INITERKRNAILTIITIONAL ATOMIC ENERGY AGENCY

{ @ ’ UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LC.TLP., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

t/
UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION *'\...,f

INTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY

c/o INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS 34100 TRIESTE {ITALY) ViA GRIGNANO, 9 (ADRIATICO PALACE) P.O. BOX 8 TELEPHONE 04014012 TELEFAX OMR24STS TELEX 40M9 APH |

SMR/643 - 24

SECOND COLLEGE ON
MICROPROCESSOR-BASED REAL-TIME CONTROL -
PRINCIPLES AND APPLICATIONS IN PHYSICS
5 - 30 October 1992

AN INEXPENSIVE (LOW-LEVEL)
IMPLEMENTATION FOR REAL-TIME CONTROL

A Case Study

R. KARNAD
FIVE-D Electronic Technical Services
102, Ganesh Appts
10th Mallswaram
Bangalore 560 003
India

These are preliminary lecture notes, intended only for distribution to participants.

MAIN BUILDING Strade Costiera, 11 Tel. 22401 Telofax 224163 /224559 Telea 460392 ADRIATICO GUEST HOUSE Via Grignano, 9 Tel. 224241

T Telefax 224531 Telex 460449
MICROPROCESSOR LAB. Via Beirut, 31 Tel. 224471 Telefax 224600 GALILEO GUEST HOUSE Via Beirut, 7 Tel. 22401

AN INEXPENSIVE (LOW-LEVEL)
IMPLEMENTATION
FOR REAL-TIME CONTROL

A CASE-STUDY

Ravindra Karnad

INTRODUCTION:

Many applications of control,despite being real-time critical, may not
warrant the use of sophisticated real-time operating systems and could just as
well be implemented using simple but effective techniques of system design.

This would be especially true in developing countries where projects,
more often than not, operate on a tight budget and one must use the most
economic solution for a given application.

In this case-study we look at an implementation of a controller for a
numerically-controlled machine. To keep things simple we shall not go into
the details of the entire system but only examine some of the functions of the
machine which would serve as good examples of real-time critical tasks.

We shall also see how these tasks are effectively handled by very
simple primitives which are most suitable for low-level real-time
programming. (By "Low-level" we mean programs written in assembly
language with a small scheduler and no real OS as such)

Throughout this discussion we shall (intentionally) avoid any reference
to any particular microprocessor family to highlight the fact that the same
techniques could be employed with virtually any microprocessor.

THE APPLICATION:

The machine is a honing machine used to grind the inner surfaces of
cylindrical components. The cylindrical component is placed vertically and the
abrasive stones are mounted on a honing head which enters the cylindrical
component. The honing head has two simultaneous motions: vertical
oscillation between the extremes of the cylinder as well as rotation about the
vertical axis. The abrasive stones thus trace out a helical path along the inner
surface of the component. In addition, the stones can be given small
movements (in a few micrometers) in the radial direction so that the amount of
material removed by the stones can be controlled and hence the diameter of
the component is controlled to within a few microns.

As far as the controller is concerned, the basic functions boil down to
doing the following fasks:

Accepting commands from the operator

Controlling the vertical movement of the carriage.

Sensing the vertical position of the carriage. |
Controlling the outward motion of the stones with stepper-motor
Sensing the actual motion of the stepper motor.

Monitoring the rotational speed of the spindle

Miscellaneous functions like turning ON the coolant etc

Etc.

N EWwWN -

For the proper functioning of the machine, not only should these tasks
be carried out in the correct sequence but also accomplished within the given
time constraints imposed by the system.

Consider tasks #2 and #3 from the above list. Task #3 would sense the
vertical position and would detect the reversal point of the carriage. Task#2
must respond fast enough to cause the carriage to reverse well before it could
cause any damage to either the component or the honing head (which costs a
few thousand dollars). At the same time the controller must also be able to
respond to an operator's command or in fact do each of the other tasks within
it's own time constraint. This makes it amply clear that the controller must be
able to handle many concurrent tasks with real-time constraints .

THE IMPLEMENTATION (AN OVERVIEW);

We shall see how we can arrive at a simple mechanism which permits
us to have many (low-level) programs concurrently running so that the
controller is able to handle such a real-time load and effectively perform it's
job of controlling the functions of the machine. In brief, the system design
will follow the following steps:

First, the overall functions of the controller are listed out as tasks (as
has been done above.)

Next, for each of the tasks we determine some timing parameters
which affect it's real-time response. This would include:

* How often this task must be executed,
* The amount of computation to performed each time and
* The time within which this computation is to be performed.

Next, each task is broken down into a finite-state machine. This
simplifies, to a great extent, not just the programming effort but also the effort
in de-bugging the system, as well as incorporating changes, updates and even
radically new features.

Having identified the keyboard task, we can now estimate the following
real-time parameters:

* How often must the process of the Key-board task run ?
* How fast must it respond ?

We can safely assume that the machine operator (who will be typically
slower than the fastest typist) can press no more than (say) 5 keys/sec. This
ofcourse means that there would be a duration of atleast 200 msec between
two key-depressions. It would be reasonable to assume (One must keep
making reasonable assumptions or a good guesses whenever data is absent)
that of this 200 msec, the finger of the operator is on the key for atleast 100
msec and the next 100 msec it is travelling to the next key. This will guarantee
that each key is depressed for atleast a minimum of 100 msec. This means that
it is sufficient to scan the entire keyboard once every 100msec. The scanning
operation, as explained above, would involve driving a low on each column
and scanning each row for a logic-low. This could be done in a few 100 micro
seconds. This also indicates that the percentage of time that the key-board task
uses the processor is very small (much less than 1%). This simple arithmetic
reassures us that the keyboard task can be very comfortably handled by the
Processor.

Before we can start identifying the modules which constitue the
keyboard process, we can first look at the state-machine model of the
keyboard task. The state-diagram shown on the following page indicates that
at any given time the keyboard task is in any one of four states.

For each state we need to identify the following:

* What is the action performed in that state
* Which events cause a transition from this state
* To which state/states can transitions be made.

M) Scan avera Tge

The state-machine approach permits us to break-up each task into small
independent pieces of code as structured modules {(Where each module
corresponds to one state of one task). Fach task would run as a process.
(Remember that a process is a program in execution). Depending upon the
state in which the task is, the appropriate module for that task would be
picked up for execution. (The finite-state machine approach also enables us to
write extremely small pieces of code which could be tested to ensure that they
run to completion within a reasonably small time.)

Last, but not least, we need a scheduler which will :

* Allocate processor time to different processes
* Provide a mechanism for communication between processes
* Perform the time-keeping function of processes.

To illustrate these concepts, we shall consider just two simple tasks: the
keyboard task and the sensor task and see how these are implemented as
state-machines and made to run concurrently in our system and how they
interact with other tasks.

THE KEY-BOARD TASK:

The function of the key-board is all too familiar and is just a part of the
man-machine interface of a system. In this application, the "keyboard" is only
a set of command keys for the operator as well as a numeric keypad for entry
of the machine parameters. Although we could have added a dedicated key-
board encoder, we shall refrain from doing so and adopt the policy of not
adding any extra hardware if the processor has enough time to spare to do
the job.

For the purpose of our discussion we shall assume that we have a
mechanism of scanning the keys of our operator-console through a few lines
of our PIA: The keys are arranged on a typical matrix and the processor
drives a logic-low on a given column and scans for a logic-low on a row. If
no key has been pressed, the processor will read a high. However, if a key
(let's say it is on Col #1, Row#2) has been depressed, the logic-low that has
been driven on col#1 will be retuned as a low on row#2 when the processor
scans it. The processor then knows the co-ordinates of the key that has been
pressed. So much for the mechanism of the keyboard scanning, let us now tum
to the real-time aspects of this task.

With reference to the state-diagram of the keyboard, we note the
following:
STATE 1. * Processor keeps scanning keyboard every Tgc msec
* If a low is detected on any scanned row, change state to 1
else remain in state 1
STATE 2: * Scan the same matrix point after Tgp (the de-bounce interval)
* If the scan is still low, it is a valid transition so decode the key
and change to state 3
* else the transition is rejected as noise so return to state 1
STATE 3: * Keep scanning the same key every Tgc msec.
* If the key is still depressed, stay in State 3
* If a scan is returned as high, change to state 4
STATE 4: * Scan the same key after T g msec
* If the scan is high , the key has been released so return to state
1 else reject the transition as noise and stay in state 3

From the above description of the states, the following points are clear:
* Firstly, the keyboard process needs to be activated only once
in several milliseconds.

* Depending upon the state, a unique piece of code is to be picked up
for execution. This piece of code is extremely simple and can be
tested for correctness without difficulty.

Before, we turn to another task and it's implemntation, let us look at the
scheduler which would be used to run these tasks concurrently.

THE SCHEDULER AND IT'S DATA STRUCTURES:

At the heart of the system is a simple scheduler which schedules the
various concurrent tasks. In this case, we have adopted the non-pre-emptive
scheduling method. In this scheme when it is time for a given task to run, it
runs upto completion and is not interrupted by other tasks.

Each task will determine the time duration after which it needs
to be re-activated. This value of time (usually in milli-seconds, but sometimes
also in seconds) is written into a timer location. A real-time interrupt will
constantly decrement this timer value until it reaches a value of zero. The

scheduler maintains a list of timers, one for each tasks. The first task whose
timer has expired will be picked up and it's process will be activated. Since
each task has been modelled as a finite-state-machine, whenever the timer
expires, the scheduler would first find out the current state of the task and
then pick-up the appropriate state-routine for execution, The small pieces of
code which constitute the state routines of the various tasks, are written so
that they terminate quickly after just analysing the current inputs and
detmining whether or not a state-transition has to be made and if so, the new
state number.
The scheduler keeps track of various tasks, their state numbers and

the timers with the help of the following data structures:

* A list of active tasks.

* A list of timers

* A list of states

* A list of jump-tables
The list of active tasks simply tell the scheduler which tasks are curently
active and which have been suspended (or killed). It would then look up the
list of timers to check if any of the timers have expired (i.e. become = 0). Let
us say that timer # j in the list of timers has expired. This indicates that it is
now the turn of task # j to have it's process running. The scheduler then looks
up the current state of task # j (say it is 'm’) and then with this computes the
offset in the jump table corresponding to task # j. This would then enable the
scheduler to pass on the control to the appropriate state routine of the
appropriate task. This is typically done by a call-to-subroutine instruction
followed by a jump. After the state routine has been executed, control is
returned to the scheduler by a return-from-subroutine type of instruction. The
scheduler then continues to scan the list of timers to see if any task needs
attention.

The basic time-keeping function of keeping time for all the tasks is
performed by a real-time-interrupt which can occur every 1 ms or so. This
interrupt simply decrements the timer of every active process. In
processors where it is possible to wait-for-interrupt the scheduler may
just wait for this tick of the clock before checking the list of timers. This
is because, the timers are decremented only at every tick of the clock (i.e.
every time a real-time-interrupt occurs) and thus no timer can expire in-
between interrupts. In some applications it may be possible to go into a
power-down mode between the ticks .

Recall that the keyboard task would run it's process for just a few 100
micro seconds and that the task would itself need to be activated once every

100 ms or so. This shows that the processor occupancy for this task is as low
as 0.003 to 0.005 . In simpler terms, this means that this task is keeping the
processor busy for only 0.3% to 0.5% of the time. Thus in applications where
power consumption is critical, it is evident how useful it would be to power-
down the processor between ticks and when no task needs attention.

A careful calculation of response times would enable one to squeeze the
maximum processing power of the processor in the given application. Whether
or not the processor can still take-on more concurrent tasks would ofcourse
depend upon the (peak) processor occupancy and whether this would affect
the response of the system to the existing tasks as well as the new ones that
are to be added.

THE SENSOR TASK:

Consider yet another example of a task which runs concurrently with
the keyboard task, the senosr task. This task keeps scanning the output of a
proximity sensor which indicates that the carriage has reached it's extreme
point and must reverse in direction. The output of the proximity sensor passes
through some interface electronics from which the processor gets only a logic
level: A logic HIGH indicates that the limit is NOT SENSED and a logic
LOW indicates that the limit is SENSED.

While this by itself is quite simple, we must bear in mind that the
electrical signal travels a few metres through an environment which is
electromagnetically speaking, quite polluted. Thus it is unwise to use the raw
form of the signal as-such. In this case we shall perform a very elementary
kind of filtering which invloves taking the majority value of an odd number of
samples of the signal. This is done by taking about 5, 7 or 11 samples and then
checking whether the signal was a LOW (or HIGH) for atleast 3,5 or 6 times.
~ In this case we take 5 samples and take a 3-out-of-5 majority.

Before we describe the state-diagram of the sensor, we can once agin
go through some simple arithmetic to determine if at all this task can be
handled by the processor in software and if so, how often must this process
run:

The sensor is designed to sense a portion of the carriage (called the
target) which moves across the sensor at a speed of about 10 mts/min. The
size of the target is such that when the target passes by at 10 mts/min, it will

take about 50 msec to completely cross the sensor. This implies that the
output signal from the sensor will last for a minimum of 50 msec. During this
window of 50 msec, we wish to accommodate atleast 6 samples: the first one
to determine that there has been a change in state and the next 5 to take a
majority count. This tells us that the sensor's output must be sampled atleast
once every 7 or 8 m sec. Note that this time unlike the keyboard task, where
the processor had to scan the whole matrix, here the processor has to scan just
one single input line. The amount of computation is therefore extremely small
and would last for 70 or 80 micro seconds. Since this task needs to run every
8 m sec even this task would have a processor occupancy of less than 0.01 or
in other words, this task too would keep the processor busy for less than 1%
of the time. In this manner it is clear how one can slowly add more
concurrent tasks to utilise more of the processor's power.

This is implemented by the state diagram shown below. This is very

similar to the state-diagram of the keyboard process and the description of the
states is as follows:

S5CAN EVYERYy 8mg
TARGET MovES AWAY

SCANV
5 TIMES

STATE 1: Scan the sensor every 8 m sec. If the line is LOW,
change to state 2 else remain in state 1
STATE 2: Scan the line every 8 m sec 5 times. If atleast 3 times
the line has been LOW the target has been sensed so
change to state 3 else change to state 1
STATE 3: Keep scanning the line every 8 msec. If a HIGH is sensed
then change to state 4 else remain in state 3
STATE 4: Take a sample every 8 m sec 5 times. If the sensor
output was HIGH atleast 3 times, then the target has moved away
so chnge state to 1 else return to state 3

INTER-PROCESS COMMUNICATION:
The processes of different tasks would need to exchange information
such as for example: the keyboard task must inform the other relevant tasks

which key has been pressed. Similarly the sensor task must inform the oSther
tasks that the carriage has reached a limiting position. This kind of
information can be interchanged in a variety of ways. A simple alternative is to
use a circultw huffer. Here there are two distinct pointers for every buffer: a
write pointer and a read pointer. The task which produces the data uses the
write pointer and the task which consumes the data uses the read pointer. A
special character is written by the producer to mark the point where there has
been a last entry.Whenever the consumer task reads this special character, it
knows that it has consumed everything that has been produced . Since we do
not employ pre-emptive scheduling conflicts between two tasks using the
same data will not arise and semaphores are not essential.

