

csh

wait

csh
exec who

lose stdout
‘ose pipe read
up pipe write

stdin

stderr

pipe write

csh

open pipe

csh

exec wc

close stdin
close pipe write
dup pipe read

stdour

stderr

pipe read

N W~

stdin

stdout

stderr

pipe read

Dipe write

Topic: Simple Shell Commands
The tee command:
process a process b
stdout stdin
> --I— > stdout
W
file
$ (date:who) |tee save | we
4 23 133
$ cat save
Tue Oct 9 17:23:08 MET 1990
uli ttypo Oct 9 15:23 (:0.0)
uli ttypl Oct 9 15:23 (:0,0)
uli console Oct 9 15:21

$

Running commandsin background:

3 (date;who) |tes save lwe >count &

923
$ cat save

Wed Oct 10 11:47;

uli ttypo
uli ttyp1
uli conac
$ cat count

4

]

le

23

§8 MET 19590

Oct 9 15:23
Oct 9 15:23
Oct 9 15:21

133

(:0.
(:0.0

0)

)

.

-

ame: The Unix Shell o1lide no: 3.4 Theme: The Unix Shell

Slide no: 3.5

»ic: Shell Scripts - Topic: Shell Scripts
Creating new commands Passing parameters into shell scripts
The shell is a user program as any other one provided by the Write a shell script that adds execute penmission to a file:
system or written by you. It's name is sh $ s cx
. . . CX: Mo such file or directory
Sincez sh accepts input from stdin and we can rediract input ¢ echo ‘chmod +x $1° >cx
. $ 1ls -1}
to it from a file we execute shell commands from a file: -m_r__r-ff 1 uli 12 Oct 10 12:27 cx
$ sh cx cx
$ cat no_users this is the contents of file $ 1s -1 cx
-ruxr-xr-x 1t uli 12 Oct 10 12:27 cx
who I we —1 no_users $ echo 'echao Hello fans !’ >hello :
$ hello
$ sh < Nno_uUsers here we execute it hello: cannot execute
$ Ccx hello
3 $ hello

Hello fana !
$

If the shell is given an argument it interprets it as the file

from which commands are to be read: 30 : script name

2 3h no_users | 3n: contents of nth parameter
3 S#: number of parameters
3*: all parameters
.
We can even make the text file executcble and cali the shell 87 exit status of last command executed
implicitly:

$ chmod +xX no_users
$ no_users

3
$

Theme: The Unix Shell

sl ido no: 3.6

Topic: Simple Shell Commands

theme: The Unix Shell

Slide no: 3.7

Topiq: Filters

Program output used as arguments

The output of programs can be used as arguments into other
programs:

¥ echo ‘echo At the tone “Gthe time will be exactly ‘date'’ >tim
$ cat tim

ecl.o At the tone the time will be exactly ‘date'

$ chmod +x tim

$ tim

AL tr2 tone the time will bhe exactly Thu Oct 11 16:29:54 MET 1990
$:

Shell variables and environment variables

Variables can be defined and assigned strings
The e.wvironment variables are known to the sheil

$ myvarsyhatever

$ scho s$myvar

whatevaer

$ echo 3PATH
.:/uar/local/bin:/uaeri/uli/bin:/uar!ucb:/bin:/uer!bin:/usrlbin/Xii

lacal/unix:/uar/new:/usr!hoata:!uar/localfunix:lusrflocal/prlam
$

Programs that read input, perform some simple transformation.
and produce some output are called filters

examples: grep,tail,sortwe,sed,awk...

grep: searches files for a certain pattem and prints out
lines containing it

$ cat telephone

philip 2587
mark 3860
evelyn 1278
peter 6530
$ grep mark telsphone

mark 3860

$

special meanings in grep:
" beginning of line

a single character
[...] anycharacterin.., ranges allowed
["...] any character notit...ranges allowed
e* any occurences of e

grep ‘NAJ* ' fete/passwd
passwd entry:

name:password:other information
name: :other information means: no password was set!

e

“re

weme: The Unix Shell slide no: 3.8 theme: The Unix Shell Slide no: 3.9
spic: Filters ' Topic: Flow of Control
The stream editor sed Loops in shell programs
‘akes a stream of characters from stdin or from a file, transforms it)
L . . There are 3 loop constructs in the shell:
sing line editor commands and outputs it on stdout.
sed 'list of editor commands’ filenames The forloop forvarin list of words
do
wxample: sed 's/Mr Miller/Miss Smith/g’ letter >new letter commands
$ cat letter . done
Jear Mr. Brown,
after the Trieste course I would like to invite you for a drink . .
at Mr, Miller’'s home. I think we all earned it. Mr. Miller The while Ioop while command
Jill be glad to welcome you all. do
Jeat regards, the Trieste course organizers.
$ sed ‘a/Mr, Miller/Miss Smith/g’ letter >new_letter Ioop bOdy executed as kmg as command
$ cat new.letter retumms true
Jear Mr. Brown, done
after the Trieste course I would like to invite gou for a drink
at Miss Smith’s home, I think we all sarned it. Miss Smith
uill be glad to welcome you all, :
:est regards, the Trieste courss organizers, The until IOOp until commmand
= do
Even more tricky: The list of editor commands may ccme loop body executed as long as command
from afile: _ returns false
done
sed —f cmdfile
example :
until who/ grep uli
do
sleep 60
done

1

Theme: The Unix Shell

sl 1lde no: 3.10

Topic: Flow of Control

Theme: The Unix Shell

SIida no: 3.11

Topic: Flow of Control

Conditional statements

case word in
pattern 1} commands;;
pattern 2) commands;;

esac.

The case is very often used to check the syntax of a command
and to assign default values to optional parameters

$ cat asam
incl="echo $1 |sed ‘s/\,.%77°"
out=sincl.o
inclasincl.m
case $# in
0) echo usage: $0 infile \[macro file\] Voutfiles]
exit 2;;
2} incl=s$2;;
3) out=s3;;
x)
asac
echo m6809 $1 s$incl fout
exit O
$ asm
usage: asm infile [macro file] [outfile]
$ asm
m6809
$ asm
mE809
$

Z.0

NNNHN
oD Do

aaHN
333

z.Q

if ... then ... else

if command

then cmds
else cmds

f

The if statements tests the exit status of ‘command’ (§?)

and if successful (exit status = 0) executes the then clause.

In if statements the test program is often used

test —rfile tests if file is readable

test —f file tests if file exists

test —w file tests if file is writable .
test sl=sl tests if two strings are equal

testnl —eq—n2 tests if two numbers are equal

if test —r 31
then
do something
else
echo Cannot find file 31
fi

e

ey

=

LAl

eme: The Unix Shell

Slide no: 3.12

theme: The Unix Shell Slide no: 3.13

pic: Flow of Control

Topic: Signals

A shell script demonstrating conditional and

loop constructs

L

The script replaces the ™'

"in the PATH environment variable

by blanks and the checks for each resulting directory name

if the file 'command’ exits.

$ cat where
case $#% in

0) echo 'Usage: whereis command’ 1>42; exit

esac
for i in ‘echo $PATH | sed

do
if test —-f $isst
then
acho $i/%1
fi
done
$ whers where
. /uwhere
$ where s
‘oin/la
3

i YRR B
s/l g
8/ 8/ ./
a8/ f Jg°"

Catching signals

Typing *C sends an interrupt signal to all processes run from

your terminal. This will normally will terminate the processes.

The shell protects processes started in background from

being ternminated through ~C.

Shell scripts working with temporary files which are removed
at the end of the script should do this cleanup also when
tenranated by "C.

We can trap signals and execute a "trap handler’

or we can ignore signals

trap sequence of commands signal number

now=/tmpitemp.$$ signal numbers:

cat >Jnew .

trap ‘vin —f $new; exit2' 215 9 s.heli ext
2 intenupt

9 kill (cannot be caught)
15 | terminate

Theme: The Unix Shell

sl ide no: 3.15

Theme: T he Unix Shell Slide mo: 3.14
ropic: Workstations
WS 1 ws2 ws3
Ethemnet
File
Server

-

On startup the workstation sends a baot request down the
ethernet containing the requesting node’s hardware
address. It's server recognizes the request and downline

loads the kernel image corresponding to the workstation's
hardware configuration.

The workstation’s file systems are mounted on che file
server (transparent distributed system) The swap space
may also be remote (diskless workstation).

The system starts up a window system (X—Windows/Motif)
and allows login.

On login a terminal emulator window is brought up and
allows :he user to communicate with the shell.

Topic:

Good Bye

if test —r §2
then ‘echo $1 | sed ’s/.

@

Kernel

designed by
Jacques Redard

L@

That’s all folks !

LynxOS Slide 1

The architecture of the accelerator control system:

Workstation Workstation

Ethernet

File
Server

Front End
Computer

Field Bus
Equipment
Controller

System nceded in the front end computer:

System with Unix user interface and Unix system calls

Real time features

Front End Computers are situated near the equipment in a harsh

environment -> diskless system
Bootable over the network

LynxOS Slide 2

Advantage of Unix: Operating Systems running on several
hardware platforms. But ... several Unix variants make
protability more difficult.

POSIX: defines standards:
e POSIX.1:

-— defines the interface between portable applications and the operating
system, based on historical UNIX system models. Consists of a library of
functions frequently implemented as systemn calls

¢ POSIX.2

— specifies a shell command language based on the System V shell with some
features from the C Shell and the Korn Shell.

s POSIX.3

—— provides detailed testing and verification requirements for the POSIX
family

e POSIX 4

— is a set of real-time extensions to POSIX.1. The standard contains:
* Binary semaphores
* Process memory locking
* Memory mapped files and shared memory
* Real-tim signal extensions
* Clocks and timers

LynxOS Slide 3

What is Real Time Performance?

An application is real time if it must generate a respon.e to an external event
within a bounded time interval in order to function correcdy

LynxOs compared to Unix:

The internal coding of the kemel is completely different

User shell is similar to Unix shell (anyway many different shells are used
uider Unix)

Uses mainly GNU compiler / debugger tools
Has all Unix system calls (and many more)
Different (Real Time) Scheduler

Threads

Different types of semaphores

Real task priorities

Allows interrupt handling through device drivers
Allows to selectively enable and disable paging
Access to physical memory may be granted

LwynxOS Slide 3

LynxOS Slide 4

Parameters influencing the Real Time Performance

Task response time

Critital Section

Driver response Interrupt "
Completion Time

time latency

Task Completion INterrupt Task switch time

time dispatch time

» Task response time:
The time it takes the application to be notified of the interrupt occurence

¢ Driver response time:

The time it takes the device driver to be notified of the occurence of the
interrupt.

e Interrupt latency

The time interrupt acknowledgement is disabled due to a critical kernel
operation or an interrupt service already in progress. ’

+ Interrupt dispatch time

The time it takes the hardware to acknowledge the interrupt and the
operating systrem to dispatch to the appropriate dniver,

+ Task completion time

The time it takes the application to finish its time critical operations.
+ Task switch time

- Time it takes to schedule and perfom a context switch to the highest priority
task.

T aramMC CliAL A

™

ey ™

LynxOS Slide 5
Task completion time

Task execution time Interrupt execution time

Priority inversion time

Task execution time:

The actual amount of CPU time needed by the task to carry out its functions
Interrupt execution time:

The time the task is suspended because the system is servicing interrupts
Priority inversion time:

The time the highest priority task is blocked waiting for a resource held by a
lower priority task to be freed.

LynxOS Slide 6

Real time Scheduling
3 types of scheduling:

Fixed Priority

—Only the highest priority runnable tasks will be scheduled
—Priorities are only changed through explicit directives
—minimizes priority inversion time

Fifo

~—A task runs until it completes, blocks, voluntarily yields

the processor or is preemptied by a higher priority task
Round robin
—Same as Fifo, but task may be preempted by another task
of same priority
Priority inheritence:
—A low priority task holding a resource needed by a high

priority task will have its priority boosted temporarily to
the high priority until it frees the resource.

Example:

Data aquisition and critical control -> high pricrity Fifo
Status display update and user interface -> medium priority round robin
printer log -> low priority

There are calls to change the type of scheduling and the task priority:
geWsetprio get/setscheduler yield (forces the process to release the CPU)

LynxOS Slide 7

Signals and Events
Signals work the same way as in Unix however ...
Events are extensions to signals: (numbers 32-64).

Events are queued, so cannot be lost. They also transfer a data
word.

Definition of a set of events:

Hinclude <signal.h>

sig_set T set;

/* create an empty set of signals */

sig mptyset{&set)

/* now fill the set */

sigaddset(&set,SIGFPE);

Definition of an Event Handler:

#include <signal.h>

#include <events.h>

void handler(Int signum, int data);

struct sigaction act, old_act:

act.sa_handler = handler:

act.sa_mask = mask_while _handling; * a sig_set */

int success;

success = sigaction(signum, &act, &old_act);

where: handler = SIG_DFL: default handler
handler = SIG_IGN: ignore
else address of a handler routine

LynxOS Slide 8

Shared memory segments

Creation of a shared memory segment:
#include <sys/shmmap.h>
mkshm(" myshared" 0666 | SHM_PERSIST,4096)
arguments: filename

access rights

size

Opening of the shared memory segment:
fd = open("myshared”,0_RDWR,0) /* 0: mode only used with creat */

Attaching to a shared memory segment
address_of _sm = shmmap(fd,NULL,length,offset,flags)
flags: SHM_READ,SHM_WRITE,SHM_EXEC

Detaching from the segment
shmunmap{address_of_sm,length);

Closing the segment:

close(fd)
The use of the shared memory ressembles very much normal file access

gy -

.

LynxOS Slide 9

Accessing physical addresses:

Each process has its own memory segments and can only access memory outside
its private area if it attaches to a shared memory segment.

How can we access registers of an /O device e.g. an ADC or I/Q register ?
#inchide <smem.h>
char * smem_create(name, phys_address, size, perm)

if the shared memory segment "name" does not exist, it is created and the base

address is returned to the caller. Otherwise the address of the existing segment is
returned.

‘The seiyment is not owned by the caller, it is valid for any process in the system.
To getrid of it:

smem_remove(name}

LynxOS Slide 10

Semaphores

There are 2 types of semaphores:

¢ Binary semaphore

¢ Counting semaphore

The mechanism is similar to the shared memory concept:
Open a semaphore

fd = open ("mysem",O_RDWR,0)

Wait for the semaphore
semwait(fd) waits until semaphore is freed
semifwait(fd) returns with error if semaphore is blocked

Release a semaphore
sempost(fd)
semifpost(fd) if no process waits for the semaphore: error

LynxOS Slide 11

Threads
Advantages of threads over processes

All threads have a common memory zone and therefore all data
are accessible to all threads. It is however also possible to
create a small amount of private data.

Creation of a thread:

Create attributes

#include <pthread.h>

pthread_attr_t ater:

pthread_attr create(&attr);

Now the attributes for the thread can be set:
pthread_attr_set/getstacksize
pthread_attr_set/getsched
pthread_artr__sctjgetprio

Once all attributes are setup we create the thread:

pthread_create(tidp,attr,routine,arg)

where: tidp: thread identifier tid
attr: attributes setup before
routine: address of the code to be executed by this thread
arg: arguments passed to the thread.

pthread_exit(status)

finished the thread

LynxOS Slide 12

Treatment of interrupts:

Interrupts must be treated in supervisor (system) mode.
From user point of view: 2 solutions:

¢ read system call waits until a blocking read is finished

* select system call waits until input is received on a fd

Both use device drivers.

The kernel communicates with device drivers through the entry
points: "

¢ XYZinstall(): installs a new major device
XYZuninstall(): removes a majpr device

XYZioctl(): control operations and status information
XYZselect(): needed for select system call
XYZread(): reads data from the device

XYZwrite() writes data to the device

The device_info_structure passed to the install routine contains
all essential information of the device (physical address,
interrupt vector ...)

oy =

e

LynxOS Slide 13

The driver has no access to system calls. However a number of
calls are provided for interprocess communication and
debugging:

Semaphores: swait, ssignal

System threads: Needed when an interrupt treatment would take
too much time

cprintf and kkprintf for debugging

re

e

e

