INTERNATIONAL ATOMIC ENERGY AGENCY

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m Structutes

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LCTP., P.O. BOX 586, 34100 TRIESTE, ITALY, Casie CENTRATOM TRIESTE STRUCTURES AND UNIONS

& &

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION @ .
NTERNATIONAL CENTRE FOR SCIENCE AND HIGH TECHNOLOGY To group heterogeneous objects (PASCAL"record”):

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS MIOG TRIESTE ATALY) VLA GRIGNANG. % (ADRIATICO PALACTI PO BOX 586 TELEPHONE 0o 14372 TELEFAX MO-ZM€) TELEX 404K AFH |

date: day month year

SMR/643 - 6 struct date{ int day, month, year; };
struct date today, vesterday,
tomorrow;
SECOND COLLEGE ON . declare structure tag date(its not a typedef!)
MICROPROCESSOR-BASED REAL-TIME CONTROL - - declares today, yesterday and tomorrow to
PRINCIPLES AND APPLICATIONS IN PHYSICS . " "
5 - 30 October 1992 be variables of the type "struct date

Personal record:

name
social security number
C LANGUAGE - BASICS .
date of birth : date
6-8] struct wvitalstat
{ char vsg name[19],vs_ssnum[1l1l];
gstruct date vs_birth date;
} vsl;
A. NOBILE
International Centre for Theoretical Physics
T;::?;e struct vitalstat wvs2;

. declares structure fag vitalstat

. declares variables vs1l va2 of type struct
vitalstat

These are preliminary lecture notes, intended only for distribution to participants.

Structules

. struct tag_name { list of declarations}

. struct components can be other structs
WARNING : but of different types
struct infinite{ int count;

struct infinite mytail;

} /*ILLEGAL*/

. tag_name is optional
struct {(char a[l10], b[10] ;} strl,
str2;

ACCESSING ELEMENTS OF A STRUCTURE

strcpy(vs.vs_name, "John Smith");
strepy(vs.vs_ssnum, "035400245");
vae.vs_birth_date.day=17;
ve.vs_birth_date.month=9;
vs.vs_birth_date.year=1956;

variable name .component name
if (vs.vs_birth_date.month > 12 ||
vs.vs_birth_date.day > 31)
printf ("Illegal date. \n");

Structure components are normal variables

ARRAYS OF STRUCTURES

Arrays of anything!

Structupes

OR

#include <stdio.h>

typedef struct {float re,im;} Complex;
/* placed here to be GLOBAL, that is
apply to all functions in this file */
/* reads in two complex arrays */
main()

{
Complex v1[10], v2[10];
for (i=0; 1i<10 ; i++)
scanf (" %f %f %f %f " ,
&vl([(i].re , &v1[il.im,
&v2([il.re , &v2[i].im) ;
}

#include <stdio.h>
struct complex { float re,im;}
main()

.
¥

{
struct complex v1[10] , v2{10] ;
for (i=0; 1i<10 ; i++)
scanf (" %f %f %f %f * ,
&vl([i]l.re , &v1([i].im,
&v2[i].re , &v2([i].im) ;
}

Structuses

POINTERS TO STRUCTURES
pointers to anything !

#include <«stdio.h>»

typedef struct {float re,im;} Complex;

/* reads in one complex array
* and computes its euclidean norm

* gquared */
main()

{

Complex v1[10001];
double cnorm2();

for (i=0; i<10 ; i++
scanf (" %f %f " ,
&v1(il.im) ;
dp=cnorm2{vl,10};
printf (" %f \n" , dp
}
double
cnorm2(vl, n)
Complex v1[];
int n;
{
double 4=0;
Complex *vend=&vlin],

)
&vl[i].re

)i

*yp= vl;

for{ ; vp < vend; VvD++)

d += (*Vp).re * (*vp).re +

{(*vp).im * (*vp).im ;

return 4;

r

scructubes

(*vp).re UGLY. CAN BE TERRIBLE :

struct simple { int data;
} A;
struct messy{ struct simple * other;

} B;
struct messy * pmess;

(*{*pmess) .other) .cata

A.data: int B.other: pointer
to an object of
type simple

_‘) M

pmess; pointer to
an object of
type messy

Object A of type simple

object B of type messy

NEW OPERATOR ->
p->x IS (*p).x

EXAMPLE ABOVE: pmess->other->data

Structures

double cnorm2(v1 , n)
Complex v1[];
int n;
{
double d=0;

Complex *vend= &vl([n], *vp=vl;

for(; vpb < vend; vp++)
d += vp->re * vp->re +
vp->im * vp->im ;
return d;

OPERATIONS ON STRUCTURES

. take a component (.)
. take the address (&)
. take the size (sizeof)
TO PASS TO FUNCTIONS: pass pointers

Structufes
struct complex * cprod (cpl, cp2)
struct complex * c¢cpl, *cp2;
{ struct complex product;
product.re=cpl->re*cp2-s>re -
cpl->im*cp2->im;
product.im=cpl->re*cp2->im+
cpl->im*cp2->re;
return &product; /* DISASTER:
* returns pointer to local
* variable! */
}

Solution: use global or local static ?

Difficult! cprod(cprod(*a,*b),*c) would

not work either!
DO NOT TRY TO RETURN AS VALUE
(at least if use in of returned struct in an
expression is conceivable)

cprod (resultp, cpl, cp2)
struct complex *resultp, * cpl, *cp2;
{
resultp-»>re=cpl ->re*cp2->re -
cpl->im*cp2->im;
resultp->im=cpl->re*cp2->im+
cpl->im*cp2->re;
return ;

StructuBes Struc s

ANSI ONLY: UNIONS
typedef struct(float re,im;) Complex; Like structures, but components share the same
Complex zl,z2; memory: only one can be active at any time.
. assignement:
zl=22; Like Fortran EQUIVALENCE, Pascal variant record
. passing as argument to functions
double cnorm (Complex zl) { union reint{
return (sqgrt(zl.re * zl.re+ float re;
zl.im * zl.im}) inti;
b }
. being returned by a function
Complex csum (Complex zl,Complex 22) { reint.re = 2.0; /* reint.int becomes undefined */
Complex 8;
s.re = zl.re + 22.re; reint.i = 1; /* reint.re becomes undefined */
g.im = zl.im + z2.im;
return 8;
tc})gether with assignement: NORMALLY used inside a struct, togeteher with
Complex s,a,b; another variable holding an indicator,
Complex csum(Complex, Complex);
______ struct {
s=csum(a,b); int type;
union { floatr;
LAYOUT OF STRUCTURES IN MEMORY } inth;
v;
Seldom useful; sometimes, with pointers...; } var;
- Components are in sequential order, but not var.type = 0;
necessarily contiguous (holes -padding- possible var.v.r = 1.0;
to align objects to hardware required positions) ...
- No padding before first component: address of var.type = 1;
structure is address of first component var.v.i =7,

if (var.type == 0) x=var.v.r;

SELF-REFERENTIAL STRUCTURES

Structugas

Bit fields
Not available on your compiler

struct {

s.a is 3 bits wide;
s.b is 7 bits wide, and contiguous to s.a
S.C is 2 bits wide, contiguous to s.a

-- Each compiler can arrange bit fields in increasing
or decreasing order in a computer word;

-- If a bit field would cross the boundary between
two computer words, it is shifted to a new word

-- No bit field can be longer than a computer word
USAGE : sometimes to save memory

often to manipulate bit-sized objects
{ hardware)

Scope rules and storagk classes

SCOPE RULES

#include <stdio.h>
typedef struct {float re,im;} Complex;
Complex arr([100];

main() {
Complex x,y; /*OK:Complex global*/
float normx = 0.0, normy = 0.0;
int i;
for (i = 0; i<100; i++){
scanf (" %f %f", &arr[i].re,
&arr([i].im);
if (norm() > normx)
/* wrong: norm{) unknown
* assumed int
*/
X = arr{i]l;
if (norm() < normy)
y=arr[i];
}
}
float
norm() {
return(arr[i] .re*arr[i].re +
arr{i] .im*arr(i].im);
/* WRONG : i unknown */
}

Scope rules and storage classes

i defined when norm called, but its name
unknown outside function main

SCOPE of identifiers: where a NAME can be
used

DIFFERENT BUT RELATED PROBLEM

int *p, *£f1();

f2(p);

}

int * £1()({
int i=1;
f2(&i);
return &i;

}

f2(ip}

int *ip;

{
printf ("%4d",i);

}

scope rules and storage classes

i created when 1 called
deleted when f1 exits

. when {2 called from main,
i NO LONGER EXISTS

STORAGE CLASSES: when are variables
created, deleted, initialized, etc.

SCOPE rules must be consistent with storage
classes: non-existing variables cannot be named
- Pointers allow exceptions { AARGHH)

STORAGE CLASSES

1) auto :

normal declarations INSIDE compound
statements.

Created and initialized before execution

of the compound statement, deleted at its end;

SCOPE: from the declaration point to the end of
the compound statement;

e

Scope rules and storage classes

#include <stdio.h>
main(){

int gl100];

long int s8;

long int sum(y;

{

jnt i=0 ; /* 1 created and

initialized */
for (; 1i<100 ; i4+)
gcanf ("%d", &qlil) 7
i* i no longer exists and 1s no
longer accessible */
s = sum(g, 100);
}
long int
sum (arr, n)
int arrl]., n;

{
long int s = 0; | .
/* s created and initialized */
int i; /* 1 created */

for (i=0 : i<n ; i++)

g8 += arrli]l:
return 8 ;/* i, s deleted */

AL

Scope rules and storage classes

. NOTE : the body of functions is a compound
statement!

- NOTE: the closest definition is the one that is
considered (hides external ones)

Ex.: in the above the reading loop could be:

{
int B=0 ;
/* 8 created and initialized
* "main"-wide s hidden
*/
for (; 8<100 ; B++)

scanf ("%d", &qlsl) ;
}
2) extern :

definitions outside any function, not marked
"static". Created when program starts, survive till
program end. Accessible from other files,
through suitable allusions {(declarations).

SCOPE:

. for a definition, the file in which the definition
occurs, from the definition to the end;

. for an allusion :
- --—-if the allusion is in a compound statement,

the compound statement;

L

b

scope rules and storage classes

. —-if outside any function, the file from the
allusion down to the end;

WARNING:
storage class <=> variable
scope <=> name

The name of an extern variable can have local

scope if allusion (declaration) is inside
compound statement

Do not identify EXTERN (storage class) and
GLOBAL(scope)

Al

Scope tules and storadk classes

Eile a.c:
#include <stdio.h>
gtruct complex {float re,im; } ;
/*defines the tag complex
global to the file a.c*/
struct complex carril0];

/* defines an extern array of

10 complex */
extern struct complex big_ x;

/* declares big_x as complex
defined in another file;
allusion */

main() {

extern int fun();
extern int errcode;
/* allusions */
int test();/* allusion? */
struct complex z;
/* struct complex has
file scope */
test();
if(carrll].re==0.0)errcode=1;
/* carr has file scope */
}
int
test ()/*definition of test */{
if (carr[0].re > 100.0) {
errcode=2;
/* wrong : errcode has
block scope */

1%

i

Scope rules and storagk classes

big_x.re=carr([0].re;
big x.im=carr[0].im;
/* big_x, carr have file scope */
}

Fileb.c
struct complex (float re,im; };
eéxtern struct complex carr[10] ;
/*allusion */
int errcode=0; /definition of
errcode */
int fun(int i) {

.....

Y/ *definition of fun */

COMMENTS:

- all the function names are by default extern

- types and tags have no storage associate to
them->no allusions-> can be local to a block or
global to file;
#include to share among files (ALWAYSY),

- allusions are identified by the keyword extern;

3) static

Two uses:

AR

scope rules and storage classes

defined inside a block, but created

iables
B d at program start and deleted at

and initialize
program end;

keep their value from call to call (unlike auto)

SCOPE: the compound statement in which they

are defined.

int ff(n)
int n;:{ . .
static int first=1;

if (first) {
/*something to be done on
first call */
first=0;
}

. s s

}
auto would not work (WHY?)

19

Scope rules and storadil classes

3.2) Variables AND FUNCTIONS defined like
extern ones, but whose SCOPE is file only
(cannot be alluded)

VERY USEFUL, HIGHLY RECOMMENDED

PROTECTS AGAINST name clashes

INFORMATION HIDING
Problem : set of routines to manipulate a list of
names. The user should simply be able to add a
name to the list (addnam), delete a name from
the list (delnam), search the list for a name. The
name is a string.
File Iname.c:

#include <stdio.h>

/* basic data store not directly
accessible from outside */

static struct wvastat *listOfNames ;
/* public procedures */

addnam (name)

char *name;

Scope rules and storagkl classes

int delnam(name)
char *name;

struct vastat * search(name)
char *name;

ooooo

/* private procedures
* NAME CLASHES impossible !
*/

static compact list{){

gtatic struct wvsstat *
create entry(name)
char *name;

gtatic error (errcode)
int errcode;

{

}

Scope rules and storadk classes Scope rules and storage’ classes

4) register TYPE QUALIFIERS (ANSI ONLY)

Like auto, but suggests to the compiler to put

const
the variable in a hardware register if possible.
Can improve optimization a lot on old compilers. const float m=4.0;
Can inhibit it with optimizing compilers const int *pci;
. Since registers are limited, the first variable /* pointer to const int */
declared register has higher priority for m = 5.0; /*error */
allocation, and so on; pel = &a; /*legald/
« You cannot take the address of a register pei = a; /error*/

variable .
. Can be used on function arguments
int arr[100] , k; float sum(const 'float arrl[],
const int n);

{ register int *pi , g=0;

for(pi=&arr;pi<&arr[100];pi++) volatile
8 += *pji;
k=8; A volatile variable can be modified by the
} hardware or the O.S. , outside control fom the
program.

THEREFORE, any store or load operation
requested by the program MUST be actually
performed (no optimization allowed)

Memory-mapped I/O: output by writing to
address 500

2. .

Scope rules and storagel classes

char a[l100] :
int i ;
char *out = (char *) 500 ;

for(i=0; i<100; i++) *out = alil]

most optimizers would translate into

*out = a[99] ;

BUT
char a[100];
int i;
volatile char *out =
(volatile char *) 500;
for(i=0; i<100; i++) *out = ali]

COMMENT: can be combined

extern volatile const int clock;

-
’

Funcriods

FUNCTIONS
Glossary

declaration : the point where a name gets a type
associated with it

definition : a declaration that moreover
associates some memory with the name. For
functions, it is the place where you give a body
for the function.

formal parameters
formal arguments : the names with which a
function refers to its arguments

actual parameters

actual arguments : the names or values used
when the function is actually called -> the values
that formal parameters have on entry to the
functions.

a9

Functioas

FUNCTION DECLARATION

Functions must be declared before being called
ANSI style: function prototype

char * isprint(char c);
static struct vsstat * createnode(char
* name);

Synopsis:

. Optional static; if not present, extern
storage class is assumed

» function type (if missing, int assumed)
- cannot be array
- cannot be function
- CAN be pointer to array or pointer to

function
. function name

%6

Functiodd

. list of declarations of formal arguments, in
parentheses:

like other declarations except:

- only legal storage class is register;(ANSI)

- an array declaration is interpreted as a
pointer to an object of the same type of the
array elements;

- a function declaration is interpreted as a
pointer to a function;

- no initializers

IMPORTANT USE:

double sqrt(double x);
z=sqri(1);

The compiler recognizes type mismatch and performs
convertion of 1 to double

struct vsstat *add_to list(char * name);

p = add_to_list(1.0);

The compiler recognizes type mismatch and signals
error

94

Fanctions

Old C style

char * isprint({);
static struct wvssstat *
createnode();

No information on arguments
p = createnode (1.0) ;
/* AAARRGHHH */

FUNCTION DEFINITION
ANSI style

function prototype as above
function body (compound statement)

int factorial(int n)

{
register long int p=1;
register int i ;

for (i = 2; i<=n; i++) p *=
return p;

}

Old C style (accepted also by ANSI)

%

Functiond

static (optional)

type name (list of formal arguments names)
formal arguments declarations

function body

int factorial (n)
int n;

{

}
argument declarations: as in prototypes, plus:
--- char and short are treated as int +
conversion
--- float are treated as double + conversion
DEFAULT CONVERSIONS

void a func{ ¢, x)

char c¢;
float x;
{ «o... }

is handled as

void a_func(ext_c , ext_x)
int ext_c;
double ext_x;

{
char c¢;

29

Functiofng
float ext_ x;

¢ = (char) ext c;
= (float) ext_x;:

Seldom important to know, except for cross-

language development. Can impact
performance.

CALLING FUNCTIONS

1.evaluate expressions passed as arguments;

2.convert values according to function
prototypes if any (ANSI) or according to
default conversions:

3.use these values to initialize formal arguments

4.henceforth formal arguments behave like other
local variables

30

Functicasd

void called_func{ int , float):

main() {
called_func (1, 2*3.5);
}

void called func (int iarg, float
farg) {

float tmp;

tmp= iarg * farg;

Funct ic@g

CALL BY VALUE :

a copy of the value of the actual argument is
passed, not the actual argument itself

-> function cannot modify the actual arguments
(unlike FORTRAN, Pascal var arguments)

int called_func();

main(){

int n=10, array[30];

called func (array,10):
}
called func (arr,n)
int arrf(l.n:
{

for(;n>=0;n--)

printf ("%d\n",arr([n]);

/*changing n is perfectly safe */
}

Funcrictd

CALL BY REFERENCE:

passing the address of the actual argument.
Function MUST be written specially to accept it

float called _func{);

main{) {

int 1 = 1, f£;

f=called func (&i , 2*3.5);
}
float called_func (iarg,farg)
int *iarg; /* note int* */
float farg;
{

float tmp:

tmp= *iarg * farg:

(*iarg)}++ ; /* changes i */

return tmp;

32

FunctioBd

are n

void func(arr)
int arrf[];

int arr([10];
func(arr);
}

is identical to

void func(arr)
int *arr;

{ }
main()

{int arr[10];
func (&arr[0]);
}

Funct jc8%s

F ion re_ n val

(WHAT?)

EXCURSUS : pointers to functions
Often used !

function name is constant pointer to function
like array name

double fun(x)
double x;

double operator(f)
double (*f) ();
{/*do something with function f*/

}
main()
{
double (*pf)(},s;
/* pf pointer to function
returning double */
pf = fun ; /* pf = &fun wrong ;
* pf = fun() wrong ;
* pf = &fun() wrong ;
* /
s=operator (fun);
/* gsame as s=operator(pf) */
}

Functicgé Funct 1ofg

RETURNING FROM FUNCTIONS
[r r value (ANSI
void a_func({i, =)
int 1i;
float *s;
{

More on Default Conversions

if(!'i) return ;

If no function prototype used (Old C form of Yg 44 ;
declaration or no declaration at all} }

short and char converted to int;
. float converted to double; . return

. flow through the end

ANSt WARNING : mixing a prototyped
declaration with a non-prototyped definition can RETURNING A VALUE

cause problems
double squareroot (x)
double x;

{

double 8;

if (x <« 0.0) return 0;
8 =.../* compute sguare root */
return s;

}

. type of returned expression automatically
converted to type of function;

23

Functiog#

WARNING :

. mixing return value ; and return;

. mixing return value; and flow through end
is meaningless

38

Complex definit@dons

EXCUR : COMPLEX DEFINITIONS
What's that

int *(*(*x)())[5];

((*x) ())[5] isan int

[1 has higher precedence than *

(*(*x) ()) [5] is a pointerto an int

*(*x) () is a 5-elements array of pointers to int
() has higher precedence than *

(*x) () Is a pointer to a 5-elements array of
pointers to int

*x is a function returning a pointerto a 5 -
elements array of pointers to int

x is a pointer to a function returning

HORRIBLE
USE TYPEDEF

typedef int *PI;

/* a PI 1s pointer to int */
typedef PI AP[5];

/* an AP 1s a S-elements array

cf PI, i.e. of pointers to int */
typedef AP *FP() ;

/* an FP is a function returning

a pointer to an AP */

FP *x; ,»x 1s a pointer to an FP */

Input -Outfut

INPUT-OUTPUT

Implemented through macros and functions, but
defined in the standard as part of the standard
library and standard header file <stdio.h>

GENERAL MODEL :
. stream : fux of characters

each stream connected to an external fife
(operating system dependent)

read or write take place at file position
indicator

f.p.i. moved after each read or write
(sequentiai [-O)

f.p.i can be manipulated directly to achieve
direct access |-O

Two basic types of streams : text and binary
(ANSH

text : sequence of lines, composed of
printable characters. Programs see line
separators as a single newline character
(Q.S. can use other conventions)
. binary: sequence of non-interpreted
characters.
THEY ARE THE SAME IN UNIX, OS/9, etc.

Input -Out @ut

streams can be buffered, buffering can be

. block : data passed to/from O.S. when
buffer full (file copying);
line : data passed to/from O.S. when end
of line met (terminal 1-O); ANSI
no buffer : data pasced to/from O.S.
immediately (screen editing).

I-O operations are syncronous : program
waits until completed

A key distinction:

O.S. services (calls):
read write Iseek open close

Language constructs (stream-oriented)
fread, fwrite, fseek, fopen, fclose

. Old C programs often used system calls to do
"binary" |-O (buffered unformatted)
. Better to avoid: portability
. With old compilers, could be unavoidable (fread,
fwrite missing)
Therefore: in Unix and O.S. 9, O.S. uses "file
numbers” (small integers) to identify files
(open (filename) returns a filenumber, read,
write require passing a filenumber, etc.) One
field of the structure FILE identifying the C stream
is the corresponding O.S. file number.
fileno (fp)
FILE *fp;
returns the file number attached to the stream fp;
etc.

Input-Output

stdio.h

contains the definitions of the required types and
macros, plus the prototypes of the functions, and
the definitions of 3 standard streams.

Of general interest:

FILE typedef: the type cof a struct
containing stream control information.

EOF macro. A negative integral constant, used
to signal end of file condition

stdin

stdout

stderr 3 objects of type (FILE *),associated to
the standard input (usually keyboard),
standard output (usually screen) and
standard error (usually screen). Open at
program start.

NULL (char *} 0. ANSI moved it to stddef.h

ERROR HANDLING

. all 1-O functions return error codes ;

. moreover error conditions and end-of-file on read
are also recorded in a member of any FILE
object;

. tested through feof() and ferror(), reset
through clearerr()

Input -Outgut

. additional error information through system-
defined extern errno, O.S. dependent

Ex.

/* this function tests error status
* and resets it
* it returns 0 if no error
* 1 if end-of file
* 2 1f error
* 3 if both
*/
#include <stdio.h>
#define EOF_FLAG 1
#define ERR_FLAG 2

char stream_stat(fp)
FILE *fp;
{

char stat =0;

if (ferror(fp))stat|= ERR_FLAG ;
if (feof (fp)) statl|= EOF_FLAG ;
clearerr(fp) ;

return stat ;

IR

Input -CutSut

DIRECT FILE MANIPULATION

ANSI

int remove (const char *filename);
deletes the file. Returns 0 if success.

int rename (const char *old, const

char *new);
changes file name. Valid file names are
implementation dependent.

char * tmpnam{char *g);
create a file name that is unique. On your
compiler, analogous to mktemp.

FILE *tmpfile(void);
opens a temporary file which will be
automatically deleted at program termination
and has no name.

OPENING AND CLOSING
associate a stream with a file

fopen (file name , access_mode)

returns a pointer to a FILE object or NULL (if failed)

Input-Outgut

FILE * fopen(file_ name,access_mode)
char * file name;
char * ac¢cess_mode;

ACCESS MODES

tfor text streams

"r read only

"r+"” read-write (must exist)

"w" write only. If existing, truncated to zero,else
created

"w+" write and read. If existing, truncated to 0,else
created

"a" append. Write only, but at the end of an

existing file. Created if not existing.
"a+" append and read . Created if not existing

binary streams (ANSI)

"rb", "r+b" etc.

4s

Input-outfut

Ex.

/* open with error message */

#include <stdio.h>

FILE *

openfile(fname, access)

char *fname, *access;

{

FILE *fp;

if ((fp=fopen({fname, access))==NULL)
fprintf(stderr,

"Error opening %s with access mode %s"

, fname,access);
return fp;

}

WARNING : (fp = fopen()) == NULL
parenthesis required! common mistake

fprintf : like printf on a stream different from
stdout

Ex:
Open file "pippo” for reading and writing: if it does'nt
exist, create, if it exists, do not truncate

if((fp=fopen("pippo", "r+"))==NULL)
fp = fopen("pippo", "w+");

L

Input -Out@dur

reopen:

associates an open stream with a different file
and/or with a different mode

FILE *

freopen(filename, mode, stream)
char *filename, *mode;

FILE * stream;

often used with standard strea:ns

/*1f flag set, output to disk file
"outfil"*/

int disk_flag;
if (disk_flag &&
freopen("outfil”, "w", stdout)==NULL)
fprintf(stderr,
"Error reopening");

IMPORTANT WARNING
Streams open for both read and write:

between a read and a write you MUST insert
a fflush, fseek or rewind

- - exception: write after read that hits End of File

41

Input -Outut Input -Ooutput

fclose: fclose:
disassociates a stream from its file and makes the disassociates a stream from its file and makes the
stream unusable stream unusable
int fclose(stream) int fclose({stream)
FILE *stream; FILE *stream;
NOTE : files are automatically closed at program NOTE : files are automatically closed at program
termination termination
READING AND WRITING READING AND WRITING
formatted formatted
unformatted : 1 character at a time unformatted : 1 character at a time
1 line at a time 1 line at a time
1 block at a time 1 block at a time
FORMATTED READ FORMATTED READ
int scanf(format,...) int scanf(format,...)
char *format; char *format;
int fscanf(stream, format, ...) int fscanf(stream, format, ...)
FILE * stream; FILE * stream;
char *format; char *format:;
int sscanf (in_string, format,...) int sscanf (in_string, format,...)

char * in string, * format; char * in_string, * format;

Input -Out it
NOTE : scanf IS fscanf(stdin, ...)

sscanf does conversion but not input,

using in_string as the source of characters
(FORTRAN INTERNAL FILE)

NOTE : arguments must be POINTERS to variables

ANSI INPUT FORMAT STRING
can contain three types of objects:

white space: skip input until next non-blank
ordinary character : next character in input MUST

match that character (seldom used)
conversion specifier:

LOOK IN THE MANUAL

function returns :

. EOF if EOF encountered before any
conversion, OR

. number of successtul conversions

Y

Input -outpdt

UNFORMATTED INPUT-QUTPUT
ONE CHARACTER AT A TIME

Already met

int getchar(};
int putchar(c)
char c;

. referto stdin / stdout

MORE GENERAL

int getc(fp)
FILE *fp;

int putc(c, £fp)
char ¢ ;

FILE *fp ;

special:
int ungetc(c, fp)
int ¢ ;
FILE * fp;

. return EQF if error (getc/putc/ungetc) or end-of
file {getc);
. otherwise return the character read or written

WARNING : in binary mode, EOF is a legal return
value for getc,putc and ungetc: use ferror or feof to
test for error!

Input -Output

. They are macros (defined in stdio.h)
. therefore expanded by preprocessor
. FAST

Note: putchar (c) isputec(¢ , stdout)
getchar() is getc (stdin)

--- WARNING
putc ('x* , fpli++]) :

Macro expansion : more than one occurence of
fplj++] -> RESULTS UNDEFINED

For these cases, FUNCTION VERSION

int fgetc{ fp)
FILE *fp ;

int fputc(c, fp)
char ¢ ;

FILE *fp ;

K3,

Input -Cut ddt

Ex.:

#include <stdio.h>

#define FAIL 0
#define SUCCESS 1

int copyfile {(infile,outfile)
char *infile, * outfile;

{

FILE *fpl, *fp2;
int c;

if((fpl=fopen(infile, "rb"))==NULL)
return FAIL;
if((fp2=fopen{outfile, "wb") })==NULL)
{ fclose (fpl);
return FAIL;
}
while{(c=getc(fpl), !feof(fpl}){
putc(¢ , fp2);
if (ferror(fp2) {
fclose(fpl);
fclose(fp2);
return FAIL

Input -Output 15

- note cleanup in case of failure
- feof needed in binary mode:
getc returns EOF at End of File
EOF is <0 -> not a letter, if in text mode
COULD BE 8-bit pattern (often -1)
Example above could be slow (too many tests).

while (1) {
register int c;
while((c=getc(fpl)) !=EOF &&
putc(c, £p2)!=EOF);
/* EOF detected : why? */
if (fecf(fpl))break;/*finished*/
if (ferror(fpl) | |ferror(fp2)| |
/* 1f we are here, c==EOF but
* no real EOF on fpl
* therefore try to put it out
*/ (putc(c,fp2), ferror(fp2)){
fclose(fpl);
fclose(fp2);
return FAIL;

Input-Gutput 16

- why ¢ needed? why not

while(!feof(fpl))putc(getc(fpl), fp2);
?
Beware of off-by-one errors !

ungetc:

pushes back the last character read
Ex.:

/*skip until first non-blank */
$include <stdio.h>
#include <ctype.h>

void

bskip(fp)

FILE *fp;

{
int c;
while (isspace(c=getc(fp)));
ungetc(c , fp) ;

}

. only one characte:

. only after read

. it's not I-O: external file not changed

. rewind and other fp.i. manipulations will cause
the pushback to be forgotten

Input-Output 17

Ll Tl

MEANINGFUL ONLY IN TEXT MODE

char * fgets (s,max_length)
char * 8 ;

int max_length;

FILE *stream;

int fputs (s, £fp)

char * s8;

FILE *fp;

- and their stripped down versions (stdin-stdout)

char gets (8)
char * 8 ;
int fputs (8)
char * s ;

fgets

. reads until EOF or newline or max_len-1
characters

. putsthemins

. adds a null at the end

. returns s or NULL if read error or EOF
before anything read

. WARNING : input newline is included in s !

gets
. almost like fgets on stdin, but discards
the newline (history...)

Input -Output 18

fputs
. writes s (as itis!) to fp discarding the
terminating null
. returns 0 if successful, non-zero on error

puts
. almost as fputs on stdout, but adds a
newline

NOTE: often implemented through calls to
fgetc/fpute -> not faster than direct use of
getc/putc.

Input -Cutput

ONE BLOCK AT A TIME

MAINLY BINARY
ANS!

#include <stdio.h>

size_t fread(void * block, size t
g8ize, size_t nelem, FILE
*gtream});

size_t fwrite(const void * block,
size_t size, size t nelem,
FILE *gtream);

. 8ize_tisa typedef instdio.h:
usually unsigned int orunsigned long int
. nelem elements of size size are transferred
. WARNING : this is not the same as
transterring nelem * size bytes 1!
. return number of elements transferred
. ifreturned < nelem on output, error

on input, EOF or error (feof);

NOTE : implementation dependent. Can be very
fast, or use tgetc/fpute and be very slow.

58

Input -Outrput 20

RANDOM ACCESS

Getting the current f.p.i.
Setting f.p.i. to beginning-of-file
Setting f.p.i. to an arbitrary value

Getting the current {.p.i.

long ftell ({(stream)
FILE *sgstream;

- returns the current f.p.i. as a long int.

-- binary: number of characters from start

- text: "magic” (to be used only with £seek)
- =1L if failure

Setting f.p.i. to beginning-of-file

rewind (stream)
FILE *stream,

Setting f.p.i. to an arbitrary value

int fseek(stream,offset,base sel)
FILE * stream ;

long offset ;

int base_sgel;

53

Input-Output 21

- positions the f.p.i. at a distance of fset from a
base:
--- bage_sel selects the base:
base_sgel == SEEK_SET
base is beginning of file

base_sel == SEEK_CURR
base is current f.p.i.

base_sgel == SEEK_END
base is end of file

--- SEEK_SET, SEEK_CURR, SEEK_END macros
defined in stdio.h (in old compilers, 0, 1, 2)

--- of £set can positive or negative

--- if in text mode, base must be SEEK_SET
and of fset must be the output of ftell

--- in binary mode, SEEK_END could give strange
results if system pads bynary files

G0

Input-output 22

COMMENT

roeek/ftell could not work if file length cannot
be encoded in a long int

for this general case, 2 other functions ANSI only

int fgetpos(FILE *stream, fpos_t
*pos);

int fsetpos (FILE *stream, const
fpos_t *pos);

FILE BUFFERING

File buffering: data are passed to-from the file only
in chunks of fixed size (from 512 B to a few kB)

unbuffered : minimum latency

if file 1-O used for control purposes
buffered : maximum 1-O efficiency (less calls to
O.S., device, etc)

WARNING : C buffering concerns passing data to

0.S., NOT to device (O.S. can buffer by itself, or
not, O.S. dependent)

(o4

Input-Cutput 23

By default, files buffered (buffer size
implementation dependent)

stderr unbuffered
#include <stdio.h>
char c_arr [BUFSIZE];
main(){

FILE *fp;
/* declarations */

setbuf (stderr, c¢_arr);

/* stderr becomes buffered,
c_arr is buffer */

setbuf (stdout, NULL):

/* stdout becomes unbuffered */

- BUFSIZE defined in stdio.h

(called BUFsIzZ in your compiler)

- must be used after fopen and before any |-O
operation

G

Input-output 24

int fflush({ stream)
FILE * gtream;

. if stream is buffered, write content of buffer to
0.S.
. it stream == NULL, applies to all open streams:;

. returns O (success) or EOF (failure)

ANSI ONLY

int setvbuf (FILE * stream ,char
*buf , int mode , size_t buf size);

- arbitrary size of buffer and buffering mode
. Mmode can be

_IOFBF Full buffering
_IOLBF Line buffering
_IONBF No buffering

. setbuf (stream, buf });

is (almost)
setvbuf (stream, buf, IOFBF, BUFSIZA);
and
. setbuf (stream , NULL) ;
is (almost)

setvbuf (stream, NULL ,_IONBF ,0) :

SELDOM USED, BUT IMPORTANT

G3

