—_
% UNITED Natloss EDUCATIONAL, SCIENTIFIC aND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LCT.P., P.O. BOX 586, 34100 TRIESTE, ITALY, Canslr CENTRATOM TRIESTE

INTERNATTOUNAL ATuMIt ENERGY AGE SN U s

PrIINsy
S

)

¥
e o i(_ "")
UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION 2

IN;I'VI;ZVE(NATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

o INTFRNATIONAL (ENTRE PR THEVAFTH &) FHASCS 00 TRIESTE A § 0 b oAaSr 3 aSRIA e oA 4 b Pi By e CEEPHUNE 20D R BT e

HIR AN O]

SMR/643 - 19

SECOND COLLEGE ON
MICROPROCESSOR-BASED REAL-TIME CONTROL -
FRINCIPLES AND APPLICATIONS IN PHYSICS
5 - 30 October 1992

A GENERAL PURPOSE
PC BASED DATA ACQUISITION SYSTEM

J. WETHERILT
Scientific and Technical Research Council of Turkey
Marmara Scientific and Industrial Research Centre
P.O. Box 21
41470 Gebze Kocaell
Turkey

These are preliminary lecture notes, intended only for distribution to particlpantsg

o

A general purpose, PC based data acquisition system.

1. Intreduction
1) Hardware elements : IEEE 488 bus

Parallel, high speed (~ 1Mbits/sec max} data bus

Three handshake lines DAV, NRFD, DAC

Can broadcast or address instruments independently

Maximum of 15 instruments can be attached to bus, each with a unique address
Commands generally sent as ASCII strings ie "FORCM3X"

A status byte will be returned by a serial poll. Each bit is used 1o indicate the status of a
different device dependent function except bit 8 which is reserved to indicate that the
device has requested a service request (SRQ).

{2) Requirements of an aquisition system

The system must be able to use an unspecified number of instruments up 1o a certain
maximum

I must be possible to designate experimental quantities to act as control parameters
{voltage, current, temperature etc) that can be set to some inilial value. When all the
parameters are at their set points, a set of data will be acquired and some of the
parameters wiil have their set points changed and the system wiil wait until all the
parametars are again set. The process will continue until one or more parameters are
cutside preset limits when the system will stop. A maximum data aquisition rate of
about 1 trigger/sec is expected.

The system must be flexible enough lo accomodate rapid changes in nslrumentation or
experimental method without the neccessity of recompilation

MC68488

FIGUR™ 5 — GPIA SYSTEM

<JHH HH\W

M

SRR

11

L e

L
K

/
I

»
F

R g,

2 Design of the acquisition system

® Modularity : For each instrument attached to the bus a memory resident module aims

to model the intrument's behaviour. Only need to load sufficient code 1o drive the

loaded instruments. Do not have 1o cater for situations that will not occur in the present
experiment.

Each medule is 1o be configured at its time of loading with values that reflect the
particular instrument and experimental conditions.

A MASTER module is 1o coordinate all bus activity by communicating with each
module, assessing its stalus and taking action accordingly.

A method by which modules can be loaded into and unloaded from memory s to be
used.

DOS is 1o be used as the operating system because
(i) can run on small systems (no extended memaory)

(i) plenty of development software languages available
(i) available on all PCs by defauit,

3 Module design

{1) Device tunctions :

Initialisation : Set instrument 1o predefined state.
Data Trigger : Instruct the instrument to start a measurement usually an ADC
conversion)

Status : The instrument is to return a status byte when requested that indicates (for
example) whether or not a data reading is ready or the current error state
Send Data : The instrument will send its data when so instructed
Sensor cutput linearisation : Some sensors (ie thermacouples)

are non linear and it is
convenient {0 have their output linearised in some manner

T

Ty

et

re

oy .-

olels
auo(12]|04u0d

_ _ — aNod
C MU <1ep) L3S LY

o1elS — — alelsS
HEM 19)joQuUoY - 183 Jsjjosjuo)d

St 13871V —

e 3SIVILINI ' uod

—

I|YIVAY Vivd o
| aels e ajels
. Hep dJ1neQ - Apeay 0o_>0n_\\

mmwo_my\ T V1vd HILN3
a1e1s

~ 9|p|92neg
101157 PUBS HIADDIYL ——

 es
~ dol3 ddlneg uod

JSNVILINI

Controller functions : 4 Implementation (All information here refers to DOS version 3.0 and above. Although
many functions given here are undocumented in the early DOS versions, DOS 5.00
admits their existance and hence future versions will officially adhere to the present

® All device functions 1o be contained in the module but to be hidden from an external format. Versions 1 and 2 use are not compatible with all the functions give here)
user. The device functions will be used by the controller to obtain data concerning its
status. Hardware Interrupt Vectors
® The controller will reset its set point value when so instructed by the Master and will o
indicate when presel limits have been exceeded | Interrupt no function o
® The controller must indicate to the Master its current status and in particular when the 08h Timer tick o
contolled quantity is both within a given error window and stable, 0%h Keyboard o
® Some passive controllers need only receive an initialisation command atter which they 0Ah Slave interrupt controller
maove o their set point and when stable do nothing further 0Bh COM1 i
. aCh COM2 o
Master Module functions : " obh LPT?
. A , _ ~_OEh Floppy Disk o
® The Master module will act as a supervisor to each of the installed modules. It will L_OFF fgyﬁ -
periodically instruct the software associated with each instrument to perform and : LT
update of ils current status. When all controllers are 'SET’ a general TRIGGER will be
sent to all active modules intstructing them to obtain their current values. Active MSDOS interr nd functich ful in memory resident programming
controllers will reset their set points.
® An interface through which an external user can monitor and control the progress of an
experiment should be implemented by the Master.
® The master module can implement many of the software functions required by the other Interrupt function Description
modules. This removes the neccessity of duplicating these functions in each module _
and can result in considerable savings in code. Examples of such tunctions are - bus 1Bh - Ctrl-C BIOS functicn
communication; file handling; floating point handling etc. .
21h 1Ah Set disk transfer area (DTA)
Timer Module .
21h 25h Set interrupt vector
® in some cases it is neccessary to log data as a function of time. This module uses the .
internal PC clock to provide an intertace that is cempatible to the controller moduie 21h 2fh Gt disk transfer area
{without of course any hardware instrumentation) 21h 31h Keep process
>ensor Module 21h 33h ___ | GetSet Break-On fiag
* In order to provide linearisation of data in a general manner a module can call functions 21h 34h Get INDCS and DOSErre- flag addresses
and data residing in a sensor module. This converts an input value into a conditioned
output by a look up table and a binary search. The data table can be loaded into the 21h 5Ch Get programme segment prefix (PSP) address
sensor during its initialisation stage. ‘
21h 5th Set programme segment prefix address
23h - Ctrl_Break handler
24h - Critical error handler {CEH)
28h - DOSldle handler

e

-

ry -

ach module will install itself using Dos interrupt 21h function 31h . This enables the
rogramme to terminate without deallaocating the memory reserved for it.
module can be removed from memory by using function 42h and putting the segment
ddress of the Piogramme Segment Prefix in th ES register. Note that the environment
lock also needs to be removed in a similar manner.
ny initialisation parameters are loaded from a text tile at the installation time.
ignals between the moduies can be passed using software interrupt handlers. At
istallation each module attaches itself to a free interrupt. The signal number will be
‘aced in the AX register and any othes integer values passed in the other registers.
lore sophisticted structures can be passed by the use of pairs of registers acting as
ainters. Following a signal, a status word is usually returned in the AX register.
ROBLEM : The Master module must maintain a list containing {among other things)
e interrupt numbers of each module installed. Therefore it must be installed first and
very other module should register itself at installation by sending an appropriata
gnal. However, during operation the Master must be supervising the other medules.
1us the Master should also be memory resident and the software must designed
cordingly.
1e Master must be activated periodically in order 1o coordinate bus activity, The
asiest way to accemplish this is to hook onto the PC's timer which issues interrupts
3.2 times per second. This can be done in two ways :
(i) The timer interrupt provides a dummy interrupt #1Ch to allow any process to to
hock on teo the timer hck. The timer issues int 1Ch which usually returns
immediately via an IRET. The user can redirect the inferrupt vector for 1Ch to
point at a new service routine.
PROBLEM : The 8259 Programmable Interrupt Contralier requires a non-specific
end of interrupt {(20h to port 20h) to indicate that interrupts with lower priority can
be serviced. The timer interrupt issues the EOI close to the end of the handler,
prior to returning to the main programme. If the new handler for 1Ch is long {and
generally 1 will be when a number of instruments are attached), the issue of the
EOI will be delayed causing strange and wonderful effects (such as keyboard
lockout). It the new handler itself issues the EOI the system crashes (by
experience).
(i} Replace the timer handler to int 8 by a new handler which immediately
calls the old handler. This allows the QI to be issued immediately the timer has
performed its tasks and minimises any undesired effects.

(2) Hargware interrupts and DOS

® The timer is assynchronous and can therefore interrupt at any time. Especially

dangerous times occur when DOS itselt is interrupted as DOS is not reentrant. This is
because DOS maintains several internal stacks: the 10Stack used when execuling
functions 1-Ch {the character 10 functions); the DiskStack used for most remaining
functicns; and the AuxiliiaryStack used for exception {error} handling. Each stack is
guaranteed to be large enough to hold one set of registers only. When Dos is
inferrupted and a second call to DOS is made the relevant stack will be overwritten by
the second call which will eventually terminate normally. The first call, however, finds
that its registers have been corrupted and will not terminate correctly, usually resulting
in a system crash.

Whenever a hardware interrupt occurs, DOS switches 1o a special stack set aside for
this purpose. The size and number of such stacks can be sel in the Config.Sys file with
the STACKS command. However, the maximum size of any single hardware stack is
512 bytes and is totally insuffient for mest high level languages. The user must
theretore ensure that a stack of sufficient size is made available to any module linking
itself 1o a hardware interrupt handler.

Certain actions taken by the user, or errors that occur during programme execution can
cause the current process to terminate {i.e. Ctrl-C, disk 10 errors). If these occur during
a hardware interrupt, DOS will attempt to restore control to the parent process (in
general the command interpreter) . The results will be unpredicable, but a system
crash often results. In any case a memory resident process should not be terminated by
Ctrl-C.

Most BIOS interrupts that control the low level PC functions are reentrant from the
software aspect but because of the physical process they control, are effectively non
reentrant. For example : A process is writing to the hard disk when it is interrupted by a
second process that also writes to the disk. The secand write moves the disk head to a
new position and perfoerms the operation. When finished it dces not return the head to
the position it found it and the first process continues writing blissfully unaware that the
head is in the wrang position.

(3) Learning to live with DOS

® |s DQS safe ? : DOS is not reentrant and can not be made to be so. The only way

around this 1s NOT to continue with a hardware interrupt if so to do would risk crashing
the programme. Forlunately, DOS provides several flags that can be read to determine
whether or not DOS is currently processing a system call and whether it is safe to
interrupt. Function 31h returns a pointer to the "InDOS" flag which when set indicates
that DOS is currently processing a call. The byte prior to this flag is the "DOSError flag
and is used 1o indicate whether DOS is processing an abnormal situation. Thus it either
INDos or DOSError are set, DOS is not safe to interrupt and the interruption sheould be
postponed until later. In some circumstances for instance when awaiting keyboard
input, function 1 is issued, the INDos flag will always be set and the inferruption will
never occur. To deal with such situations, whenever a character IO function is issued
and the system is waiting, interrupt 28h is repeatedly called by DOS itself. If the user
wishes, the default handler can be replaced and the desired task undertaken. Any
function with the exception of functions 1-Ch can be called from int 28h.

¥ Handling Ctrl-C aborts . When Ctri-C is pressed, BIOS interrupt 1Bh is called. This
places the Ctrl-C charac

ter at the top of the keyboard buffer. The system is not
immediately aborted, but

when DOS is next called for any reason, the keyboard bufter
is checked and the proce

ss aborted (by issuing int 23h) if the DOS function is 1-Ch or
the BREAK flag is set. Abortion can be avoided by :

(i} Replacing the int 1Bh handler so that the Ctrl-C
recognised.

(i) If no charcter 1O functions are to be

BREAK flag can be cleared for the du
33H to both set and clear the flag.

(i) Int 23h can be redirected to a new handler that clears the processor carry

flag and returns. This prevents abortion but migses any Cirl-C characters
that occur whilst the handler is in effect.

character is not

called from within the handler, the
ration of the handler using function

Handling Hardware Errors : When a hardware esror occurs the Critical Error Handler,
int 24h is called (usually resulting in the fa

mous message "Abort,Retry,Fail?"). Int 24h is
ex| ected to return in the AL register one of the fallowing codes :
0: Ignore and return without error.

1: Retry the operation,
2: Terminate the programme,

3: Terminate and return with error code{let the application decide).
To prevent termination the int 24h handler should be

replaced by a new handler that
returns with the AL register cleared. It is perhaps prudent 1o indicate that an error has
ocurred by setting an appropriate flag,as when DOS returns control, the user would be
unaware that an error had ocurred.

Disk Agcess :

{i) ~ The BIOS int 13k can, it neccessary be replaced by a handler that sets a
semaphore and calls the old handler. Other processes wishing to use the disk
services should first ch

eck the flag before accessing. This probably not
neccessary as very few programm

©s use the disk without going through DOS
(unlike the video tunctions int 10h) |

(i} DOS needs the addresses of two structures maintained by each process for
disk 10. These are the Programme Segment Prefix {PSP) and the Disk Transfer
Area (DTA). Without these two structures essentiat file information will not be
available. They can be obtained from DOS at installation time using functions
2Fh (Get DTA) and 51h (Get PSP). The functions 1Ah and 50h perorm the
inverse operations and can

be used to set the values of the DOTA and PSP prior 10
disk 10 from within the interrupt handler.

Appendix H |
Program Segment Prefix (PSP) Structure

Size

Lin
fset bytes) Contens

MOH 0y : [NT 20H :nstruction

aIH {21 Addrews of Last segment

Figure H-1{memory block diagrae?
{llustrates the structure of the pro-
gram segmeant prefix (PSP

llocated 10 program

l
WH 9 |!*

Reserved: normally 0
OSH s 8

OAH (1

| Long call ;o M5-DO3 funcuon dnpm:h:rj
‘ Terminaic programaniermupl veutof 1
i

sInteprupt 22HY
UEH 12 Ca1-C handler interTupt vector |
Ilntermupt 13HY |
oo | Chtcal error handler snemupt ~zam ‘

i Harerrupt 1HY
InHIN 2 "
i Reserved |
SO I Segment witress of enviroament |
SEH Any u‘ ‘
| Reserved |‘

ETTIRE Y

! INT 11H. RETF nsgucnons i
SIH 4l Ak 1

| Reserved |

SCH 9D e
(Deefauil file conooi block 1

SCH 11083 :cif

} Default fie sonmel block
| Lovertmd o FCR § opered]

WH 128 \:“r

C ommand il and detauit DT4 \

Srep
R . f the DroQetim o eg men! Jrefor
Frqure M-0 Siructare of the orog

e

e

2]

(4) Coding the modules

® Installing the device module

yocedure Install_Interrupt;
var DosCode : Integer;
regs :registers;

Ok s Word;
Index : byte:
begin

{Set up buffer to hold data }

for ok = 0 to BufterSize de Data_ A y[index] = 0,
{Get command line parameters and load set up data from file}

Get_DCommandl.ine;
{Save old interrupt function 35h}
GetIntVec{IntNo.IntSave);

{Set new handler using function 25h}

SetintVec{IntNo,@Int Handler);

{Get and set up peinters to IEEE functions etc)

ok := Install_Device;
State ;= POn;

Esr State = No Ermr;
Con_Table = false:

Writein{'Instrument # ".DeviceNo." installed al int ".IntNo." as device');

with regs do
begin
AX = $3100:

BX = DSeg - PretixSeg + (ofs{Data_End) div 18)+1;

Intr($21 res);
end,
end;

function install_Device:Word;
var reqs : registers;
begin

with regs do

begin

t{Get pointers to IEEE functions)
AX = 2;
BX :=1;
intr{Masterint,Regs);
Spolt_Ptr .= ptr{ES,DX);
AX =2,
BX = 2;
intr{Masterint,Regs);
Xmit_Ptr = ptr(ES.DX);
AX =2,
BX = 3:
Intr(Masterlnt,Regs);
Send Ptr:= ptr(ES.DX);
AX = 2;
BX = 4;
Intr(Masterint,Regs);
Enter Ptr .= ptr(ES,DX);
{Register device and get DataNoj
AX = 0;
BX := DeviceNo;
CX = intNo:
DX ;= Ofs{CurrentData);
Sl := ofs{Data_Array);
ES := Seg{CurrentData};
Intr{Masterint, Regs);
DataNo = ptr(ES,DX);

end.

Initialised .= false;

Install Device := DeviceNo;

(‘31;

® The device interrupt handler

procedure Int_HandIer(FIags,CS,lP.AX,BX,CX,DX,DI.SI,DS‘ES,BF’:Word)

Interrupt;
begn
Inline($FB);
Case AX of
$0 : AX = Return_Siatus;
$1 : AX = Serial_Poll{Status);
$3 : AX := Trigger_Device;
$4 : AX = Initialise_Device;
$7 : AX = DataNo*;
$8 :begin
ES = Seg{Data_Array);
DX := Ofs(Data_Array);
end,
$20 : AX := Install_Table(BX):
$21 : AX := Return_ErrState(FS,DX)
$EO : AX := Install_Device:
$FF - AX = Kill;
end{Case};
end;

’

® The status function

function Return_Status:Word:;
begin
case State of
Idle,
Waiting ' Return_Status := Get_Status(State);
Data_Ready : Return_Status := Get_Data(State);
POn : Return_Status .= Power_On(State);
else Return_Status := Get_Status(State);
end{Case];
end;

tunction Get_Status{var State:State_Type):Word:
var Status_Bit:Word;
ok Word;
begin
{Poll instrument and get staus byte)
Poll := Serial_Poll(Status);
if Status <> 0 then
begin
State := Error;
Err_State := Poll_Err;
Status_Bit = Erval;

end
else case State of
Idle : Status_Bit := Dlval;
Waiting : begin if ((poll and DAMask) = DA)
then begin
Status_8it := DRVal;
State ;= Data_Ready;
end
else Status Bit .= DWVal;
end;
Data_Ready - Status_Bit := DRVa/;
POn : Status_Bit := Initialise_Device;
Error - begin
State = Idle;
Staius Bit := Erval;
end:
end{Case},

Get_Status := Status_Bit;
end;

Y

e

™

e

® The Master module

procedure Install_Master;
var DosCode : integer;

Ok - Word,
Dummy : Word;
begin

Stack_Seg := SSeg;
{Get parameters)

Get CommandLine;
{Initialise device registry}

Ok := Register_Device(0.0,Dummy, Dummy,Dummy);

ok := Reset Time;
{Initialise variables}

Data Available = lalse;
Bus_Ready = false;
Bus_Error = false;
Bus Done = false;

Busy := false;
Stop = true;
Service Wanted = false;
Err State =No Err;

[Dissable interrupts while setting up module}
[nline{$FA},
{Get INDOS and DOSERRCR Flag addresses}

with regs do
begin
AX = $3400;

Intr{$21 . regs);

inDos := pir(ES,BX);

DosError = ptr(ES.BX-1);
end;

{Install various hardware and software interrupt handlers}

GellntVec($8, TimerlntSave);
GetlntVec(IntNo,CommandintSave);
GetIntVec({$28,DosldleSave);
SetintVec($8.@Timer_Handler);
SetintVec(IntNo,@Command_ Handler);
SetIintVec{$28.@Service_Handler};

'nline($FB);

WriteIn{'AMASS Master medule installed at int # ' .IntNo};

SwapVectors;
Keep{DosCode);
end;

procedure Command_Handler(Flags, CS.IP,AX.BX.CX.DX,51.DI.DS.ES,BF:Word);

interrupt handlers

interrupt;

1

2gin

"(Re-enable interrupts}
InLine($FB);
Case AX of

e

.

0

1 AX = Start_Bus(BX,CX);
2 :AX:=IEEE_Funcs(BX,DX ES);
3 :Bus Done :=true;
4 ; AX = Return_Device(BX CX DX.ES);
5 :AX = Return_Time(DX.ES);
6 :AX = Reset_Time,
7 :lInitialise_Bus;
8 :AX = Device List.D_No[BX],
9 :AX := Return_DataNo(DX.ES);
¢4 AX = Return_State(BX CX S, DX.ES):
$8 : AX = Register_Table(BX);
%20 : AX := StringToFloat(BX,CX,0X,ES);
$21 : AX := FloatAdd(CX,DX ES);
$22 : AX = FloatCompare{BX CX.DX ES);
$25: AX = Set CntriVais(BX . CX.DX.SI.DLES):
326 : AX = GetValStr(BX,CX,DX £5);
$30 : AX ;= OpenFile(CX,DX,ES};
331 : AX = AppendData{BX,CX DX,ES);
$42 1 Held = true;
$43 : Hold :=false;
$50 : AX := Return_ErrorPtr{ES,DX);
$51 : AX := Reset_Error;
$E0 - AX = Install_Devices;
$FE : AX := Kill_Device(BX);
SFF - AX = Kill_All;
end{Casse};

nd;

- AX = Register_Device(BX,CX DX,SI.ES);

procedure Master_Function;
var X,Y:word;
begin
{stop interrupis}
Inline($FA):
if DosError® <= 0 then Exit;
Busy := true;
Set_Stack;
SwapVectors;
SelCtrl_C;
Service Wanted = false:
Count := 0;
if ({DataNo »>= MaxData) or Bus_Dcne) then
begin

State = Done;

Stop = true;
end;
{Allow interrupts)
inline($FR);
State_Action;
ResetCtrl_C;
SwapVectors;
InLine($FA);
Reset_Stack;
busy := false;

end;

procedure Timer_Handler;
Interrupt;
var Index : Word;
regs :registers;
begin
{Call old timer interrupt and reset hardware}
InLine($9C/$FF/$1E/TimerlntSave/$FB):
Timer;
if busy then exit;
f Hold then Exit;
it stop then Exit;
i ({InDos* = 0) and {DosErrort=0))
7. then Master_Function
else Service Wanted “= true;
end;

. {Hander tor DOS int 28h)
! procedure Service Handler;

Interrupt;
begin

if Service. Wanited then Master_Function:
end;

-

e

L

ry

procedure State_Action;
var ok : word;
begin
if State <> Error then LastState = State;
Case State of
Idle - begin
if Bus Ready then
begin
State .= Wailing;
Status := Trigger_Bus;
E xit;
end;
Status = Get Status:
It Bus Error then State = Error;
end;
Waiting : begin
Status = Get_Status;
if Bus Errer then State ;= Error else

it Data_Available then State = Data_Ready:

end;
Data_Ready : begin
if not Pause then
begin
if Sync_Trigger <> 0 then
begin
State = Error;
Err State = Device FErr;
Exit;
end;
State = Idle;
Bus Ready := false;
Data Available := false;
Bus Error = false;
end;
end;

Error :begin
If Err State = Disc_Err then Exit;
Err _State := Device_Frr;
Status = Get_Status;

if not Bus_ Error then State := Idie;
end;
Done : Status = Start_Bus(0,0);
end{Case};
end;

(5) Testing the software

Warning : Memory resident programming can cause premature aging. Most normal
software debuggers can not enter interrupt service routines and therefore the toals
available for normal programmes do not generally exist

Whenever possible try out the functions from within a normal programme first and then
move them function by function (in some cases line by line) into the memeory resident
module.

To check whether a programme is loading properly and te find out how much space i
occupies use software utilities like Ml or Chkdsk

For intermodule communication, lead one module to memory and the second module as
a normal programme. Step through the second using a debugger paying special attention
to the codes returned by each module call

Develop a purging pregramme that removes a module from memory as early as possble
Finally when you can not find any more bugs, give the sytem to someone who does not
understnd memory resident programming. New bugs wiil rapidly appear!

(6) Installing and monitoring the system

Scftware that helps the user {o provide the necessary run time parameters (such as
which modules to load, the values of the particular settings needed for the qiven
experiment etc) and writes them to a file, can facilitate the loading process

Use a foreground process to start and stop the acquisition of data and {o monitor the
progress of the experiment. This can be a simple programme that waits for a one of a se!
of keys 10 be pressed and sends a signa! to the Master tc perform the required action. A
more sophisticated monitor could display the progress of an experiment graphically. In
the present implementaticn the Master medule returns peinters to the data buffers of eacl:
installed module together with a pointer to the current data number. The foreground
process plots each new point by monitoring any change in the data number. When &
change occurs a new ponit is plotted.

As the complete acquisition package is memory resident (with teh exception of the
menitor), cnce 1 has been started i is not necassary 1o run the monitor and any nerma;
programme can be substituted for the foreground fask. This can sometimes be of use.

Parformance

Using the techniques cutlined here, a data acquisition system can be constructed. Data
oblained in an experiment to measure the modulaled photoconductive current in a
GaAs/GaAlAs multiple quantum well as a funchion of the exciting light wavelength i
presented in the figure. This experiment used the foliowing instruments :

Controller 1 Home made interface to monochromator

Controller 2 Oxiord Instruments 3120 Temperature controller

Coniroller 3 Keithley Instruments Programmable Voltage source

Device 1 Stanford Research SR530 LIA

Device 2 Stanford Research SR530 LIA
The experiment was run on an iBM XT

C vk >

Photoconductiwi tuy

140 -

120

100

80

60

40}

Photoconductive signal /\

|

]

l

{

I

N -

|

1.40

1.50

1.60

Energy (el)

1.70

1.80

1.90 2.00 2.10

Useful Bibliography

Bos Programmers’ Reference Manual, Microsoft Press, 1990.
The MS-DOS Encyclopedia, Microsoft Press. 1988

J. Prosise, PC Magazine, p 313, April 1987.

0. Roliins, PC Tech Journal, p 130, April 1987.

e ™

e

ws

g

