INTERNATIONAL ATOMIC ENERGY AGENCY

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m
u INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LCT.P., P.0. BOX 586, 34100 TRIESTE, ITALY, CA8LE: CENTRATOM TRIESTE

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION
INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

t/o INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS HMTIIBTE.MALHVMMANO.QMMAMPMPD.EXHMMM TELEFAX 00023497 TELEX 4049 APH 1

SMR/643 - 3

SECOND COLLEGE ON
MICROPROCESSOR-BASED REAL-TIME CONTROL -
PRINCIPLES AND APPLICATIONS IN PHYSICS
5 - 30 October 1992

INTRODUCTION TO REAL-TIME
OPERATING SYSTEMS

C. VERKERK
Computing and Networks Division
CERN
Geneva
Switzerland

These are preliminary lecture notes, intended only for distribution to participants.

MAIN BUILDING Swrads Costioru, 11 Ted. 240] . Telofax 224163 /24559 Telex 460392 ADRIATICO GUEST HOUSE Vi Orignano, 9 Toi. 224241 Telefax 24531 Telex 4643
MICROPROCESSOR LAB. Via Beirut, 31 Tol. 224471 Telofax 224600 GALILEO GUEST HOUSE Via Beinwt, 7 Tel. 22401

Introduction to real time
operating systems.

September 28, 1992

C. Verkerk
CERN
Geneva

Real time College, Trieste 5— 30 October 1992

Introduction. Introduction.

¢ These lectures give a basic e What is an operating system? Why do
introduction to real-time operating we need it? What can we do with it?
systems. .

e A computer is useful only when it

e We will concentrate on principles and executes a program. Certain parts of
show various solutions to some of the ' this program must handle directly
problems. pieces of hardware. This is not simple

and very often beyond the average

e For concrete examples, we will - programmer or user. Just try to think

nearly always - use 0S-9. of disk 1/0!

e The lectures will largely follow the
presentation given in the book:
A. Tanenbaum: “Operating Systems,
Design and Impiementation”,
Prentice-Hall !nt.,19687,
ISBN 0-13-637331-3.

B

September 28, 1992 Real tims College, Trieste 5— 30 October 1992 1 September 28, 1992 Real itme College, Trieste 5 —30 October 1992 2

[

introduction to real time operating systems. Introduction to real time operating systems.
Introduction. introduction.

e Thus one view of an operating system e One can distinguish different types of
is that it shall provide a reasonable interactive operating systems:
interface to the user. In other words, it . simple, single user (MSDOS, Flex)
should provide to the programmer a - multitasking (Macintosh, GEM,
set of easlly understandable 0S2) '
commands, for instance for doing 1/O. « multi-user, time sharing (UNIX, VM,
All idiosynchracies of the CPU VMS, 0S-9, LynX0OS)
architecture and of interface chips . real-time Kernels (iRMK, AMX,
should be hidden. VRTX, etc.)

e Another view of an operating system is * As you will have to start soon working
that it shouid provide resource with 0S-9, we will look first at its
management, resolving possibly outside, before delving into the internal
conflicting user requests. ' workings of operating systems.

Seplember 28, 1982 Real time College, Trisste 5— 30 Oclober 1982 3 ..2 - September 28, 1992 Reat lime College, Triests 5— 30 October 1992 4

introduction to real time operating systoms. Introcuction (o real ime operating sys.ems.

Overview of 0S-9. Overview of 0S-9.

The main characteristics of OS-9 are:
) o device-independent /O system,

® A real-time, muiti-tasking, multi-user expandable.
operating system, providing the
necessary process scheduling. ® a simple, somewhat Unix-like, user

interface (shell).
¢ provides management of system

resources: memory, input/output s As in UNIX, the system provides,
devices and CPU-time. | amongst other things: hierarchical file
structure, with file modes; inputfoutput
e highly modular structure, so that a re-direction and pipes and filters; shell
wide range of applications can be scripts.
covered, from minimal embedded
systems (entirely in ROM) to level Il ¢ the system is fast and small (entirely
muliti-user system. written in assembly language).
September 18, 1990 fteal lime Collega, Trieste 1 —27 October 1990 5 Septarmber 18, 1990 Real ttma Colinge, Trieste 1 —27 October 1990 §
Introduction to real time operating systems. introduction to real time operating systems.
Overview of 05-9, Overview of 0S-9.
The system comes with a comprehensive It can be further expanded with:
set of utility commands (enhanced and
expanded by users) including: e an interpreter of structured Basic
(Basic09)

® an editor with macro facilities (edit)
- ® a Pascal compiler
® an assembler (asm)
¢ 3 C compiler (ce1 is the base
* 3 debugger (debug) module)

The Microprocessor Laboratory has
acquired licences for OS-9 itself and for
the C compiler.

September 18, 1990 Real lime College, Trieste 1 —27 Oclaber 1990 7 Seplember 18, 1980 Real time Coltage, Trisste t =27 Oclober 1990 8

-3-

08-9 COMPONENT MODULE ORGANIZATION

. . _ ﬂ . .
_ _ _ _ _ —
__sz. _u-_ omumumwzmr _..-_Qoox h
| | i (OS9P1, 0s9P2)] ! l
] h] _ _

1]]

e i

-—— - -~ - ——

I [
| Input/Output Manager |
| {IOMAN} |
|]
s) e ————————— - —— -t
< f | [
[| ! R e |
_ i i i i i
| Disk File | | Pipe File | | Char. File |
| Manager | -+] Manager - |. | Manager 4
“ (RBF) | | (Pipeman) | | {SCF) _
SRS B S . R |
] | | | f
I	i		Pl					
Disk	Disk	I Pipe	} ACIA		PIA			
Driver		Driver		Driver		Driver		Driver
{ (I		(Piper)						
e 1	-l	I, -t V- ——— R	L '					
					{			
i i | | | | [| i
IDO 1 ID1 | |p2 | ID3 | | Pipe | ITL | iT2 | iPl] Ip2 |
LU B LI S | | P | LENy S DN B R B D
RBF Device Descriptors Pipe Descr. mmm Device Descriptors

Prof . White

N\

Committees

[SOSP \ COST-11

Faculty

/|

Prof . Green

/

!

|

O

\

Papers \ Grants

Files

Y

O

)

Prof . Brown

Root directory

/

.

Fal |

\
\
5

Leo
Courses
cs101 / cs10

Students

Matty

Robbert

{ntroduction to real time operating systems.

Overview of 0S-9.

® The file system is organized
hierarchically, as in UNIX, but the
physical device where the files reside
must be specified.

® The root is therefore /d0 , /d1 , /r1,
ho ete.

e The root directory may contain files,
or it may contain directories.

e Each directdry may contain
sub-directories, efc, etc to any depth.

¢ A tree structure is the result.

September 28, 1992

Real time College, Trieste 5~ 30 October 1992 §

Introduction to real time operating systems.

Overview of 05-9.

¢ Two different files may have the same
name, provided they belong to
different directories.

¢ The working directory may be
designated: . , the parent directory: ..
So if C were my working directory,
and there also existed a file:
700/SRC/PASCAL/STATIS/cAuss.»

1 could reabh it with:

. /PASTAL/STATES/GAuSS . P

September 28, 1952

Real ime Coltage, Triesie 5~ 30 October 1992 11

| .

NroCcUCIoN 1O 1ea PG O8RS el By o de e

Overview of 0S-9.

e To reach one of the leaves (a file) you
follow a path: :

/o0/SRC/C/ACCOUNT /pILL . C
This is a full pathname.

® One of the directories is the working
directory. For instance C above. The
same file “bill.c” can then be reached
following a partial path:

ACCOUNT/BILL. C

if YACCOUNT” were the working
directory, the pathname “bill.c” would
be enough.

Saplember 28, 1992

Introduction to real time operating systems.

Real time Collego, Trieste 5— 30 October 1992 10

Overview of 0S-9.

e 0S-9 has two working directories:
. working data directory
. working execution directory

¢ chd, chx commands change the data
and execution directories respectively

e c¢d, cx do the same

e pwd, pwx show what they are.

L

September 28, 1982

Real time College, Trieste 5—30 October 1992 12

Juyds
sooRds
3108
dears
PeI®
ucwis
ploTI=ys
BET 08
ITp8
eARS
1dez
SWBRUIX
dempz
pxd
pad
egind
soo1d
I3ajuyad
astd
yojed
zd

1d
ues¥gs0
Aw
SWPUY IW
ealjw
af1ow
SARS waw
dunpw
1rpa
WOIBU
eyew
AFpyea
&1
urfor
pRO]
ISFT
HUry
auyl
qF1
JTWIDY
ITPT
JuLpy
Xy
drey
Peay
doig
o8
e81)
JPWIOJ
dei8y
CITPXTI
TIPXT3
QUDNFPUTI
PUl3
PI213
upqxe
10119
oysa
dump
wiajp

[F43
Ve

aae
3991
€41
£as
ay
640y
4041
viv
811
S6LT
L9
1991
1181
8iar
0eT
0ET
I
9zt
94
0L02
9LLZ
vt

a2z
SEY
ey

gzt

BE6T
6387
¥oI
447
s
Z
950¢
[Ei9
¥
an
J2
a5zl
vl
959¢
£dr
119
oty
LS8
£6
3082
azi
1az
1aa
LET
vé
Z6
HaET
aiel
1482
val
[41]
(14
081
YA

el
f4 43
o0z
1
(2113
00L
649
L49
6v9
889
[4°}]
aLe
959
%99
€9
ac9
a19
619
919
719
019
309
03%
{as
sds
s
Jvs
(3 1
18 41
365
e139
| ¥4
Lys
we
488
8es
9€s
%05
44
ady
g4y
64%
Say
oay
véy
L6y
agy
68%
14
Viv
0s%
anry
6y
VEY
LEY
56y
€Ly
aty
607
dae
1%
yace
80¢
Sac
3¢

dAMa-a- -
AIMel-0--
IMBI-O--
ANSI-9- -
IMAL=0a-=
IMel-o--
imoi-a--~
IMBI-9--
P TR EY- P
IMGI-@--
AMIT - @=
IMII-0--
IMOT =
IMD It~
IMII-9--
IM9I-9--
INSI-9-~
IMBI~D~-~
AMDIT -D-
IMa-9--
IMIT-D--~
AMII-0--
IMSl =D
INS] D=~
IMBI-O~~
AIMDI-9-~
INII-9-~
IMITDua
IMeI-9- -~
IM2I-9--
INBI-F==
IMeI -~ -
IMel-9--
AMIT-9- -
AIMGI=D=n
IMII -~
IMO I Bu
IMIT-0-~
AN -~
IMRI B~
INI-9--
IMII =D
IMII-9--
IMOI-9--
AMRI-9--
AIMOI-P-~
IMII-9-~
IMeI-9--
IMEIaBaa
IMNSI-B-~
IMOI D=
IMOI-9--
M=~ =
IMO I8~
IMDI-F-~
IMSI-o--
IMO1-9=-=
IMDI-9--
IMaI-9--
IMOI-9--
IMBI-0~~-
IMAI-G--
IMAL-Ba-
IMAT-B--
ANII -

Il
BETT
LIl
LETT
LE11
LETT
LETT
LETH
5291
9Tl
9E1l
9eTl
ETT
9e1t
9E1T
9E1T
SETI
SETT
SETT
113191
SLIT
Selt
SEll
SETT
el
YETT
9ETT
YETT
el
HETT
yell
yEll
£ETT
€ETT
EETT
1281
1138
EETL
SSTE
(4393
2ETL
TETl
CETT
Zell
ZETT
[439¢
1€11
1€11
TETT
(A 114
TETT
11T
TETT
et
14114
95ET
1501
TETT
0ETT
oEll
oElt
OETT
0ETT
0ETY
I R

L0/90/26
st/v0/06
s1/wo/06
ST/v0/06
ST1/%0/06
S1/w0/06
ST/10/06
ST/%0/06
91/80/26
S1/%0/06
$1/%0/06
S1/%0/06
S1/%0/06
$1/%0/06
ST/%0/06
S1/%0/06
S1/90/06
S1/%0/06
§1/%0/06
S1/%0/06
ST1/90/06
S1/%0/06
S1/%0/06
S1/%0/06
S1/%0/06
ST/%0/06
ST/%0/06
S1/%0/06
S1/%0/06
S1/%0/06
ST/%0/06
S1/%0/06
S1/v0/06
§1/%0/06
S1/%0/06
$1/%0/06
St/v0/06
S1/%0/06
$1/90/26
S1/%0/06
SI/%0/06
ST/%0/06
S1/%0/06
S1/%0/06
$1/%0/06
s1/%0/06
S1/%0/06
$1/%0/06
S1/%0/06
Y1/50/26
S1/%0/06
S1/%0/06
S1/%0/06
ST1/%0/06
»1/50/26
80/€0/26
80/€0/26
S1/%0/06
ST/0/086
s1/v0/06
si/yo/06
S1/90/086
ST1/%0/06
S1/%0/06
S1/90/06

oo Oo0LDLOoOOOCoLOOOoOCLOoODoLOCOoOOCo0Co Do oLLDOOOOoDOoOOLDOL DO Oo OO CC

P g ity — - - —

wAUSp
Aeidsfp
WEESTP
ATP
1rp(ep
1ap
1Fpp
Joeyop
838p
Joax2
3dLio
da
preddon
Adoo
ae[qqoo
dun

{22

q2

1{e?

Zo

12
dead-2
zssed o
1ssed 2
3do'o
qUFL' 2
wsg ' 2
PIING
¥auyq
Jueq
dnayoeq
13139

iw
sBFIR
168728

SAS
J0dd
a1
€434
SAWD
dnjavys
3004650

QWEY

Lol
78
[AA 1A
Ve
oLE
SV
961
90LT
ad
(A1 X4
19
[44178
Jac
aaz
ddT
6101
6041
8941
6YTT
Ve
8¢
BYLT
wh9
9L0L
jorAct
aiie
V405
95
8Lt
SLT
oY
11: 14
23T¢E
ayz
[e14
6051
R]]
791

junossliq

[P 4]
091
ov
0zs
093
L3y
9.2

tdt
417
8¢
LBE
€8t
T8¢
e
1317
%9
qze
JZE
SYE
11¢
aoe
VO£
94z
Laz
B8z
SVZ
£VE
e
8Lz
[A%4
S6I
s9l
1At
va
8d
4
o114
Vo
93
£6
a8
a8
i
€9
£S

Ay - —
AMOI-9--
AMIT-D -~
IMBI-9--
AMIT ==
IMIT=8 -
AiM9I-9--
AMRI-0~ -
iMol-9--
IMa1-9--
IMBI-D -

AMBT-D-
IMGI1-D--
IMSA-9- -
FETY -
IMRI-9--
Imed-9--
AMGI-9--
Imax-a--
IMIT-8--
IM@T-Rom
IMBX =0~

Ut il
6ZT1
6211
6711
6Z1%
6ZTT
6211
6211
6211
8Z11
8ZIL
8T1l
811
{yst
BZT1
'TA9¢
BZI1
BZII
Lzl
Lzt
Lzt
LZTT
LZ11
L1t
9zZT1
9Tl
9TIl
9TIT
9z11
L2l
STTT
SeIl
STIT
Seil
LTA
STIT
0zZT1
STt

SL/T0/0b
§1/40/06
ST/%0/06
S1/%0/06
S1/%0/06
S1/40/06
S1/40/06
ST/40/06
S1/40/06
S1/%0/06
ST/%0/06
S1/40/06
ST/%0/06
yz/70/26
ST1/%0/06
ST/%0/06
ST/%0/06
ST/40/06
ST/h0/06
s1/%0/06
$1/%0/06
ST/%0/06
ST/%0/06
s1/90/06
ST/%0/06
SE/%0/06
s1/%0/06
st/%0/06
S1/%0/06
t1/50/26
sI/va/o6
ST/%0/06
SE/%0/06
SL/n0/06
§1/%0/06
ST/%0/06
ST/e0/26
ST/%0/06

OQCOoOCOoOOOoOLROLERLORELCOOODOCOCOCC0O0ODOCDDOOOCC

303008 $9INGII3I® PYTITPOW ISH] AIUAQ

9t :TEIOT
1% IMIIMI-P
A AMIIMA - P
oy IMaIMa-p
] ImMaIma-p
[y IMBIMD-P
K4 IMecTmmm -
9 IMe e m e

SAHD/04/ JO A103v01Tp

SaW/01/ @ 11p <11/

139 1
551
€581
ESST
Zsst
981
5zl

91/80/26
91/80/26
91/80/26
91/20/26
91/80/26
91/80/26
wi/Lo/te

[=J =10 =N =~ =~ =]

juncoeidq 10309 SO3NYFIIE POFFPOW IEWT Ieum()

ZT:Ze:01

01/ 30 KIoqoRayp

03/ @ 1yp <14/

8103098 Q[Ywo[q 3IseFIB] *8I03988 ©9e1g O]
[(§39390]2 I031096-1) 5103388 H56°Z L37owmden
91/00/26 UO PRIBAID L O°C ASFPRON 6SOFUNLC - TOOO 4101,

01/ eex1)

u33sYim’ 813008
u1BpuUIs IsTII00d
paosssed

;i S e

|dlgu

JFeyEw
W3
oyvmaTy}

1fxe

1- Awainp
ayedwey - duod
Qo3 2

w002

wos "%

swey

y 43388
Y- dwin
Yy ewfin

qL
113
ed
Ava

qunoaeliq

89z
g€l
452
ads
8
oYy
st
98l
93

quncoaliqg

oedl

L31%

<13/
336 Im-1---- Tyl S1/90/06 0
246 IM-3---- 4THT ST/Y0/06 O
Va6 Imc---- 49Tyl SL/90/06 O
aa6 im-I1---- 0560 ST/£0/26 O

103098 §8INQFIIIE Po[JTPOw IE9] ISUMG

LC:E€:0T SAS/0x/ Jo £30320I1p
gAs/01/ @ TP <13/

La6 IMN-2---- €Z%1 ST/%0/06 O
Y6 IM-I--w- TTYL S1/90/06 O
0d6 am-i---- TTHL ST/90/06 O
106 im-1---- TTYT SI/90/06 O
§36 an-I---- Tyl ST/90/06 ©
€06 Im.3---- ZZHL S1/90/06 O
006 am-I---~ ZI¥T ST/%0/06 O
age In-I- ZIYi S1/v0/06 0
146 am-1---- Tyl S1/y0/06 O

103095 £23NQTI3IE PRFFTpow 3I8¥T IauAp

8Z:EC:0T DOHd/03/ FO £103293fP
20ud/os/ @ 11p <131/

£ve Im-de--= £T41 SU/90/06 O

Vg im-3---- gI¥l ST/90/06 O

068 am-1---- gInl S1/%0/06 O

g ewrl
ediisds
y-mamsds
sJepsis

Y sBuriis
q-qFipas
yrofpie

Y- [eulys
q- 393888
48398
y-dufies
Y- joI
q-oexd

¥1 - Byepelsgso
SJepIO8EI0
839p3qisso
BI9pOT£E0
v 8JOpgE0
8J9pEE0
Y’'gso

Y eynpow
i’ sepoul

Y- ATowon
Y yem
y-jem
Yropao]
go1wnbe - T7
y*ouiia

" 3I93ISp
g 3oelyp

Y ITp
*T1I8}ep
y-edLao

y* 80I00WD
Yy 1009

y 21w

1

swwl

179114
2319180
1" q11=

oweu

spoux
spIoM
oM
L3Fx00
JuFTun
vows
3113
apowy
a2

23

6Ll
120
49
49c
931
el
aiy
1]

8L0
201
81

avze
{09
ovd
J0¥
FAita)
L96
Js81
aEVE
7681
608
47
a9

aa

651

(131

a3
Vsl
AL
1az
1,114
13z
£ae
d9%
1319

ar

Juncaa34q

acee
782
4505

Junooaliq

oy
64 .
z2di
Ll
et

z8

J81
9az
aL

aed

668 IM-I---- QI%1 ST/v0/06 O
489 iM-Xa--- QI4T ST/90/06 O
cas IM-d---- BIY¥T ST/90/06 O
3z8 am-I---- @Iyl ST/90/06 O
g8 Im.3---- QI¥1 S1/90/06 O
8.8 IM-T---- (T4] S1/%0/06 O
L8 IM-X--== [TH1 ST/%0/06 O
98 IM-3---- (191 S1/%0/06 ©
199 IM-I- LI%1 S1/90/06 0O
358 am-1---- LI¥1 S1/%0/06 ©
058 IN-I---- (I91 §T/90/06 O
8cg AM-1--a= LTHT GT/%0/06 ©
058 IM-T---- LEYT §1/%0/06 O
£ve Im-1- 91yl SU/v0/06 0O
iE8 IM-3 9141 S1/v0/06 O
£ze am-3---- 9191 ST/40/06 O
4L im-I---- 9I¥L SI/%0/06 O
44 im-X---- 9191 S1/%0/06 0O
aL IM-I---- 9THT ST/%0/06 ©
eHL Im-I---- 9141 SI/%0/06 O
avs IM-T--== 9THT ST/%0/06 ©
VL Im-I---- SI%1 §1/%0/06 O
oVL im-1---- G4l s1/v0/06 ©
£VL am-I---- GIYL §T/H40/06 O
ovi am-3---- STyl S1/90/06 ©
a6t 1M-I---- SI%I ST/%0/06 O
ase IMeI---- SIyT S1/%0/06 O
08L Im-I---~ SIYE ST/9¥0/06 0O
aie Im-3---- SI9T S1/%0/06 ©
6LL AM-T---- 4T91 ST/%0/06 ©
9LL IM-I---- HT%T ST/%0/06 O
TLL IN-I---~ HI4¥] §1/90/06 O
a9e IM-3---- %Iyl ST/90/06 O
{9L Im-1---= 4iyY S1/90/06 O
$9L 1m-3---- 41l ST/90/06 O
(1:73 m-I---- %Y1 SE/%0/06 0

107208 93NGII138 POIITPON ISP IsuUM)
yI:g€:0T s43a/03/ 3o £1032817p

gJa3a/01f @ 1¥P <13/

926 Im-I---- 1Tyl §1/90/06 O
TT6 am-3---- 0Z9T $1/%0/06 O
38 IM-1---- QTHT ST/%0/06 O

103988 §33INGTAIIV PRIFTPOU I6W] AsUMQ
co:€c:01 d11/01/ Fo £103291Tp

4IT/03/ @ 1Tp <13/

ase ame1-8-- 6E11 ST/70/06 0
a5 amei-o-- €11 ST/90/06 O
™ imes-e-- GEIT S1/9y0/06 O
sHi ime1-e-- GEIT S1/40/06 O
ent 1mei-9-- @EIT S1/90/06 O
% imei-e-- BEIT S1/90/06 O
6L ames-9-- BEIT S§T/40/06 ©
veL ima1-9-- QEIT ST/90/06 O
9EL ama1-9-- BEIT S1/%0/06 ©
Ix 4 amex-o-- gEIT ST/%0/06 0O

introduction 10 real time operating systems.

ROM-RAM disk.

¢ Operating 0S-9 from floppy disks is
relatively slow. A very useful in-house
enhancement has been the
development of a ROM-RAM disk.

* The 640K ROM disk is the exact
equivalent of an entire floppy.. It is
device Ir0.

* |t contains the entire system and all
the utility commands (many more than
provided by Microware), the DEFS and
#include files, the C library and a set
of procedure files.

Seplember 18, 1950 Reat time College, Triesle 1—27 Oclober 1990 13

Introduction to real time operating systems.

introduction 10 rea lime oparating sysieims.

ROM-RAM disk.

¢ The 160K RAM disk is used to hold
the working directory. lis use speeds
up considerably the execution of most
commands (in particular edit, asm and
ccl). Its name is fr1.

Seplamber 18, 1990 Raal lime College, Trieste 1~ 27 October 1980~

Introduction to real time operating systems.

Sheli.

® The Shell is the Interactive
user-interface to the system.

* You type a command, the shell will
take the necessary steps to execute it.

® |n addition to basic command line

processing, the shell has functions for:

- 11O redirection (including pipes and
filters)

= memory allocation

- multitasking (e.g. concurrent
execution)

- procedure file execution

- execution control (with built-in
commands)

Septamber 18, 1990 Real lims College, Triesta t —27 October 1990 15 8

e A command line consists of:
- a "verb” (name of a program, shell
script or built-in command}
- parameters to be passed to the
program
. execution modifiers to be
processed by the shell.

ExAMPLES!

ASM MYFILE L -0 >/p} #12x

Sapilamber 18, 1990 Real lime Collage, Triesie 1 —27 Oclober 1990 16

introduction to real time operating sysiems.

Shell.

¢ Execution modifiers are:

- # memory allocation

- sequential execution

- 1 pipe

- | pipe

.« < redirect standard input

- > redirect standard output

. >> redirect error output

- & run in background
(concurrently).

e Commands can be grouped using {
and).

059: <{pre CMDS; pim SYS) somr | ECHO

September 28, 1982

Introduction to real time operating systems

Real lims Colfegs, Trieste 5—30 October 1982 17

Shell.

e A command may be run in
background (by ending the command
line with &): As soon as execution has
started, control comes back to the
shell; the shell prompt OS9: appears.
You may now run ancther command in
background, or in foreground.

¢ [nteraction is only possible with the
program in foreground. The following
makes sense:

059t LIST LONGFILE >/pl &

059t EDIT MYFILE

Sepismber 28, 1992

Real time College, Trieste §—30 Oclober 1992 19

9

Shell.

‘e Bulitin Shell commands:
. chd <pathlist> change data
directory (cd does the same)
. chx <pathlist> change
execution directory (cx does same)

« @x name execute name
instead of shell.

. W wait -

« = fext comment (script)

- kill <proc ID> abort process
. setpr <proc ID> <priority>
change priority

. X, X abort, do not
abort, on error

- p, P prompt on, off

« t —t copy, do not copy

input lines to output

Saptember 28, 1982

introduction to real time operating systems

Roal tima Collegs, Trieste 5—30 Oclober 1982 18

Shell.

This does not make sense:

0591 EDIT MYFiLE &

059: L1sT LOWGFILE >/pl

® Shell may be instructed to execute two
or more commands in sequence.

059: cup/nl; copy /pL/HELP/ATTR ATYR: EDIF ATTR

e The vast majority of OS-9 programs
are re-entrant. The 0S-9 C Compiler
produces re-entrant code. Thus, if two
users are simultaneously editing (each
his own file), only one copy of “edit”
will be in memory. The two data
spaces are of course separate.

Saptember 28, 1082

Resl lime College, Trieste 530 October 1952 20

1 ® All commands use a default size of
working space {(minimum one page of
256 bytes). The shell can override the
default with:

0S9: eptr #20x MYFILE

orR 059: £p1t1 #3830 wWyFILE,

® Shell will look for a command in the
current execution directory. If not
found, it looks in the data directory. If
it finds there a file with the requested
name, it will try to execute it as a shell
script or procedure file. A shell script
contains one or more command lines
(and comments) that the shell will
interpret.

Seplember 19, 1990

Introduction to real time operating systems

Real lime College, Trieste 1 - 27 October 1990 21

Unified IO System.

® Device-independency is achieved
through a layered structure:

- IOMan at the top, manages all
requests. It passes a request on to
the appropriate file manager.

« For each type of device there is
such a file manager:

RBF FOR DISKS
SCF FOR CHARACTER DEVICES

PIPEMAN FOR PIPES.

A file manager can handie different
types of devices (rbf handles
floppies as well as hard disks).

|

Unified 1/0 System,

® As in UNIX, Input/Output devices are
treated as files in OS-9, making IO
device-independent from the user's
point of view.

® 0OS-9 can handle various types of
devices:

- random block file {disks)
- sequential block file (tape)

- sequential character file (terminals,
printers)

- pipes.

Seplember 19, 1990

introduction to real time operating systems

Unified /O System.

« For each specific hardware
controller there is a device driver:

RTFDC FOR FLOPPIES

noAmer FOR THE ROM-RAM pisk

ACIA AND ACIAB]l FOR TERMINALS. PRINTERS
PIPER FOR PIPES,

ETC,

- Every individual device has a
device descriptor. Examples of
those: d0, d1, r0, r1, term, p1, t2 etc.

Real lime College, Trieste 1 —27 Oclober 1980 22

Real tima College, Trieste 1 —27 Oclober 1990 24

September 19, 1990

September 19, 1990 Reat ime Collage, Tresie 1 — 27 Gctober 1990 23

\0

Introduction 10 real time operating systems

Unified 1/0 System.

‘|» "Apath is to be opened to (a file on) a
device before one can perform I/O
transfers.

® There are three special paths, which
are always open:

- standard input (stdin) from the
keyboard,

- standard output (stdout) to the
screen,

- standard error (stderr), usually to
the screen.

September 19, 1990

Introduction to real time operating systemsa

Roal fime College, Triesta 1 — 27 October 1990 25

Unified 1/0 System.

¢ A pipe connects the output of a
program to the input of ancther
program:

059t pim £ ' somY
You may continue:

059: pin ! worps | somt

® A filter is a program which reads from
stdin, transforms the data, and writes
the result to stdout. Filters are very
-useful for use in pipes. Sort, words, wc
are examples of filters.

September 19, 1990

Real ime College; Trieste 1 —27 Oclober 1990 27

14

Introduction to real time operating systems

Unified 1/O System.

* Input and Output may be redirected,
adding <pathname or > pathname on
the command line:

089: 1T MYFILE >/pl
089: pIrR € >/R1/KEEPDIR

059: sorT </rl/unsoRTeED *>/ml/soRTED

® > > redirects stderr.

September 19, 1990

Introduction to real time operating systems

Real tima Coliege, Triaaie 1 —27 October 1990 20

Memory Modules:

e All programs must conform to the
standard memory module format,
otherwise they cannct be loaded.

® A memory module has a header,
followed by the program code, and a
CRC.

¢ Header contains the following:
« synchronization bytes (87CD}
- length of module (in bytes)
« pointer to module’s hame string
« typeflanguage byte
- revision/attribute byte
- checksum.

September 18, 1990

Real time College, Trieste 1 —27 Oclober 1990 2¢

Relative

Address
$00
sol
$02
503
$04
505
$06
$07
$08
S09
S0A
$0B
$0C
$0D

EXECUTABLE MEMORY MODULE FORMAT

Usage

.- Module Size (bytes) -

{Add'l optional header
extensions located here)

Module Body
object code, constants, etc.

-

b B bem 8 e g ke S Smm b Eem b= et A

-

Check Range

i o——
! !
! !
! !
! !
| 1
1 !
! 1
1 1
1 !
header !
parity !
! !
! 1
! !
! !
————— module
CRC
!
!
14
1
1
1
|
t
1
1
!
1
i
!
!
!
!
!
1
i
]
1
1
1
1
—— e ————————— -

4.2.0 MODULE HEADER DEFINITIONS

The first nine bytes of all module headers are identical:

DESCRIPTION

MODULE
OFFSET

These two constant

bytes are used to locate modules.

$0,51 = Sync Bytes ($87,3CD).

The overall size of the module

$3 = Module Size.
in bytes (includes CRC).

$2,

The address of the

Offset to Module Name.

$4,55

The name
d anywhere in the module
f ASCII characters

and consists of a string o
having the sign bit set on the last character.

(first sync byte) of the module.

module name string relative to the start
string can be locate

See text.

Module Type/Language Type.

$6

See text,

Attributes/Revision Level.

$7

The one's compliment of the vertical

(exclusive OR} of the previous eight bytes.

Check.

$8 = Header
parity

17

Introduction (0 rea imea opera.ing sys.ems WIOLW IO 1 A dne o TS WS el By o) 2 TR

Memory Modules: Memory Modules:
¢ Depending on the module type, the e Siatic storage areas associated with
following information may aiso be modules are allocated at low memory
contained in the header: addresses.
- pointer to execution entry point
« size of static storage area required. ¢ A directory of modules in memory is
- pointers to other name strings. kept in page 2 of memory.
¢ The mod assembler directive sets up ¢ A module must be written in Poslition
the header. Independent Code. Thus no relocation
is needed.
® The emod assembler directive
generates a 3-byte CRC for the ® |n order to make modules sharable
module. between several processes, they
should be re-entrant.
¢ Modules are loaded in high memory
addresses.
September 18, 1990 Real lime College, Trieste ¥ — 27 Oclober 1990 29 Seplember 18, 1990 Real lime College, Trissie 1 —27 October 1990 3C
Introduction to real time operating systems Introduction to real time operating systems.
Memory Modules: Limitations.
The system has of course its limitations:
e Re-entrancy is assured if you:
. don't store variables in the code ® memory is restricted to 64K. Care
segment of the module. must be exercised when compiling
- use program counter relative programs.
addressing for addresses inside the
module. ¢ shell is rather restricted (it is very
. keep all variables in the direct , small!):
storage page. Address those I « no environment and other sheil
variables using either direct page variables,
addressing or indexed addressing » no wildcards,
(using the U register). ‘ . no conditionals or loops in shell
. scripts.
e The C compiler produces position - no formal parameters for shell
independent, re-entrant code. It adds scripts.
the header and CRC to the code.

September 18, 1990 Real lima Colisga, Triesle 1 -27 October 1990 31 43 Sepiembar 19, 1990 Real time College, Trisste 1~ 27 October 1950 32

byte 6
some of
ion

code or 6809
anguage type

either I-

arbitrarily by checking the 1

dule
~level langquage run-time

e correct type before execut

redefined by convention,
run

The type codes are

dule

Y not implemented
may

ge type is so high
example,

—-module (for future use)
at a module is of th

Data module

utine module
§50-SB0 User-definable

ded into the four most significant bits of
am module

Eight types are p
9 pevice Driver module

ject code
for

0S-9 File Manager mo
BASIC09 I-code

0S-9 System module

Meaning
Progr
Subro
Multi

0s-
FORTRAN I-code

gnificant bits of byte 6 describe the language type as
PASCAL P-code

COBOL I-code

the langua

C I-code
procedures

Name

Prgrm
BASICO9,

Sbrtn
Drivre

$30 Multi

$40

Data
of

can verify th

$F0 Devic 0S-9 Device Descriptor mo
attempted.

NOTE: 0 is not a legal type code

The following are currentl

Data (non-executable}
CCode

Code

$10

§20

5C0 Systm

$D0 FlMgr

SEO

least si

Objct 6809 ob

1Code

PCode

CblCode

FrtnCode
language

0
1
2
k!
4
5

the module header.
6

The module type is co
purpose

which are for 05-9's internal use only.
four

4.2.1 Type/Language Byte

of
The
systems

listed below:
is

The
machine
code,

LA R LS

* LIST UTILITY COMMAND
* Syntax: list <pathname> B
* COPIES INPUT FROM SPECIFIED FILE TO -STANDARD OUTPUT

0000 B7CDOO4E mod LSTEND,LSTNAM, PRGRM+OBJCT, A
REENT+1,LSTENT, LSTMEM —
000D 4C6973F4 LSTNAM fcs "List"

* STATIC STORAGE OFPSETS

*

pocs BUFSIZ equ 200 size of input buffer
0000 ORG 0

o000 IPATH rmb 1 input path number

0001 PRMPTR rmb 2 parameter pointer

0003 BUFFER rmb BUFSIZ allocate line buffer
00CB rmb 200 allocate stack

0183 rmb 200 room for parameter 1lis
0258 LSTMEM EQU .

0011 9F(1 LSTENT stx PRMPTR save parameter ptr
0013 B601 lda #READ, select read access mod
0015 103FB4 os9 ISOPEN open input file

0018 252E becs LISTS0 exit if error

001A 9700 sta IPATH save input path number
001C 9Fr01 stx PRMPTR save updated param ptr
001E 9600 LIST20 1da IPATH load input path number
0020 3043 leax BUFFER,U load buffer pointer
0022 108E00CSB ldy #BUFSIZ maximum bytes to read
0026 103F8B os9 ISRDLN read line of input
0029 2509 bes LIST30 exit if error

002B 8601 lda 11 load std, out. path #
002D 103F8C os9 ISWRLN output line

0030 24EC bece LIST20 Repeat if no error
0032 2014 bra LIST50 exit if error

0034 C1D3 LIST30 cmpb #ESEOF at end of file?

mmwm WMWM UMm LISTS0 branch if not

lda IPATH load input th nu
003A 103F8F o089 ISCLOS close pmu:nvwmnrz mber
Wwww ww“w wnm LIST50 -«exit if error
dx PRMPTR resto

moaw 2684 lax 0ox e re parameter ptr
043 8lop cmpa #50D End of parameter ljne?
0045 26CA bne LSTENT ..no; 1i)
0047 Sp e no; list next file
0048 103F06 LISTSQ os9 FSEXIT «+. terminate
0048 95BBS58 emod Module CRC

004E LSTEND EQU *

Introduction to reai irne operang sys.ems.

Limitations.

¢ Inter-process communication and
synchronization of user processes is
largely left to the user.

¢ There are however tricks to overcome
some of these limitations. Also some
commands allow wildcards,
parameters or loops.

e In the present version of OS-9

Microware’s shell has been enhanced:

« prompt reflects current directory
- a history file is kept

e A more powerful shell (shell+,

Levels of Abstraction.

e One can view a computer at different
levels of abstraction:

- at the bottom is hardware.
a microprogram {or hardwired

logic) acting on the hardware
defines a machine language.

. the operating system provides a
more convenient interface fo the

user. It defines a virtual machine.

. on top of the operating system we
have system utllities such as : a

command interpreter, compilers,
editors, etc.

originally for level H) exists

September 28, 1952 Reat iime College, Triesle 5— 30 Oclober 1982 33 September 28, 1982 Raal lime College, Trieste 5 — 30 October 1992 34

Introduction to real time operating systems. Introduction to real ime operating systems.

—
Levels of Abstraction. Levels of Abstraction.
. the top most layer is made up of | ® The client-server model is well
the application programs. adapted to distributed systems.

¢ The operéting system itself can (and e On most machines, the operating

usually is) also be layered. system runs in kemnel (or protected)

mode, whereas the layers above it run

e The operating system may in fact have in user mode. Certain machine

one of four possible structures: instructions cannot be executed in user

. monolithic mode.

. layered

. virtual machine e Evolution of operating systems:
. server-client. "plugboards”, batch,

multi-programming, time-sharing. With
PCs and workstations evolution toward
user-friendliness and network
operating systems.

e |n the serverclient concept some
functions, traditionally part of the
operating system, are pushed upward
to higher layers (e.g. file-server).

L

September 28, 1692 Real time College, Trieste 5— 30 Oclober 1982 as 45 Saplember 28, 1952 Raal time College, Trieste 5— 30 October 1992 30

w
E
S
T
&
[=]
.
=8
&
£ m m
9
2 ES 3
g 28 5
A no H
} A - 7 A \
@ =
kel
Sw | €2
- O ﬂm
SE|E&
> @ E -
k=T Om
< oL
E|lg | £
— w
e & ® E o]
o .2 n 2 B £ 2
£E 5 > c o 2
=z P o | 8 & | °
- © £ @ <] ™
<2 3 £ |£€] 5|8
- — £ (o) W-
Q I3} [t
a o L £
o = = a
w
o [
EE| 2
< =
T8 | £
® >
mw nw

—

Fig. 1-1. A computer system consists of hardware, system programs and appli-

cation programs.

Main
" procedut

Utitity
procedul

Fig. 1-19. A simple structuring model for a monolithic system.

Y,
<

5 The operator

F-N

User programs

Input/output management

N | w

Operator-process communication

1 | Memory and drum management

0 | Processor allocation and multiprogramming

Fig. 1-20. Structure of the THE operating system.

11O instructions here ——|

Virtual 370s

/T\.

r- —— System calls here

CMS CMS CMS trap here
trap here VM/370
370 Bare hargdware
Fig. 1-21. The structure of vM/370 with CMs.
Client Client Process Terminal . o File Memory } user mode
process process server server server server
L / Kernel mode
Kernel \ }
\ Ctient obtains
service by
sending messages
to server processes
Fig. 1-22. The client-server model.
Machine 1 Machine 2 Machine 3 Machine 4
Client Y * File server Process server Terminal server
cen Kernel Kernei Kernel Kernel see

l

Y.
~

[

L

\ Message from

client to server

1%

Network

L

System Calls and Processes. System Calls and Processes.
® Programs communicate with the ® The existence of processes implies
operating system through system calis that there must exist system calls for
(or service requests).Impiementation creating and terminating processes.
varies, but it usually works through a The shell or command interpreter will
software interrupt. create a process when the user has
typed in a line. For instance, it may
e Key concept is the process. A process create a process that will run the
is a program in execution; it consists compiler. When that process has
of the executable program, its data finished its job, it will execute a
and stack, program counter, stack system call to terminate itself.
pointer and all other registers and
other information needed to run the ® The shell itself is also a process. In
program. the example, the compiler is a child
process of the shell. When it
terminates it returns 1o the parent.

September 19, 1590 Real lime College, Triesle 1— 27 October 1990 37 Seplember 19, 1980 Real time College, Triesle 1 —27 October 1990 38
Introduction to real time operating systems. Introduction to real time operating systems.
System Calls and Processes. System Calis and Processes.
& A process may be suspended and ® |t is now easy to see that an operating
later resumed. All information must be system has four main functions:
saved before suspension! » process management
- memory management
® Processes will need memory to run in. « Input/Output management
When a process dies, the memory - Interrupt handling and time
becomes free for another process to management.
use.
e Al these functions have their specific
¢ Processes will often create child system calls. They are implemented
processes to communicate with the as a disjoint set of programs, which
outside world, e.g. perform make use of common utility routines
input-output. (for instance for adding or deleting
items from a table).
Septomber 19, 1990 Real time College. Trieste 1 —27 Octobor 1990 39 September 19, 1990 Real lime College, Triests 1 —27 October 1990 40

14

niroC UC 10N G Fea ik Opeida. K olwlo b R A R LR B S

Kernel of 0S-9. Kemnel of 0S-9.
e Consists of two modules, both in ROM: ® Or, in assembly, and using
0S9p1 and OS9p2. “QS9sysdefs”:
¢ Kemnel takes care of. 059 FSExit
. system initialisation
. Processing of service requests e Or, in C, using functions in the library:
{system calls)
. memory management exar(0)
. process scheduling
. interrupt processing. e Two types of service requests to the
kernel:
* Service requests are made via SWIZ, - user mode system calls can be
followed by an identification number: made from any program.
. privileged system mode calls can
W12 only be made from within system
Fce 806 routines.
September 19, 1950 Real time College, Trieste 1—27 October 1930 4) September 19, 1990 Real itme Coliege, Triesle 1 —27 October 1990 42
Introduction to real time operating systems. Introduction to Real time operating system.
Kemel of 05-9. Service Requests of 0S-9.
e Therefore two dispatch tables in page e There are:
1 of memory. - 30 user mode (of which 6 level)
. 40 privileged mode (28 levei Hl)
¢ Input/output system calls are another . 17 1O service requests.
category, not handled by the kernel
(but by IOMan) e They are used to
- allocate, de-ailocate: bits in a
e After initialisation a contiguous block of bitmap, 64 byte memory blocks or
memory is free. The kernel can memory pages.
allocate pieces of it to program . load, link, unlink modules
modules and direct page storage - fork, chain, suspend, terminate
areas. processes
- parse path names, compare names.
. send signals and signal intercepts.
. manipulate process |Ds, priorities,
process queues.
. a few miscellaneous.

September 19. 1990 Real time College,-Trisste 1 —27 Oclober 1990 43 Sepiember 19, 1990 Real time college, Trieste 1 —27 October 1990 44

19

Service Request Index

User Mode Service Requests

~

Mnemonic Function Page
P Y T SRIIRIE T oo
o € g FSAllBit Allocate in abit map 11-3
- F$CRC Generate CRC . ., . . +« . « &« « .+ . . 11-8
L b5 F$Chain Chain process to new module . . . , 11-4
£ 82 F$CmpNam Compare two names , 11-7
g cQ = F$CpyMem Copy External Memory 12-8
< .m = .8 F$DelBit Deallocate in a bit map 11-9
2 .m > g a7 g FSExit Terminate Process 11-10
e EEE= © ¥ F$Fork Start new process+ 11-12
gk mm..u_. @ S5 € F$GBlkMap Get System Block Map Copy 12-18
2cq avsy E o 2 F$GModDr Get Module Directory Copy 12-19
oEa Caxtx « .3 o F$GPrDsc Get Process Descriptor Copy, 12-20
. A . @F . FSID Return process ID 11-17
Yoo e o .= F$lcpt Set signal intercept trap 11-15
— a -] FSLink Link to memory module 11-18
e mw = F$Load Load module from mass-storage . . . 11-19
® 5] m F$Mem Set memory size 11-20
83 " - m (&} FSPerr Print error message 11-21
.M.m -] -~ F$PrsNam Parse pathlist name, 11-22
38] Touw F$SPrior Set process priority . ., 11-28
a S P R F$SSWI Set software interrupt vector . . . 11-3]
m ez F$Sspd Not implemented
g 8 9 - F$8Time Set current time . ., ., 11-32
~ - a E 3 F$SUser Set User ID number , . . 12-32
£ E v O 9 F$SchBit Search abit map 11-24
] o D & 8 F$Send Send signal to process 11-25
2 -4 @ s E & F$Sleep Suspend process, .,, ., 11-27
5 5 S o F$Time Return current time, . . 11-33
- - @ s 8 F$UnLink Unlink module 11-34
& 8 — =095 F$UnLoad Unlink module by name 12-34
2 |2 = © &3 F$Wait Wwait for signal,, ., . 11-35
— (7]
£ @ | eg.
@ sk YI
s/ ok
- 2 o
b « S 3
© > E S
o
2R
. O m
Alowaw c_os_ll_ = o=
- - .
o= g E
= & 28

Page C-1

20

Tmwagwmwwg — B

e m e —————— J03d11083g 301A2Q = (44
SALNIINLLY FTI0A0NW I3ATIQ 32TA3Q = (d¢ LZs < 9poo s3IT ybnoyizre ‘uoTiouny Apow 19sn B ST DASSSI *JION«
1abeuen atTd = 0Qs)
3poo-I TOQOD = §3 JTnpoW wajysis = 0ng
9p0)-d TedsRg = £s 23eQ = Qps IX -2 & G o aThpou ajepriea HSUO§W&
2P0D-1 600ISVE = 7§ STNPOH-TITNH = Qg4 0E-ZT * ° * S133sTbal Lvd YSelL $53201d 39§ ASLISS I
apod 30alq0 6089 = 1§ ITNPOW JUTINOIANS = TS §z-2T * * * * * * * oabeuwr rya ssadoid 313§ bwilassd
BIRQ = 0% weiboid = 14 ZE=TT " * * * * * g jse3 ut X‘0 3B ¥ 231035 ¥AYLS$d
6Z-TT * ° * * * asenbaix uorjdouny e [{eISUI »JASSSd
e ——————— ——————————— 9y-IT * ° * * * ° * * uin3jar Ajowduw wa3ISAS WAIWIUSEJ
SIOVNONYT ITNAOW S3IdXL IINAOW Gp-IT * * * * * * * 3sdonbar Aiowsuw waisis wswbyssd
I€-2T * = = ¢ = * = * + ¢+ + yuyq wa3isds yUTISS$d
vp-IT © * ° 3201q Aiowsm 834q 9 © uInlay p9324s4
08s = 41d 8z-77 * * °* * * Jaqunu ¥SeL 3A1983Y¥ YSLSAY$J
0F¥s = IJYVHS (Z-ZT ° * * * * * * * 11aqunu ¥sel 9Sea[dy YSITAUSJ
028 = DJaxad €p-TT * = * * * * = * * ms3001d 3IABU 3135 001dNsd
018 = LI¥Md 9z-z1 9aoeds mmwwccm Jua133ITP O3 BvIEP IAOH 2A0HS 3
808 = avayd gz-z7 * * ° . » » » yoo1q o131oeds dey y1adensd
05 = Jaxd PZ=2T * * C v s s e Hmwu.x+nu a pryo1i AXaaaisd
4LI¥YM + avay = 3ILvadn andinp io1i1g piepueis = ¢ €Z-ZT * = * * = = = * * * * [[x)1'%] ¥ peo1 XXvaisas
Z0$ = JLIUM Ind3ng paepueis = I zz-zT * * * * * @ jse3 uT X‘p woll v peol XAvaisa
108 = avay andur piepue3s = g ZF-IT * * * * * * @ai1qe3 burrrod DYI 183juz OuIsg
Ip-17T *= * * = ¢+ * * ¢+ - an3anb g/I 193u3 ndOISd
e ——— - OF-IT = * * * * * = * * ainpow o/1 ?33Tad 12a01sd
S3Q00 §$SdI0V IATId SHLYd 0/1 QUVANVIS {z-z7 * * = ¢ * v - = = 13d 8835013 39D dooi1dnsd
LT-ZT ° ° ° * * = * * * %0078 MOT aa1g 339 21991484
9T-ZT " °* " * * * * * yooig ybrH 8313 399 gH221484
EL=-TT * ° * = * = =+ =+ & s o o Blep I3TaM 93TIMSI 6E-TT = " = * °* ¥201q A1owauw 93£&q ¥9 putrg PopuUTIS 3
PL=-TT = * ¢ = = = =+ * « = ¢+ JUTIT 33TIM UIITIMSY §T=-ZT * * * * Aia3jus A103031Tp aTnpow puld InpoHdsd
89~TT ° * * * * * * * * sn3e3s 801A’p 33§ 33839581 $1-21 * huu:m X31030917Q 21npow Bursn yuy7] NUTI3sd
L9-TT = * * *» = = hwu.__h.__.& aTrl EONH.—.O&U“ MQUWWH E1-Z1 . & jaqunu yse] SsaIdoad ¥3en011R3q xm.ﬁﬂwaw&
99-17 * * = * * * ‘" " aurr peay uIpeaysI ZT-2T * * ° * * * ° 8Y20[q W¥d 23ed0TTead wedradsd
§9~-1T = = * = = = » * " ¢ = » + plep peay peayds: I1-zT ° * * 1o03dyiogag SSadold 23EdOTTEaq DI4T9054d
€9-TT * ' 3173 bur3ystxa ue o3 yjed v uadp uados 0T-ZT * * ° * S¥007q Wvy @abew] 3jedolieaad BuIT2q@sd
29-1T * * * * * * * 3113 A103221Tp e ayey ITQYeHS I 6-2T1 IppV Te2T1HoT 03 330/%NTE LIVQ 3ITIAUO) borivasa
8S-TT * * * * * * * + * “snijeys IDTAID 399 I3IS3INOSI I=ZT * * * " = = * * 30019 o73t1oads 1ed1D ATEITOSd
LS=TT * * * = * * = + + + « yyed azearydng dngs: 9-zT * * * * * - 3sanbay Aioway deiisioog wayiIdsd
96-TT * * = " = * * * * 2307A9p 0/1 Yowilaqg yowiaqasr ‘ €-27 = = * ¢ * * + + + ¢+ wa3ysks derisiyoog 3008%4
§§-TT = = = * = = = * * * - QJI7] ® ?33araq X33T3AS1 p-zT ° ° °* * laqunu Ysel S83001d IIRIOTTV ASLTTIVSd
FS-TT ° * * * * * ° " * ¢+ J[IJ e I}AT[3g o33taqs] E=TT = * * * ¢ * * = BY20(Y WWY IILDO0TIV WVHTIIVSJ
G-TIT * ° " * * * " " ° QJTTI MaU B IIWIID 33R3INSI Z-ZT * * * ° 103d1i0os3g §89501d 9IEDOTIV 2idTTvsd
TS-IT * * * = * * < = « + +"% y3ed e 3800 S80TDS1 I-ZT * * * ° * SY00Tq Wv¥ 9bwwIl 33ed0[IV DUITIVSA
06-IT = = * = * » %MOUUUHH@ mc.—.xuo: ﬂmﬂﬂﬁ—u H..HQU-&U%H 9E-TT * °* yo01q AIouau UU%Q 9 © 33EDOT1IV yoTIvS d
By-I1 " D D Tnon ot 30749 0/I ORIV UoRIIVST 8E-IT * * * ° - @nanb ssaocid aayide 133uz 501dv$d
Jovd NOILONNAG OINOWINKW abeg uoT3aUNg 2Tuowauy
SLS3N03Y IOIAYIS LNdIN0/INdNT g3ganbay 251A135 pebaTTATId 2poW walsis

xapuy 3IsInbay #o7A193 - 5 xypusddy
TVONVW S,INWVHOO¥d WILISXS 6-SO gapur 3senbey eojales - D xypusddy
TVONVH S,HINNVIO0dd WALBXS 6-80

2)

Introguction (o Heal ime operalng sysiem.

Service Requests of 05-9,

We can now look in more detail at an
example in assembly language and C.

The C library (/r0/LIB/clib.l) contains:

. standard C library routines. These
will often make use of the available
service requests. For instance
malloc() will eventually transiate
into F$SRqMem.

. routines which are the equivalent of
the service requests, if they are
0S-9 specific.

stdio.h will help in translating into
0S-9 /0O service requests.

Try this: lib clib.l.

September 19, 1990

Introduction to real time operating systems.

Real lime colege, Trieste 1—27 October 1980 45

Processes.

® A process is an executing

program.including its input and output
and its state (e.g. the contents of
machine registers and the values of
the program'’s variables).

The operating system must be able to

create a process when needed and to

destroy it when finished. In UNIX,Minix
and 08-9 a process is created with the
FORK system call.

A process may issue one or more
- FORKs, and create child processi(es).
The child(s) may again create other
childs, etc.

September 19, 1990

Real tima college, Triasta 1 —27 Oclober 1990 47

2L

S e

Processes.

* A single CPU can only do one thing at
a time. Rapid switching from one task
to another creates the illusion that the
CPU is doing many things in parallel.

¢ The process model helps to
understand what happens and to keep
track of things going on.

e All runnable software (including the
0S5} is organised in sequential
processes.

Seplember 19, 1990 Real time college, Triesie 1 — 27 October 1990 48

Introduction 1o real {ime operating systems.

Processes.

¢ When the system is booted, at some
stage a process is forked, which will
start things going. In a
multiprogramming system, one
process per terminal may be started;
each will wait till someone logs in.

¢ |n O8-9, at the end of the boot SysGo
is called, which forks shell. Sheli will
wait for a command from the user.
SysGo continues to exist as a process,
although it has nothing more to do.

¢ In the model, processes are
independent entities, but often they
need to interact with each other
(through a pipe or otherwise).

September 19, 1990 Real lima college, Triests 1 —27 October 1990 48

_ 20% 1/0 wait
£ 100
m ~
g gol 50% I/0 wait e = —=
[
= ~
& 60 ~la|w o~
- 80% 1/0 wait T |\ |-] — 4 — e
& i = o
= 2 E -1 =
E 40 goln|2|2 < N
2 0 8]
(&) b < |00
& e 1 a| o=
L1 L ! L 21218) /
0 1 2 3 4 5 6 7 8 9 1o B s O &
lllllll ——~
Degree of multiprogramming a2l ml] 2" 3
o =
=& s - B -
1-2. CPU utilizati i . zla|e i
utilization as a function of the number of processes in memory. o212 2
o | e e
clo|o o| ©®] @ L
e
@
[__ e 2
- —f— - o
2
t
) =] i
Processes "
0 1 n-2 | n-1 G4} 2
s e w _ %.m
WM.N gl
Cge £
9
Scheduler M
3eo|8 |22 = ol =g
tEigla|sls| 2 Sl
The lowest layer of a process-structured operating system handles in- SO Lol ol Rl
1nd does scheduling. The rest of the system consists of sequential
.m —fjNjM|e
- | i 1
- (4] Lar] - o

qor

23

{c)

ey o8

* ok kk %

* LIST UTILITY COMMAND
* Syntax: list <pathname>
* COPIES INPUT FROM SPECIFIED FILE TO STANDARD OQUTPUT

0000 B7CDOO4E mod LSTEND, LSTNAM, PRGRM+OBJCT,

REENT+1, LSTENT, LSTMEM
000D 4C6973F4 LSTNAM fcs *List"

* STATIC STORAGE OFFSETS

*

cocCs BUFSIZ equ 200 size of input buffer
gooo ORG 0

0000 IPATH rmb 1 input path number
0001 PRMPTR rmb 2 parameter pointer
goo3 BUFFER rmb BUFSIZ allocate line buffer
00CE rmb 200 allocate stack

0193 rmb 200 room for parameter list
025B LSTMEM EQU .

0011 %FoOl LSTENT stx PRMPTR Save parameter ptr
0013 8601 1da #READ, select read access mode
0015 103F84 os9 ISOPEN open input file

0018 252f bes LISTSO exit if error

001A 9700 sta IPATH save input path number
001C 9r01l stx PRMPTR save updated param ptr
001E 9600 " LIST20 lda IPATH load input path number
0020 3043 leax BUFFER,U load buffer pointer
0022 108E0QOCS ldy #BUFSIZ maximum bytes to read
0026 103F8B os9 ISRDLN read line of input
0029 2509 bes LIST30 exit if error

002B 8601 1da 1 load std. out. path #
002D 103F8C ©os9 ISWRLN cutput line

0030 24EC becc LIST20 Repeat if no error
0032 2014 bra LISTS0 men if error

0034 C1D3 LIST3Q cmpb 4ESEOF at end of file?

0036 2610 bne LISTS0 branch if not

0038 9600 lda IPATH load input path number
003A 103F8F os9 ISCLOS close input path

003D 2509 bes LISTS0 -«exit if error

003F %E01 ldx PRMPTR restore parameter ptr
0041 A684 lda 0,x
0043 810D cmpa #30D End of parameter line?
0045 26CA bne LSTENT »+.N0; list next file
0047 SF clrb
0048 103F06 LISTS0 os9 FSEXIT ++« terminate
004B 95BBSS emod Module CRC

004E LSTEND EQU

*/
*/
*/

/-:‘ra’r*‘fn‘n'r n'n‘r-fr*-.’r***:’r1':1':-.%':’:****5’\"}r****-.‘r*';’n'.-‘.'ﬂ'rs'r*-k***f:#’r*v’ffzfe:’:*'z‘r*ir****fr'l’r';‘r*/

24

59 e

/ Tedevedevedededededede Jedede oo de e Aedte o A de Ve e de Tedte e v e dede e de Ve dede de e e e de e Yoo e e e dede e e e e e e e /

3
¥

1
: 04/26/90 11

exer.c

.
3

Program to exercise Colombo board

Mario Trujillo

exer.c
te(n,&i,c)

tw
int n,i,cy
main()
1234
H

c=2
wri

Z;
creat(colombo,w)

char *colombo

PAGE
TTHE
in

/1‘r
/1’:
/*
{
n
1

##include <modes.h>
colombo="/cl";

FILE
w

introdiuction 1o real ume opearating systems.

OG-0 U Tea | ITID Opand Ty 3YS ©ThS.

Processes.

A tommon situation is that a process
does not find input ready, when it
needs it. It should then block, until
input becomes available.

Processes.

Note that OS-9 classifies process states
somewhat differentiy.

e The diagram shows the possible

transitions between the three states.
¢ |T must not do busy-wait! This

occupies the CPU uselessly. m
® Processes can be in one of three 1 ‘ 2
ot <>

« running (e.g. using the CPU at this
precise moment in time)

- blocked (e.g. waiting for an externai
event or another process)

« ready (e.g. ready to run, waiting to
be scheduled for execution)

Saptsmber 19, 1990 Real time college, Triests 1—27 Oclober 1990 49 Septsmber 19, 1980 Real time cotiege, Triesie ¥ ~27 Oclober 1990 50

Introduction to real time operating systems. Introduction to real time operating systems.

Processes. Processes.

¢ The remaining part of the kernel only
needs to contain initialization and
utility routines used by other parts of

® The process model allows us to think
in terms of user processes, disk
processes, terminal I/O processes, elc,

without having to consider interrupts
and interrupt handling. (Obviously
running various processes
concurrently needs interrupts,
generated by I/O devices and by a
clock).

Inside the operating system kernel is
the scheduler, which takes care of the
interrupt handling and schedules
processes for execution. The rest of
the operating system can be nicely
structured in processes.

the system (or the user).

The scheduler uses a process table of
some sort to manage the various
processes. Every process which may
run has an entry in this table. |t
contains all the information needed to
restart the process exactly where it left
off and with all states and conditions
restored as they were at the moment
the process was interrupted.

Seplember 19, 1990 Real ime college, Trieste | ~ 27 Oclober 1990 51 g September {9, 1990 Real lime college, Triests 1— 27 Oclober 1990 52

S s e T e R SRR gm et EERETTIe Ty YRR

Processes.

® The scheduling algorithm tries to
satisfy one or more of the following
-contradictory- criteria:

v R RRAeREA TR R T T RTEE T A R TERTE T TR TR e

Processes.

® For a reai-time system controlling
equipment, response time is generally
the most important. If the system must

respond within a given limit of time,
. faimess we call it a hard real-time system.

- efficiency ¢ The scheduler cannot predict what a
process is going to do, thus a clock
must interrupt the system regularly, so
that the scheduler may intervene.

- response time

= tum around

® Preemptive scheduling allows
temporary suspension of a running
process, in contrast to run to
completion.

- throughput

Seplember 19, 1930 Real lime college, Trieate 1 — 27 Oclober 1990 53 September 19, 1990 Real ime college, Triesis 1 — 27 Oclober 1990 54

Introduction {o real time operating systems. Introduction to real time operating systems.

Processes. Processes.

® Processes need often to communicate
with each other. Inter-process
communication is usually done with
messages (called signals in 0S-9).

® Many scheduling algorithms exist:

- round robin: all processes get a
time slice in turn.

« priority: each process has an initial
priority assigned. At each clock the
scheduler may decrement the & When a message is sent to a process,
priority of the running process. it will be delivered to it by the

- muitiple priority classes. Within a operating system. it is the
class priority scheduling is applied. responsability of the receiving process

- shortest job first: run times must be to interpret the message. Some
known in advance, or estimated messages are interpreted by the
from past behaviour. operating system itself {e.g. kili,

- policy driven: a goal is fixed and wakeup).
the scheduler tries to live up o it
(fairness, response time).

- Two-level: needed when part of the
runnable processes are on disk.

Septamber 19, 1990 Reat lima college, Trieate 1—27 Oclober 1990 56

Seplember 19, 1990 Reaf tima colisge, Trieste 1—27 October 199¢ 55

96

Introduction to real time operating systems.

Processes in 05-9.

¢ Kemel handles creation, scheduling
etc. of processes.

e All information on processes are kept
in Process Descriptors: 64-byte
structures (in level 1). Details in
0S9sysdefs.

® A process is in one of three possible
states:
- active (it can be run}
- walting (for a child to terminate, or
for a signal)
- sleeping (suspended for a given
time, or until a signal is received).

September 19, 1990

Introduction to real time operating systems.

Real lima College, Trieste 1 —27 Oclober 1990 57

Processes in 05-9.

¢ Every process has a unique process
ID, which can be used by other
processes (for inter-process
communication).

e A process terminates when executing
an Exit service request.

Saptember 19, 1990

Real lime College, Trieate 1—27 Oclober 1990 59

2%

nrauuciion 0 fed Ime opera .y sys ems,

Processes in 0S-9.

‘® Processes are queued in three
queues, corresponding to these states.
Highest priority process is at the head
of the queue.

® Obviously a process may move from
one queue to another.

® A new process is created with a fork
system call. Main argument of fork is
the name of the module. The module
is loaded, a process descriptor set up
and data storage allocated. Then the
new {child) process is put into the
active queue.

Seplember 19, 1990

Introduction to real time operating systems.

Real tima College, Triesie 1 —27 October 1990 58

Process Scheduling in 0S-9.

e All active processes are assured of
getting some CPU time.

® High-priority processes get more.

* Process scheduling is done at each
clock tick.

* When a process is put into the active
queue it enters with its “age” equal to
its priority.

® The active process with the oldest age
will be selected for execution; all other
active processes will have their age
increased.

Seplember 19, 1990

Real ime College, Triasie 1 —27 Oclober 1990 60

TFRIULIULLUIT 1 TE4) LNE Ypeialilly sySsieins. roguction o rear ime operating sysiems.

Inter-process Communication in Inter-process Communication in
0S-9. 0S-9.
® There is only one mechanism in OS-9 ®* A signal is noted in the process
for inter-process communication: descriptor of the receiving process. If it
sending and receiving a signal. was sleeping or waiting, the receiving
process becomes actlve and thus
* A signal can be sent to any process. eligible for execution.
It consists of a single byte. A signal is
sent using the F$Send service request ® if the receiving process has taken no
and specifying the process 1D of the special measures, to treat the signal, it
receiving process. will simply be killed.

® To process a signal properly, the
receiving process must contain a
signal intercept routine and the
address of it must have been
communicated to the kernel (with

FS$itcp).
Seplember 19, 1990 Real itme College, Tdesta 1 — 27 Octobar 1990 61 Seplember 19, 1990 Real lime Collage, Trieste 1 — 27 Oclober 1990 62
Introduction to real time operating systems. Introduction to real time operating systems.
Inter-process Communication in Inter-process Communication in
05-9. 085-9.
® the signal intercept routine can ® the signal intercept routine must be
examine the signal code (in the B short and end with RTL.

register) and take action.
® an attempt to send a signal to a

* the signal codes defined are: process which has already a signal
- 0 = kill (non-interceptable) pending will result in an error.
. 1 = wakeup (wakes up sleeping |
process, does not vector through * We will come back later to this very
intercept routine) important topic of inter-process
- 2 = keyboard abort communication and synchronisation
- 3 = keyboard interrupt (when we look at device drivers).

- 4 — 255 user definable.

Seplember 19, 1990 Real fime College, Treste 1 —27 October 1990 63 8 September 19, 1990 Real time College, Triesie 1 —27 October 1990 84

Introduction to real time operating systems.

Interrupts in 0S-9.

* |Interrupts are vectored through
addresses in page 0 of memory.

e NMI and FIRQ are not used by 0S-9,
and are vectored to a RTI instruction.

o SWI, SWI2 and SWI3 are further
vectored through addresses local to
the process (specified in the process
descriptor).

e The clock routine changes the IRQ
vector, to its own address. So it gets
quick service. It passes control to the
IOMan’s polling system when the
interrupt did not originate from the
clock.

Introduction o reai ime operaiing sysiems.

Interrupts in 0S-9.

e This technique can be used for other
interrupt sources as well (with
maoderation!).

® The logical interrupt polling system is
prioritized.

¢ Each interrupting device has an entry
in the interrupt poliing table :
» polling address (device’s status

register)
- mask byte (selects relevant bit)
» flip byte (selects positive or

negative logic)
« address of interrupt service routine
- static storage address.
. priority (0 is lowest, 255 highest)

September 19, 1990 Real lime Colege, Triesla 127 Oclober 1990 65 Septembar 19, 1990 Reat ime Collage, Trieste 1 —27 October 1990 6€

Introduction to real time operating systems. Introduction to real ime operating systems.

interrupts in 0S-9.

* A device is entered in the table with
the F$IRQ service request.

® An interrupt service routine must end
with RTS, not with RTL.

September 19, 1990

Real time College. Triesie 1—27 October 1990 &7

J4

Mutual Exclusion.

e |n most reai-time systems various
tasks run concurrently, some of them
may be interrupt driven.

¢ Synchronisation of the tasks is
necessary.

e Problems arise if several tasks access
a variable and can modify its value.
{or claim a sharable resource).

¢ Example: real-time clock.
- an interrupt driven routine
“maintains the time of the day in 3
bytes in memory: hh, mm, ss.

September 18, 1990

Real {ima College, Triesls 1 —27 October 1990 €

Introduction to real time operating systems,

introduction to real time operating systems.

Mutual Exclusion.

Mutual Exclusion.

- another, independent task may read
these bytes and display them.

- Now suppose hh:mm:ss have the
values 11:58:59 when the second
task is reading the time.

- Suppose a clock interrupt occurs
when the task has read hh, but
before it was able to read mm.

. What will be displayed?

The access to the shared variable(s) is
a critical section of the program and
the two processes must mutually
exclude access to this critical section.

Access to hardware control registers

® Examples, where synchronisation and

‘mutuat exclusion are needed:

. car park (of a supermarket) with
several entrance gates and one or
more exit gates, where barriers
must be operated. Problems
become serious when the car park
is full.

. cllent-server model (particularly
relevant for real-time systems),
where a server produces items and
puts them into a buffer. The client
takes items out of the buffer and
consumes them. The critical
sections are the updating of the
buffer pointers. As long as the
buffer is not full or empty no great

harm is done. Serious problems
when buffer is full or empty.

of devices is also critical.

September 18, 1990 Real time CoHlege, Trieste 1—-27 Oclober 1990 69 Seplember 18, 1990 Real lime Colloge, Trieste 1 —27 October 1980 7/

Introduction to real fime operating systems. Introduction to real time operating systems,

Mutual Exclusion. Mutual Exclusion.

CRiTicAL REGION, USING NORMAL VAREABLE: FLAB

® Easy solution which always works:

disable interrupts before entering and Process 1 Process 2
enable interrupts after leaving the TESTL ° TEST2 *
critical section. LDA FLAG LDA FLAG
BEG GOON1 BEQ GOON2
¢ This is inadmissible in a general 60 Ta sLEEP 60 TO SLEEP
purpose multi-user system. it may be BRA TEST1 BRA TEST2
dangerous in a hard real-time system. GOON1 INCA GOONZ INCA
STA FLAG STA FLAG
e A ﬂag, which is set by one process USE RESOURCE USE RESOURCE
and read by the other does not work. (LR FLAG CLR FLAG
Why?

Sepismber 18, 1990 Real tima Coliege, Trieste 1 — 27 October 1990 71 30 September 18, 1990 Real lime College, Trieste 127 October 1990 72

Introduction to real time operating systems.

Mutual Exclusion.

® An indivisible (or atomic) test-and-set
instruction is needed to guard the
entrance to a critical section. TAS
instruction will test a variable and if it
is equal to zero, will set it to one. If it
is already one it will leave it
unchanged. The whole operation must
be uninterruptable.

e 5809 has no TAS, but LSR using a
memory location can replace it.

September 18, 1990 Real lime Coliags, Triesls | — 27 October 1990 73

Introduction to real time operating systems.

Mutual Exclusion.

* What does a process do when access
to a critical section is denied to it? (Or
when a server finds the buffer full?)

® Easiest and very inefficient solution:
busy-wait.

¢ Better solution: The process which
cannot get access should go to sleep,
and be woken-up later, when access
becomes free.

September 18, 1990 Real litne College, Trisste 1—27 October 1990 75

31

Introduction to real time operating systems,

Mutual Exclusion,
CrivicaL Recron. wsing LSR,

Process 1 PROCESS 2
TESTL {3 ¢ S

LSR FLAG LSR FLAB

BCS GOONI BLS GOON2

GO 70 SLEEP GO TO SLEEP

BRA TEST1 BRA TEST2
G00M] USE RESOURCE G00M2 use RESOURCE

LDA 11 LDA £1

STA FLAS STA FLAG

Seplember 18, 1990 Real ime College, Triaste 1 — 27 Octobar 1980 74

Introduction to real time operating sysiems.

Mutual Exclusion.

* |t is important to realize that the TAS
(or equivalent) instruction is in itself
not enough to handle a!l possible
situations. It is useful help given by
the hardware.

e Several mechanisms have been

invented:

« Dekkers’ algorithm (very
complicated)

. Dijkstra’s semaphore

- Event counters

- Monitors (a language construct)

- Message passing

- Ada rendez-vous (another language
construct).

September 18, 1990 Real {ime Collage, Trieste 127 October 1990 76

"$$3008 Jrey Suumnsus

SN ‘s$9001d JAYI0 A IOy WeM 01 X PS2I0J 3ARY PINOM winy JjqeLIeA 1 Jo
INEA 3 ‘[ocoroid Anua o unnooxs Tus sem T 5593044 IyM pue penxa
PEY 11 PR A[:erpounur uoidal sy Jmusel o pardwane pey rssacosg JI

‘N?

{uordas aapuz)

asipf - 8oyf 1yro 153
Foyf umo jas

oW - wany 153

w j0u - wang 3531
2w jou - uamy 1539
aut you - uany 1591
2l Jou - uiny Js31

2oy umo 1asas
W jou - uamy 1533

mua - Soyf sayse 159
Eoyf umo s1as

Z ssav0uy

‘sidwane ss300e SnodURNUILS Jo ased 3
SYL ‘[ssav044 01 Kywoud 3uta1g snip
W 1M013q UAAIE §1 ssaxe dAj0SAI O o

8oy umo 1asas
au jou wimy 195

{uo13a4 2ap2p)

{vo1824 sa1u3}

aswf - Soif 1ay10 139
my - Ioyf angro 351
| AW - wmy 59

my - Zoif anpro 15
3vlf umo jas

[ssa2014

NG 150w Yy sarensaqq apdurexa
‘Fnip ST uamy JO IN[EA AP YD SAWNsSE
cor0ud 2y jo asn o jo orduwrexs uy

"wyiuode s e - 7z g

‘pua
{yo0; asva1aa} aspof =: 8oy
{ss2004d 1010 01 yra0ud) uwion = wm
uidaq
‘(upaj00q : 2wt ‘upajooq : Soyf fut xea) ¥2opm 3xnpadoad
!pua
pua
{4212 o1 D3> Mmou)
{uwdp L4} ‘op 3oy sry apym
‘ong = Soyf Kw
{s2apap ss230.4d 4930}
{1111 110} ‘0P 2wt < uims M
lastof = 8oy Lw
{s52204d 20410 01 paauod} widaq
asye
{49142 01 1p2)5}
{apaauos o1 40 2apa) o ss220.4d}
{47110 40f 11OM) ‘op Soyf sy apym
WY 2w = uamy 1
{vo182.4 Juriatua a0 uy ssasoud dnyro} wagy Soyf sy
londy =: Soyf Kw
uidaq

(uD2100q: au ‘upaooq: 8oy sy oy dw xea) yoo; ukaﬂouann

—_—

33,

F¢8C. 2.2 INTERPROCESS COMMUNICATION ' 59

define N 100 /¢ number of slots in the buffer «/
‘§nt count = 0; /% number of items in the buffer «/

“f;xoducur()

while (TRUE) { /% repeat forever «/
: produce_item(); /+ generate next item »/
if (count == N) sleep(); /= if buffer is full, go to sleep «/
enter_item(); /# put item in buffer »/
count = count + 1; /% increment count of items in buffer »/
) if (count == 1} wakeup{(consumer); /% was buffer empty? »/
) :
}
?onsumer() _
! while (TRUE) { /% repeat forever «/
‘ if (count == 0) sleep(); /+« if buffer is empty, got to sleep =/
remove_item(); /+ take item out of buffer »/
count = count - 1; /% decrement count of items in buffer =/
if (count == N-1) wakeup(producer); /+ was buffer full? =/
consume_item(); /% print item «/
}
)

i SEC. 2.2 INTERPROQCESS COMMUNICATION 61

. jdefine N 100 /# number of slots in the buffer «/

_typedef int semaphore; /+ semaphores are a special kind of int »/
sesaphore mutex = 1; /# controls access to critical region #/
gemaphore empty = N /% counts empty buffer slots =/
semaphore full = 0; /# counts full buffer slots »/
producer ()

int item;
while (TRUE) { /+# TRUE is the constant 1 »/
produce_item{&item); /+ generate something to put in buffer »/
down(empty); /+ decrement empty count »/
down(mutex); /+ enter critical region «/
enter_item(item); /% put new item in buffer =/
up(mutex); /+ leave critical region #/
up{full); /# increment count of full slots «/
}
}
consumer(}
int item;
while (TRUE) { /# infinite loop #/
down{full); /+ decrement full count =/
down{mutex); /% enter critical region »/
remove_item(&item); /% take item from buffer »/
up(mutex); /+ leave critical region */
up{empty); /% increment count of empty slots »/
) consume_item(item); /% do something with the item »/
}

33 ,

« int item, sequence

@ .

fdefine N 100

typedef int event_counter;
event_counter in;
gvent_counter out;

roducer ()

int item, sequence = 0;

while (TRUE) {
produce_item(&item);
sequence = saquence + 1;
await(out, sequence - N};
enter_item(item);
advance{in);

=

consumer()

0;
while (TRUE) { —

sequence = sequence + 1;
await(in, sequence);
remove_item(&kitem);
advance(out);
consume_item(item);

/%
/%
/%
/»

/%
LS
/%
e
/%
L)

/%
/=
/»
/%
/%
/%

number of slots in the buffer «/
event_counters are a special kind of int «/
counts items inserted into buffer »/
counts items removed from buffer »/

infinite loop «/

generate something to put in buffer «/
count items produced so far »/

wait until there is room in buffer x»/
put item in slot (sequence-1) % N &/
let consumer know about another item «/

infinite loop »/

number of item to remove from buffer «/
wait until required item is present »/

take item from slot (sequence-1) % N «/
let producer know that item is gone #/

do something with the item »/

Fig. 2-12. The producer-consumer problem using event counters.

i a monitor written in an imaginary language, pidgin Pascai.

monitor example
integer i;
condition c;

procedure producer(x};

end;

procedure consumer(x);

end;
end monitor;

Fig. 2-13. A monitor.

34

A

-

int item;
pessage m; /%

T ehile (TRUE) {

3

}

produce_item(&item); I
receive(consumer, &m); /#
build_messege(&m, item); /#
send(consumer, &m); /u

consumer()

{ .

int item, i;
nesseage m;

 for (4 = 0; 1 < M; i++) send(producer, km);
while (TRUE) {

receive (producer, &m);
extract_item(dm, &item);
consume_item(item);
send{producer, &m);

Fig. 2-16. The producer-consumer problem with N messages.

- pPud

J<OIDp AUMSUCI>

message buffer =/

INTERPROCESS COMMUNICATION

71

/% number of slots in the buffer +/

generate something to put in buffer #/
wait for an empty to arrive »/
construct & message to send &/

send item to consumer «/

(y00}) oudss

/+ send N empties s/

/+ get message containing item »/

/% take item out of message »/

|
=
o
e 3
TN
5§
8
Al ¥ o
8 5§ 8
3 L
8 =
= s 8
B &8
5 -
5 %
L, 8
S 3§
|)
= >~
g -
R
v

35

LIFUMSUOD

‘pus

/% do something with the item «/
/% send back empty reply #/

2 h g,:’g.é
-,

88 § =8

== 1= §§

QQ 2..(\

82 §' TR

1 &

l‘\: - [

E 5 v

= M

B o

Y

]

<saffn

mdaq
Op Diop 240w s

damposd

Hayng M4 ¥ - ¢'7 By

!pua

‘<oiop aumsuoI>
(21901100 Wwoos) Ipudis 0 1xaL
‘{yr0]) jpudis '
‘<daffng wosf vivp 1Ds1XI>
(y20}) nOM .) S 4

(21qo0AD DIDP) NHDOM

udaq

Op DIDp suow apym
JFIUMSUOI o ixeu |
pue N
‘pua

{(21gv10AD DIDP) JUS)s
(¥201) jpud)s

‘<iaffnq uy owp 1iasur>
{(¥20}) 110Mm
(21qD1mAD Wo0L) 1HOM : - -
!<pipp” aonpoid>
utdaqg -
Op DIDp 240wt ApyYm

"I2Jnq papunoqun oy L - 7 *8ig
daonposd

18iirg aey Biep Buniem Blep pasn

U Ixeu o Ixay

Introduction to real time operating systems.

Mutual Exclusion.

e Note that these methods will require in
most cases considerable effort by the
programmer.

e Also note that none of these methods
will automatically prevent deadlock or
starvation.

¢ Simple example of deadlock:
. process A holds resource X and
needs Y
. process B holds resource Y and
needs X.

September 18, 1990

Introduction to real time operating systems.

Resl lime College, Trieste 1—27 October 1990 77

Input-Output.

e We usually distinguish between block
devices and character devices.

¢ The hardware of the device is
interfaced to the computer via a device
controller or adapter. In most cases a
specialized chip: disk controller, ACIA,
PIA, etc.

e The device is controlled by writing
commands into registers of the
controller, by reading back status
information. Data is transfered by
reading/writing from/to the controller’s
data register(s).

Seplember 19, 1990

Reat time College, Trieste 1 - 27 October 1990 79

23

Introduction to real time operaling sysiems.

Mutual Exclusion in 0S-9.

e In OS-9 the only mechanism to obtain
synchronization is message passing.

e |t relies on disabling interrupts for
short periods (done by 0S-9).

e We will see how this mechanism is
used in 0S-9 when we look at the
anatomy of a device driver.

e Making use of the LSR instruction, we
can implement general semaphores in
0S-9. We could put them in the C
library or even implement them as
new service requests.

September 18, 1990

Introduction to real time operating systems.

Input-Output.

e Reading and writing the registers ofa
controller is done with special VO
instructions (Intel), or using
memory-mapping. n the latter case,
normal load and store instructions are
used (DEC, Motorola).

¢ Direct Memory Access is done entirely
by the controller. The transfer is set
up by software. Data do not transit
through the CPU. The completion of a
block transfer usually generates an
interrupt.

Sopiember 19, 1990

fleai time College, Trieste 1 —27 Qctober 1930 78

Real lime College. Triesle 1—27 October 1000 BD

(4 M3 dd M3 3d S a) - 234d dpow a3

*19A8] YoBI JO SUOHOUNJ UIBW Y] pue WsAs O/ Y3 JO sidke] ‘9-¢ 3y

uonegsado O/} Wioad ajempleny
| [
Pala|dwoa O/ uaym JaALIp dnaxep * sJajpuey 1dn.ualu)
j
sn1els yIIyd uw..mam_mo._ ad|Aap dnyag : SI3A1IP 321A3() ,
' 2JEM1J0S
uoiledoj|e ‘Guriagyng ‘Gu1yo0;q ‘uopoerosd ‘Hunuen Juapuadapu-391A3(
_ 4
' <
6uijoods :(/| 1ewi0} ‘1j€d O/ aNeW \\\ sassao0.d Jasn) N 2
AjdaJ FEVY: o]
m_.__o_ﬂuc_.; O__ O_
. -
o0

‘2IBM1JOS (/] 1Wapuadapul-a0iAdp 3 JO suonduUn "§-¢ 31

Buiziodal Jouiy

a3kg Spon | aos
[208
-~= 8275 2bR103S JUBURWIS —~-|
_ 908
| vos
- 338330 UOTINDAXNY -—
! i 608
24D I ¥oayp Ajtieg 1apeag | 808
dTNpoll e S e mr e m e ———— .
| I l uoysTASY | saInqrIliv | L0%
_ _ Y e -k A e o o o -
| | | abgnbue | ad4y, | 903
— w e m — ————— - — — -
[A3taed 1 | S0sS
| 13pway | ~=— 3I983J0 2WeN ITNPON -—
" “ I [vos
| | | | £0%
| I | == (8934q) azys 2TNPOH ---|
“ “ ! ! 20$
| ! i | 108
| | === (ad.i8¢) se3dg ouis -]
| | | i 00s
Ssa1ppy
abuey yoayp abesq aaT3e[aY

LYWYOd ITOAON ¥AAI¥A FDIAAA

usIsds /1 PRTITUQ eyl
TVONVR §,4INNVEO0Nd WIISXS 6-50

saoinep pereaipap Buisea)as pue Bunedoljy

$8a1ABp %204q UO uoHIEd0||e 3being

Bulsayyng

azis ¥o0jq Japuadapui-a21Aap & BuIpIACg

uon32810.1d 891A3Q

fuiweu aaaQ

ssaAlIp @d1Aep ayl oy Budejialutl waojiun

*1

Introduction to real fime operating systems.

Introduction tc real time operating systems.

11O Software.

110 Software.

* |/O software should fulfill two goals:
- hide the peculiarities of the
hardware
. present a nice, clean and regular
interface to the user.

e This leads naturally to a layered
structure:
- interrupt handlers
. device drivers
. device-independent operating
system software
- user-level software.

Ancther respensibility of 170 software
is to handle errors.

I/C software should also take account
of the type of device: sharable (disks)
or dedicated (printers, terminals).

device independence means that the
user should see no difference between
writing to a file on a hard disk or
writing on a printer.

The device driver’s task is to receive
abstract orders from the software
above and then to see to it that the job
gets done.

September 19, 1990 Real {ma College, Trieste 1 — 27 Oclober 1990 81

Iniroduction to real time operating systems,

September 13, 1290

Introduction to real tim= operating systems.

110 software.

110 software.

¢ This means: franslating the request

motor, move arm, set up DMA, etc.,
etc.) and issue them. If the execution

must block (go to sleep), until an

interrupt will cause it to be woken up.
Finaily errors are checked and status
information passed back to the caller.

intc commands to the controller (start

of the command takes time, the driver

The device-independent I/O software

is responsible for:

- uniform interfacing to the drivers

- translating device names into
selection of the appropriate driver

« protection

- buffering

« storage allocation on disks

. allocation and reiease of dedicated
devices

= error reporting.

Seplember 19, 1990 Real ime Collsge, Yriesie 127 October 1990 83 jﬁ

Seplember 19, 1990

Real time College, Triesls t —27 QOclober 1990 82

Real {ime Coliege, Triests 1 — 2T October 1990 84

TAIroduciion o reas Ume operaiing sysiems.

/0 software.

® | jbrary functions, which are linked into
user-programs, do the remaining part
of the input-cutput. Some library
routines simply pass parameters on to
a system call (e.g. read, write), others
do more work (e.g. printf, scanf).

* A final part of I/0 software is a
spooling system. Files to be printed
are put in the spocling directory. A
printer daemon is the only process
allowed to access the printer.

September 19, 1990 Real time College, Triesle 1 —27 October 1990 85

Introduction {o real tinve operating systems.

Deaadlocks.

e Different aspects of the problem are:

« detection and recovery

. prevention (by imposing rules on
the processes)

. avoidance {using an algorithm to
make the right choice when
resources must be allocated (the
Banker’s algorithm).

September 19, 1950 Real Hme Coltage, Triests 1 — 27 October 1990 &7 AO

(HINOUQLC LU U Teal ime Dpeialiliy sysiems.

Deadlocks.

® in a multi-programming system, where
non-sharable resources are allocated
to processes, deadlock situations may
occur.

® Deadlocks have been extensively
studied, but the subject is not very
important for real-time control or
embedded systems, where dynamic
allocation of non-sharable resources is
rare.

Septamber 19, 1990 Real time College, Trieste 1 —27 Oclober 1990 86

Introduction fo real time operating systems.

Input/Output in 0S-9.

® Device independence is obtained by
splitting into four levels:
. IOMan manages all input/output
. File Managers handle a class of
devices, without regard to device
characteristics.

EXAMPLES! RANDOM BLOCK FILE MANAGER (RBF)
SEQUENTIAL BLOCK FILE MANAGER (SBF}
SEQUENTIAL CHARACTER FILE MAM (5CF)

PIPE MANAGER (PIPEMAN)

September 19, 1990 Real fine College, Tdeste 1—27 Oclober 1990 BE

L R e e L B

Input/Output in 0S-9. Input/Output in 0S-9,
- Device drivers for doing low-level ® A file-manager has many entry points:
110 transfers from/to a specific type - Create
of hardware controller {disk - Open
controiler, ACIA) - MakDir
. Device descriptors specify - ChgDir
characteristics of individual devices. - Delete
. « Seek
* File managers are re-entrant and can - Read
handle a whole class of devices with - Write
similar operational characteristics. - ReadlLn
« WriteLn
¢ Responsible for buffering of data, - Getstat
mass-storage allocation and directory « Putstat
services, processing of data stream. - Close
Septamber 19, 1990 Real ihme College, Triesia 1 —27 October 1950 89 Seplember 19, 1990 Reat ime College, Triaste 1—27 Oclober 1990 9(
introduction o real time operating systems. Introduction to real time operating systems.
Device Drivers in 0S-9. Device Drivers in 0S-9.
e Device drivers are re-entrant and can ¢ Device driver has six entry points:
control several hardware controllers - Initialize
of the same type. « Read
« Write
Bur: ACIA ror THE MoToRoLA 6850 cHIP ANp « Get device status
ACIAS] For THE SicMETICS 6551 - Set device status
« terminate

e Parameters passed and precise
actions depend on the file manager
and the hardware controller.

e We will treat in more detail later the
synchronisation problem.

September 19, 1990 Reai iima College, Trieste 1 — 27 October 1990 91 # September 19, 1990 Resl fime College, Trieste 1— 27 Oclober 1990 92

D it e e L pp—— T M T — - — i —

anTeA ¥23YD J¥D

(939 sbutiigs auen)

" e .
[—

(9Tqel uOT3IRZTTETITUI)

e e

1
i
i
i
1
i
i
i
i N*ZTIs‘21$
m R N e o M o o p 2t .t —
i 1 9218 37qel uoTr3Ie2TITRT3ITUI | 118
i it e nbs az1s
i RH @TTd Terjuanbag Jo 92185 4
i - (319 y2) - e sepmimy o1 PUD STrpow pows
1 i 883Ippy TeoysdAyd ainyosqy i a3 d'nk'x sTnd
LI - 1319= ‘1eyd={y¥Y) uinisal od‘n
! : 191To23u0) #o143g) as b o ﬁmwﬂusxvamu 19ATIp @3n0axd x‘Q 28l
m .||||11|||||1|||||l|1|||l1||:|" (2373M 203) IRYd 310383l ww. ept
i i @34g apo i §S21ppw AIjUs 3jnTosSqe X‘p xeal
; LU ittt SO as 23728/pee1 kq 308330 ' Pepe
. e X‘DAXISH
i i Bbutiys suey 34 §9T713Ud UOT3INDIXD JO 33IEIJO pu
1 ‘=~ 13A7IQ 957A2Q 03 395330 - sgalppe aTnpou 1aatip 33b x“>Hmnm> XpPT
i I 1 g4 13atip 103 abeio3s oT3IRIs 396 X‘L¥LSsA npr
D¥D e e e s12387631 saes n’'Afx‘e sysd DIXIOI g
3Tnpouw i Buriis awepn i s o
i ‘-~ 13beUPH 3TTJ 03 38s3y0 --° 00‘a sho33saq &
i i i 63 10113 J1 198 DO ‘9pod 10118=(d)] »
i P e e e * {pea1} IeUD u:&:HuMMW t5UINJAY
o9 A3T1e4 13pEa i fpeaysg) 2UTINOI JO 3IBEFJO= .
“ _——fe— mllllllm-amwllwmnnmlnumlnmnnlaw 8 (8313Msa ‘P s 13d 103d11983(Q zummummw ¥
i i) i 33d Aijus ITqel IdTaaQ=(X .
1 e mmanayg g i Teas amdamos(v) sossona |
m ; PoJRD T8 P (=dAn) gs 38 2UTINOI 93TIM/DRIY 5,30TAIQ 23NDIXT
i A3T13ed i i 63 23XIA0I »
i HNUMOS - SweN O.ﬂn_voz 03 UUMW—NO —_— LFRENYENIENEEEY
I i i) ¥s
M q -I'll'lo.lullll'..lllllllllc.l'illlln.l.llll'I
I 1 i i £$
] 1 - 8ZTS 3Tnpoy —-—
1 ! ! i [43 wa3nis 0/1 PRTITUD YL
I 1 T e el TYARYN S, ENNVEDOUd WALSAS 6-80
i 1 i 1 18
I 1 Sm- (@dL88) sa3ig oudks -
i i i i 0s
it P . .IIIIIIIIIIIIIllllll...lllllllll.
LASJI0
LYWHOd IFTNAOW d0IdIN¥DSIg 3231A3Q II0A0W

us38is 0/1 P9IITun ’qL
TVONVR §,4INNVEO0Ud NILSIS 6-50

Universal Path Descriptor Definitions

Name Addr Size Description

PD.PD $00 1 Path number

PD.MOD s$01 1 Access mode: l=read 2=write 3=update

PD.CNT $02 1 Number of paths using this PD

PD.DEV $03 2 Address of associated device table entry

PD.CPR $05 1 Requester's process ID

PD.RGS $06 2 Caller's MPU register stack address

:g.sg; gg: 2% Adgress of 256-byte data buffer (if used)
. Defined

D oo o0 22 ed by file manager

Reserved for GETSTAT/SETSTAT options

The 22 byte section called "PD.FsST"

is reserved for and defined b
each type of file manager for file pointers Y

+ permanent variables, etc.

The 32 byte section called "pD,OPT" is used as an "option" area
dynamically-alterable operatin r coe

rable 9 parameters for the file or device. These
vagiqbles are initialized at the time the path js opened by copying the
initialization table contained in the device descriptor module, and can
be altered later by user programs by means of the GETSTAT and SETSTAT
system calls.

"PD.OPT" and *“pp.FsT" sections are defined for each file manager in

::: Rgs?embly language equate file {0S9SCPDefs for SCFMAN and OS9RBFDefs

MODULE
OFFSET ORG $12

TABLE EQU beginning of option table

$12 IT.DVC RMB 1 device class (0=scf l=rbf 2=pipe 3=sbf)
513 IT.UPC RMB 1 case (0=both, l=upper only)
14 IT.BSO RMB 1 back space (0=bse, l=bse,sp,bse)
$15 IT.DLO RMB 1 delete (0=bse over line, l=cr)
$16 IT.EKO RMB 1 echo {(0=no echo)
$17 IT.ALF RMB 1 auto line feed (0= no auto 1f)
$18 IT.NUL RMB) end of line null count
$19 IT.PAU RMB 1 pause (0= no end of page pause)
$1A IT.PAG RMB 1 lines per page
$1B IT.BSP RMB 1 backspace character
$1C IT.DEL RMB 1 delete line character
$1D IT.EOR RMB 1 end of record character
$1E IT.EOF RMB 1 end of file character
S1F IT.RPR RMB 1 reprint line character
520 IT.DUP RMB 1 dup last line character
$21 IT.PSC RMB 1 pause character
$22 IT.INT RMB 1 interrupt character
$23 IT.QUT RMB 1 quit character
$24 IT.BSE RMB 1 backspace echo character
$25 IT.OVF RMB 1 line overflow character (bell)
526 IT.FAR RMB 1 initialization value (parity)
$27 IT.BAU RMB 1 baud rate
$28 IT.D2P RMB 2 attached device namestring offset
$2A IT.XON RMB 1 xon character
$2B IT.XOFF RMB 1 xoff character
s2¢C IT.STN RMB 2 offset to status routine

1

S2E IT.ERR RMB initial error status

2

IR LAY A TR AT
e TR Ty R R TEE FPEEHF WA A BT RART AAF § RA, TR AETEEE WyrTSeT REEETTa T g T T T

Device Descriptor Modules. Memory management. j
® Non-executable: contain tables. ¢ The aim of memory management is to
o make best use of available memory
¢ {nformation in a device descriptor: and.to keep the.CPU busy.
- name of device
- name of device driver * Two classes:
- name of filte manager . without swapping or paging: a
- hardware controller address process stays in memory until
= initialization parameters finished.
o - with swapping or paging:
® The initialization parameters are processes are moved between
copied to the path descriptor when a memory and disk, during
path to the device is opened. They can “execution” of the process.
be changed using 1$Getstt and
I$SetStt. (For instance, you may ¢ The simple mono-programming case is
change control characters for terminal, of no interest.
or turn page pause on or off, etc.).

September 19, 1990 Real time CoMege, Trieste 127 Oclober 1990 93 Seplember 19, 1990 Real lime college, Trisste 1 —27 October 1990 94
introduction fo Real time operating system. Introduction to Real time operating system.
Memory management. Memory management.
¢ Multiprogramming is more e |n all cases programs must be
complicated: relocated as the memory address
. p = probability of process being where it will run is not known at
idle (waiting for 1/0). With n _ compile-time.
processes in memory p" is
probability that CPU is idle. For ® Also, the partitions should be
p=0.8 (not unusual at all!) , n must protected, to avoid that a bug in
be 10 for idle time to be less than program A destroys program B in
10%. memory. Protection needs special
hardware (base and limit registers for
e A multiprogramming system without instance).
swapping will need a large memory,
which can be divided into fixed size
partitions (not necessarily all of the
same size) or variable size partitions.

Seplember 19, 1980 Reat time college, Trieste 1 —27 Oclobear 1990 85 hq Seplember 19, 1990 Real lime colisge, Trieste 1—27 October 1990 96

nraduc ion O sea .0 O el R ofade b

Fixed partition schemes may
under-use memory, variable partition
schemes will leave “holes” in memory
when processes finish.

The holes will be filled only partially
by new processes. Memory
fragmentation may occur, where all
holes are too smail to receive a
reasonable program. Memory
compaction combines all holes into
one large hole.

An extra complication is that data and
stack areas may grow during
execution (think of malloc()). So a
process may grow out of its seams.

September 19, 1990

Introduction to Real time operating sysiem.

Real lima coliege, Trieste 1 —27 Oclober 1990 97

Swapping.

When a process must be brought into
memory, the memory manager must
find a hole where to put it. Four
algorithms:

. first fit

- next fit

- best fit

« worst fit.

Seplember 19, 1990

Raai tims college, Trieste 1—27 Gctober 1990 99

TETOG ML T U Ea e Jpera inyg 3ys .em.

Swapping.

* Some of these problems may be
aleviated if processes may be
swapped from memory to disk (when
they have to wait for 1/O for instance)
and brought back into memory later.

® Variable partitions may again be used.

To keep track of where things are and

of free memory space, different

techniques are used:

- bit maps. Each bit in the bit map
represents a fixed size of memory.

» linked lists. The list is sorted by
address and links processes and
holes.

- buddy system.

September 19, 1990 Real time college, Trieste 1 — 27 Ociober 1990 98

bs

Infroduction to Real time operating system.

Virtual Memory.

® Total size of program, data and stack
may exceed size of memory. Keep
those parts needed now in memory
and the rest on disk. When a piece
now on disk is needed, bring it into
memory, throwing out (maybe) a piece
no longer needed.

¢ When these things happen without the
user being aware of it, we have a
virtual memory system.

¢ Virtual memory and multiprogramming
go very well together: when process
A is swapped out, because it is waiting
for 1/Q, another process may run.

September 19, 1980 Real fime college, Triesie 1 —27 Oclober 1990 100

Multiple
input queues

L__H:}— Partition 4 Partition 4
700 K .
T
Partition 3 Single Partition 3
input queue
400 K :
D— Partition 2 Partition 2
200 K
D—EH:I— Partition 1 Partition 1
- 100K
Operating Operating
system o system

(a) {b)

Fig. 4-4. (a) Fixed memory partitions with separate input queues for each parti-
tion. (b) Fixed memory partitions with a single input queue.

T W27 1z Wiz vzzaiz

c c C c C

a

% E

/ °
7/
Operating Operating QOperating Operating Operating Operating Operating
system system system system system system system
(a) (b) (c) (d) (e} (f (g}

Fig. 4-5. Memory allocation changes as processes come into memory and leave
it. The gray regions are unused memory.

4o

IR T /R R/
16

8
(a)
-l H{5]}3 ~{P|8B|6 «~ P 14| 4

|-

11111000 plols .
11111111
111001111
?%111110003 H|18]|2 -~|Pi20]6 - P 26| 3 oI H|[29]3]| X
. Hole Starts Length Process

at 18 2
(c}

(b) _

Fig. 4-7. (a) A part of memory with five processes and 3 holes. The tick marks
show the memory allocation units. The shaded regions (0 in the bit map) are
free. (b) The corresponding bit map. (¢) The same information as a linked list.

B-Stack
Room for growth - — r —_
}Room for growth
EE 4]
B-Data
8 Actually in use
B-Program
Y Y
A-Stack
Room for growth ——] f .
Room for growt
I T}
A-Data
A Actually in use
A-Program
. QOperating
Operating system
system
{a} {b}

segment. (b) Allocating space

Fig. 4-6. (a) Allocating space for a growing data
for a growing stack and a growing data segment.

b3

Introduction to Real time operating system.

Virtual Memory.

¢ Most virtual memory systems use
paging Virtual addresses (the
addresses the program uses) are
translated into physical addresses by
a Memory Management Unit.

e A page fault occurs when the program
issues a virtual address in the range
of an unmapped page (e.g. for which
no physical address exists). This page
is now brought into memory. If it is
necessary to make room, another
rarely used page is written to disk.

September (9. 1990 Real ime collage, Trieste 1 —27 October 1990 101

Introduction to real time operating systems

Memory Management in 0S-9.

®* Memory is allocated when:
- a module is loaded
- 2 new process is created (forked)
- a process requests more memory
- 08-9 needs more /O buffers or
needs to expand its data structures.

¢ Memory is de-allocated when the link
count of a module goes to zero.

September 18, 1930 Real lima Coliegs, Trieste 1-—-27 Oclober 1990 103

48

Introduction {0 Keal ime operaling sysiem.

Virtual Memory.

® Several page replacement algorithms
exist to choose the page to be thrown
out.

e The ideal, but unrealisable, algorithm
would throw out the page that will not
be used before long in the future.

® Realisable algorithms are:
« not-recently-used page replacement
(NRU)
- first-in first-out replacement (FIFO)
- least recently used page
replacement (LRU).

Septamber 19, 1990 Real time coliege, Trieste 1—27 Oclober 19390 10

Infroduction fo real time operating systems

Memory Management in 0S-9.

o [evel il makes use of hardware MMU.
e Level | uses a first fit algorithm.

e Memory fragmentation is a potential
problem in a multi-user system. For a
single user fragmentation is less of a
problem. It can often be avoided by
loading device drivers first!

e Modules in memory have a link count.
A module can be removed from
memory only when its link count is
zero.

September 18, 1990 Real {ime College, Triesie § — 27 Oclober 1990 1T

Initially
Request 70
Request 35

Request 80

Return A
Request 60
Return B
Return D
Return C

Memory

128 K 256 K 384 K 512 K 640 K 768 K 836 K 1M Holes
L L T T 7 1T 17§ 7T ¥ 11 rrqt LELEE L L L

1
A 128 2586 512 3
A B | 64 256 512 3
A B | 64 Cc 128 512 3
128 B | 64 Cc 128 512 4
D |64 | B | 64 C 128 512 4
D | 64 128 c 128 512 4
256 " 128 512 3
- 1024 1

Fig. 4-9. The buddy system. The horizontal axis represents memory addresses.
The numbers are the sizes of unallocated blocks of memory in K. The letters
represent allocated blocks of memory.

Virtua!
address
space

0-4K
4K-8K
8K-12K
12K-16K
16K-20K
20K-24K
24K-28K
28K-32K
32K-36K
36K-40K
40K-44K
44K-48K
48K-52K
52K-56K
56K-60K
B0K-64K

M X [X|IX[~NIX[D]|X|X|X|[Wis|O[D]=]N

} Virtual page

Physical
memory
addresses

0-4K

4K-8K

8K-12K

12K-16K

16K-20K

20K -24K

24K-28K

)\28K-32|<

Page frame

Fig. 4-11. The relation between virtual addresses and physical memory ad-
dresses is given by the page table.

49

TFRFOUUCTION U TEal IS GPCidilily 2348

Path Descriptors

64 byte structures allocated and
deallocated by IOMan when a path is
opened or closed.

First 10 bytes have same meaning for
all paths.

Then 22 bytes defined by file manager
(see OS9rbidefs and OS9scidefs).

Finally 32 option bytes, copied from
device descriptor and alterable with
[$SetStt. (see OSrbfdefs and
OS9scidefs)

Logical and Physical disk structure.

A disk is divided into 256 byte sectors,
with Logical Sector Numbers (LSN).

rbf uses LSNs, which are transiated by
the device driver into physical
location: side, track, sector.

entire sectors are transfered.

Track 0, side 1 on a disk is {(nearly)
always single density and 10 sectors.

All other tracks are usually double
density and 16 sectors.

LSNO(side 1, track 0, sector 0} is the
identification sector.

Seplember 19, 1990 Real time College, Triaste 1—27 October 1990 105 September 19. 1990 Real time College, Triesie 1 — 27 October 1990 106

Introduction to real time operating systems. Iniroduction to real fime operating systems.

Logical and Physical disk structure.

LSN1 and usually also LSN2 contain
the sector allocation map. One bit per
sector: "1”= in use, "0"=free.

The root directory immediately follows
the allocation map. Usually LSN3.

Every file starts with a file descriptor
sector, followed by the necessary
number of sectors to contain the
information.

First byte of FD sector contains the file
attributes:

Logical and Physical disk structure.

A directory is like any other file, only
difference is that D Is set.

An entry in a directory file is 32 bytes:
29 for the name, and 3 for LSN of the
FD sector of the file.

The RAM disk is set up by copying 4
sectors (LSNO—3; ID, map, FD of root
directory and root directory) into RAM
on the ROM-RAM disk board.

These sectors are copied from the top
of the ROM memory (capacity of the
ROM = 2560 sectors, of a floppy disk
= 2554 sectors).

Real lime College, Trieste 1— 27 Oclober 1990 107 September 19, 1990 Heal time College, Trieste 1—27 October 1990 10¢

50

Seplembar 19, 1990

6.1.1 Identification Sector

pogical sector number zero contains a description of the physical and
Eog1ca1 characteristics of the volume which are established by the
format®” command program when the media is initialized. The table below
gives the 05-9 mnemonic name, byte address, size, and description of each
value stored in this sector.

name addr size description

DD.TOT $00 3 Total number of sectors on media
DD.TKS $03 1 Number of sectors per track

DD.MAP 504 2 Number of bytes in allocation map
DD.BIT $06 2 Number of sectors per cluster

DD.DIR 508 3 FD sector of root directory

DD.OWN $0B 2 Owner's user number

DD.ATT $0OD 1 Disk attributes

DD.DSK S$SOE 2 Disk identification (for internal use)
DD.FMT 510 1 Disk format: density, number of sides
DD.SPT $11 2 Number of sectors per track.

DD.RES §$13 2 Reserved for future use

DD.BT $15 3 Starting sector of bootstrap file
DD.BSZ $18 2 Size of bootstrap file (in bytes)
DD,DAT S$1A 5— Time of creation: Y:M:D:H:M

DD.NAM S$1F 32 Volume name

DD.OPT $3F 32 Path descriptor options

Page 6-2

6.1.3 Pile Descriptor Sectors

The first sector of every fil
contains the logical C
telow describes the contents of the descriptor.

name addr size description

FD.ATT $0 1 File Attributes: D S PE PW PR E W R
FD.OWN sl 2 Owner's User ID

FD.DAT $3 5 Date Last Modified: YM D H M
FD.LNK s8 1 Link Count

FD.S512 s9 4 File Size (number of bytes)
FD.Creat SD 3 Date Created: Y M D

FD.SEG $10 240 Segment List: see below

The attribute byte contains the file permission bits. JBit
indicate a directory file, bit 6 indicates a "nonsharable” file,

public execute, bit 4 is public write, etc.

LY

e is called a "file descriptor®, which
and physical description of the file. The table

Bit 7 is set to
bit 5 is

Introduction to real time operating systems.

Anatomy of a device driver.

® When we want to use 0S-3 for a
real-time control application, it is very
likely that we have to add one or more
device drivers for a special device.
Hopefully we will not need a special
file manager.

® The nature of the special device has to
be studied, in order to decide which
file manager (rbf, sbf, scf) is best
suited.

¢ The interrupt service routine is
physically part of the device driver, but
logically it is an independent entity.

Seplember 19, 1990

Introduciion to real time operating systems.

Real time College, Trieste 1—27 Oclober 1990 109

Anatomy of a device driver.

e Disabling inferrupts may be foo
dangerous if the application is highly
time-critical. Other mechanisms (TAS,
semafhores) must then be used, which
disable interrupts for very short
periods only, or not at all.

The Getstat and Putstat entry points of
the driver merit attention. They allow
to implement special, device
dependent functions), which can be
enterely user-defined.

September 13, 1990

Real time College, Trieste 1— 27 Oclober 1990 111

S

Introduction to real time operating systems.

Anatomy of a device driver.

* If the driver will receive only kill or
wake-up signals, no signal intercept
routine is needed.

* [f one wants to send other messages,
such as “keyboard abort” or menu
choices, an intercept routine is
needed.

e |t is extremely important to identify the
critical sections, not only of the
driver(s}, but of the entire application.

September 19, 1990

Introduction to real fime operating systems.

Real tima College, Trieste 1~ 27 October 1990 110

Anatomy of a device driver.

e The file manager will pass the function
code and the register stack to the
driver when an 1$SetStt or 1$GetStt
system call is executed.

e Note that the C-functions Getstat and
Setstat are limited: they perform
1$GetStt and 1$SetStt for a few function
codes only.

e Microware’s C library contains the
flexible functions:

0S9 ("SYSTEM CALL NAME", "APDRESS OF REGISTER
ARRAY"
ForR EXAMPLE!

059 (1 _GETSTY, ®)

Sepiember 19, 1990

Real {ima Collegn, Trieste 1 — 27 October 1990 112

MIOCRC O G Ted MUE U . By ofandy fow

Anatomy of a SCFdevice driver.

A SCFdevice driver in OS5-9 foliows the
client-server model {In fact two: one
for read, one for write).

Remember the six entry points of a
device driver. Init and Term need no
particular comments.

GetStat and Putstat open many
possibilities, particularly for special
purpose drivers.

Read and the interrupt service routine
form the client-server. Two
asynchronous processes inside the
driver.

Seplembar 19, 1990

Real ime College, Toesle 1 —27 Cctober 1990 113

53

A wlle s WP e PR - wn= & Slstr= &

Anatomy of a SCFdevice driver.

¢ Read is the client; interrupt service

routine is the server. (Similarlty Write
is server, interrupt service routine the
client).

Read and Write use circular buffers,
separate for Read and Write.

Synchronization and mutual exclusion

obtained with the OS-9 mechanisms:

- when stuck, go to sleep (and not
busy-wait)

- wake-up of suspended process
provoked by Iinterrupt service
routine, by sending a signal to
suspended process

- signal received by intercept routine.

September 19. 1990

Real lime Coliege. Triesie 1 —27 October 1990 114

7.4 SCF DEVICE DRIVER STORAGE DEFINITIONS

S5CF-type device driver module contains a package of subroutines

that perform raw I/0 transfers to or from a specific hardware controller.
These modules are reentrant, so one copy of the module can simultaneously

run

each
area

the

several different devices that use identical 1/0 contreollers. For

"incarnation” of the driver, IOMAN will allocate a static storage
for that device driver. IOMAN determines that a new incarnation of

device driver is needed when an attach occurs for a device with a

different port address, The size of the storage area is given in the
device driver module header. Some of this storage area is required by

IOMAN

and SCF, the device driver is free to use the remainder for

variables and buffers. This static storage is defined in 0S9 IODEFS and
059 SCFDEFS as:

OFFSET ORG 0
$0 V.PAGE RMB 1 port extended address
$1 V.PORT RMB 2 device base address
$3 V.LPRC RMB 1 last active process id
$4 V.BUSY RMB 1 active process id (0 = not busy)
$5 V.WAKE RMB 1 process id to reawaken
V.USER EQU . end of 0589 definitions
$6 V.TYPE RMB 1 device type or parity
$7 V.LINE RMB 1 lines left until end of page
s8 V.PAUS RMB 1 pause reguest {0 = no pause)
59 V.DEV2 RMB 2 attached device static storage
$B V.INTR RMB 1 interrupt character
sC V.QUIT RMB 1 quit character
$D V.PCHR RMB 1 pause character
SE V.ERR RMB 1 error accumulator
$F V.XON RMB 1 X-on character
$10 V.XOFF RMB 1 X-off character
$11 V.RSV RMB 12 reserved
$1D V.SCF EQU . end of scf definitions

05~-9 SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: INIT

address of device descriptor module

INPUT: (Y) L
address of device static storage

()

OUTPUT: NONE

ERROR OUTPUT: (CC) = C BIT SET
(B) = ERROR CODE

FONCTIOR: INITIALIZE DEVICE AND ITS STATIC STORAGE

Usually this routine has three basic operations to do:

1. 1Initialize the device static storage.

2. .Place the driver IRQ service routine on the IRQ polling list
by using the 059 FSIRQ service request.

3. Initialize the device control registers (enable interrupts
if necessary).

NOTE: Prior to being called, the device static storage wi}l be cleargd
{set to zerc) except for V.PAGE and V.PORT which will contain the 24 bit
device address. There is no need to initialize the portion of static

storage used by IOMAN and 5CF. 5‘1

05-9 SYSTEM PROGRAMMER'S MANUAL
Sequential Character File Manager

NAME: READ

INPOT: (Y) = address of path descriptor
{0) = address of device static storage

OUTPUT: (A) = character read

ERROR OUTPOT: (CC) = C bit set
(B) = error code

FONCTION: GET NEXT CHARACTER

This routine should get the next character from the input buffer.
there
V.BUSY into V.WAKE and then use the F$SLEEP service request to put itself

to, sleep indefinately.

Later when data

is no data ready, this routine should copy its process ID from

is received, the IRQ service routine should put the

data in the buffer, then check V.WAKE to see if any process is waiting
for the device to complete I/0. 1If so, the IRQ service routine should

send a wakeup signal to it.

NOTE: Data buffers for queueing data between the main driver and the IRQ
service routine are NOT automatically allocated. If any are used, they

are defined in the device's static storage area.

0S-9 SYSTEM PROGRAMMER'S MANUAL
Sequentfal Character File Manager

NAME: WRITE

IRPOT: (A) = char to write
(¥) = address of the path descriptor
{U) = address of device static storage

OUTPOT: NONE

ERROR OOTPUT: {CC) = C bit set
(B) = error code

PUNCTION: OUTPUT A CHARACTER

This routine places a data byte into an output buffer and enables the
device output interrupt. If the data buffer is already full, this
routine should copy its process ID from V.BUSY into V.WAKE and then put
itself to sleep. :

Later when the 1IRQ service routine transmits a character and makes
room for more data.in the buffer, it checks V.WAKE to see if there is a
process waiting for the device to complete I/0. If there is, it sends a

wake up signal to that process.
Note: This routine must ensure that the IRQ service routine will start up
when data is placed into the buffer. After an interrupt is generated the

IRQ service routine will continue to transmit data until the data buffer
is empty, and then it will disable the device's "ready to transmit”

interrupts.

Note: Data buffers used for queueing data between the main driver and
the IRQ routine are NOT automatically allocated. If any are used, they
should be defined in the device's static storage.

sI

NAME: TERM
INPOT: (U) = ptr to device static storage
OOTPUT: NONE

ERROR OUTPUT: (CC) = C bit set
(B) = Appropriate error code

FUNCTION: TERMINATE DEVICE

Hhe:hiftsroutxne is ca;led when a qevice is no longer in use, defined as
eystems tﬁse coupt in the Qev1ce table becomes zero. 1In Level One
e 4 dri' e tegm1nat10n routine is not called until the link count of

ver, descriptor, or file manager also reaches zero, and the module

is bein .
following: removed from the s5ystem memory directory. It must perform the

1. Wait
routing) wntil the output buffer has been emptied (by the IRQ service

2. Disable device interrupts,

3. Remove device from the IRQ polling list.

NOTE: LI -~ Modules contained in the BOOT file will NOT be terminated,

LII - : , .
terminated. Any 1/0 devices that are not being used will be
DNARL§ (L] R-FF Y

SETSTA

function code

INPOT: (A) =
(Y) = address of path descriptor
(U) = address of device static storage

OOUTPUT: Depends upon function code
FONCTION: GET/SET DEVICE STATUS

This routine is a wild card call used ¢to get (set) the device
parameters specified in the ISGETSTT and I$SETSTT service requests, Most
SCF-type requests are handled by IOMAN or SCF. Any codes not defined by

them will be passed to the device driver.

In writing getstat/setstat codes, it may be necessary to examine or
change the register stack which contains the values of the 6809 registers
at the time the 059 service request was issued. The address of the
register packet may be found in PD.RGS, which is located in the path
descriptor. Note that Y is a pointer to the path descriptor and PD.Rgs
is the offset in the path descriptor. The following offsets may be used
to access any particular value in the register stack:

OFFSET MNEMONIC MPU REGISTER

50 R$CC RMB 1 condition code register
$1 R$D EQU . D register

$1 RSA RMB 1 A register

$2 RSB RMB 1 B register

$3 RSDP RMB 1 DP register

$4 RSX RMB 2 X register

$6 RSY RMB 2 Y register

$8 RSU RMB 2 U register

SA RSPC RMB 2 program counter

Sample access:

ldx PD.RGS,y

1dd RSY,x 56

bl - &

the IRQ polling seéﬁéﬁcemviéwaﬁ ?gIﬁd system'call.

1dd V.Port,u get address to poll

leax IRQPOLL,pcr peoint to IRQ packet]
leay IRQSERVC,pcr point to IRQ service routine
0S9 FSIRQ add dev to poll seguence

bes Error abnormal exit if error

Step 2: Whenever a driver program must wait for the hardware, it
should c¢all a sleep routine, The sleep routine will copy V.Busy to
v.wake, then it will go to sleep for some period of time.

Step 3: When the driver program "awakens®, it will check whether
it awakened because of an interrupt or a signal sent from some other
process. The usual way to accomplish the check is with the V. Wake
storage byte. The V.Busy byte is maintained by the file manager to be

the process ID of the process using the driver. When V,.Busy is copied
into V.wake, then V.Wake becomes a flag byte and an information byte. A
non-zero Wake byte indicates there is a process awaiting an interrupt.
The valug in the Wake byte indicates what process should be awakened by
the sending of a wakeup signal. The following code will indicate a
technique to accomplish this:

lda V.Busy,u get proc ID

sta V.wake,u arrange for wakeup

andcc #"IntMasks clear the way for interrupts
Sleep50 1dx #0 or any tick time desired.

059 F$Sleep await an IRQ

ldx D.Proc get process desc ptr {if signal test

1db P$Signal,x is signal present? (if gignal telt)

bne SigTest bra if so (if signal test)

tst V.Wake,u IRQ occur?

bne Sleep50 bra if not

Note that the code labelled "if signal test” is only necessary if the
driver wishes to return to the caller if a signal is sent without waiting
for the device to finish. Also note that IRQs (and FIRQs) must be masked
between the time a command is given to the device and the moving of
V.Busy to V.Wake. If they are not masked, it is possible for the device
IRQ to occur and the IRQSERVC routine to become confused as to sending a
wakeup signal or not, .

Step 4: When the device issues an interrupt, the routine address
given in the F$IRQ will be called. This routine is called as if it were
a portion of the interrupt handler in the system. The interrupts are
masked, the routine should be as short as possible, and the routine
should return to the caller via RTS, since the system poller has called
it via JSR and will do the RTI when done. The IRQSERVC routine may want
to verify that an interrupt has occurred for the device., It will need to
clear the interrupt and retrieve any data in the device. Then the V.Wake
byte is used to communicate back to the main driver routine, If V.Wake
is non-zero, it should be cleared (indicating a true device interrupt),
and its contents used as the process ID for and F$Send system call
sending a wakeup signal to the process, Some sample code follows:

1dx V.Port,u get device address

tst ???? is it real interrupt from this device?
bne IRQSVCI0 bra to error if not

1da Data,x get data from device

sta 0,y store data in buffer (simplified example)
lda V.Wake,u get process ID

beq IRQSVC80 bra if none

clr Vv.Wake,u clear it as flag to main routine
1db #S5$wWake get wakeup signal

089 F$Send send signal to driver

IRQSVC80 clrb clear the carry bit (this indicates all is well)

rts

57

NAME: IRQ SERVICE ROUTINE

PONCTION: SERVICE DEVICE INTERRUPTS

o Although this routine is not included in the device drivers branch
— table and not called directly from SCF, it is an important routine in
device drivers. The main things that it does are:

1. Service the device interrupts (receive data from device or
send data to it). This routine should put its data into and
get its data from buffers which are defined in the device

static storage.

B : 2. Wake up any process waiting for 1/0 to complete by checking
to see if there is a process ID in V.WAKE {non-zero) and if so
send a wakeup signal to that process.

3. If the device is ready to send more data and the output
buffer is empty, disable the device's *ready to transmit”
interrupts.

4. If a pause character is received, set V.PAUS in the
attached device static storage to a non-zero value. The
address of the attached device static storage is in V.DEV2.

5. If a keyboard abort or interrupt character is received,
signal the process in V.LPRC (last known process) if any.

When the IRQ service routine finishes servicing an interrupt,
it must clear the carry and exit with an RTS instruction.

5&

