JNTERNATIONAL ATOMIC ENERGY AGENCH
(ﬁ UNITLD NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION m
INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

I.C.T.P, P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE. CENTRATOM TRIESTE

H4.SMR/645-7

SCHOOL ON PHYSICAL METHODS FOR THE
STUDY OF THE UPPER AND LOWER
ATMOSPHERE SYSTEM

286 October - 8 November 1992
Miramare - Trieste, Italy

The Search for Periodicity

Sultan Hameed
State Unlversity of New York
Stony Brook, NY

USA !
I
" 9y
rasps CoeTizka 1L Tey 72401 TEEPAXZAIE)  Teien M0J%] ABtisrco Guist Mause Vie Guicsano, ® TeL T30 Teieess 29311 " Tries sbid
:"k lu-:’.“ H:l:‘.,,.;] * TeL J04T) TELEFAX 224600  Teiex 460190 Gaunto Guest Mowse  Via Bliw 1 7 Tee 22401 Teorrne JH55%  Troes 460392

2

TRE SIBARCIE
FOR PERIODICITY

In this chapter we examine the problem of describing what periodicities if
any are present in a given set of data. In some cases we know a collection
of periods that may be expected to be present, and we have to find the :
associated amplitudes and phases. However, often we have no prior
information about the periods, and these too must be found. The first |
problem is simpler, and we discuss it first. From this discussion we Shall
develop a way of solving the more difficult problem.

2.1 A CURVE-FITTING APPROACH

As an example consider the variable-star data of Figure 1.1. Over the 600
days of data we count 2i peaks; this suggests that any periodicity should
have a period of around 600/21=28.6 days. Thus the rth data value
should contain a component of the form Rcos(w! + ¢}, where w=27/28.6
=0.220. We model the data as

X, = p+ Rcos(wt + ) +¢, t=0,1,...,599, (N
the simplest case of the “hidden periodicities” model. Here x, denotes the

fth data value, and ¢, is the rth residual (that is, whatever is needed to make
the equality exact). We regard the model as good (and say that it fits the
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10 The Search for Pertodicity

data well) if the residuals are generally small. The term p is an added
constant. Since a cosine wave oscillates about 0, while the data oscillate
between O and around 30, such a term is clearly needed if the residuals are
to be at all small.

The unknown parameters are u, R, and ¢, and in the next section we
show how to find values for them that make the residuals as small as
possible in a certain specific sense. Initially we shall keep w fixed at 0.220,
but in Section 2.3 we shall regard it as an additional unknown and find a
better value.

For the purposes of this chapter, we shall follow the common practice of
measuring the size of the residuals by the sum of their squared values.
Thus the problem is to find g, R, and ¢ (and, later w) to minimize

599

S(“,R1¢)=S(PaR,¢aw)= 2 {x,_P‘RCOS(Uf+¢)}2,
t=0

the term between braces being precisely the rth residual for given values of
#, R, and ¢ (and w). This is an example of the method of least squares.
Least squares methods are widely used and have many computational and
theoretical advantages. However, they also have certain deficiencies, which
will be mentioned briefly in Section 5.3

It is easily seen that least squares problems are simplest when the model
is a linear function of the unknown parameters, since then the function to

be minimized is quadratic. Equation | is nonlinear in R and ¢, but may be
rewritten as -

x,=p+Adcoswr+ Bsinws+¢,

where 4= Rcos¢ and B= — Rsiné. Furthermore, given any values of A4
and B, we may solve for R and ¢. We may therefore regard 4 and B as the
parameters, and the model is now linear, for fixed w. In the next section we
solve the elementary problem of finding p, 4, and B for fixed w. In Section

2.3 we show how our current estimate of the frequency w may be im-
proved.

Exercise 2.1 Least Squares Straight Line

Suppose that (x,y,)}....(x,,y,) are a set of points in the plane. It is
sometimes useful to model such a set of points by a straight line, y = a +
bx. The least squares straight line has parameters @ and # which minimize

A W
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the sum of squared residuals,

S(a,b)= 2 (yi~a-bx). t

im]

(i) Verify that, provided the x-values are not all the same,

S -5

A iml]
-
n

2 (x:‘—)_‘)z

im1
and
d=§— b,

where X=(.:,+ x,+ -+ +x,)/n, and 7 is similarly defined.
(i) Find the corresponding formulas for the coefficients of the least
squares parabola, y = a+ bx + cx2.

i
22 LEAST SQUARES ESTIMATION OF AMPLITUDE AND PHASE

In this section we show how to estimate the parameters of a sinusoid, with
or without an added constant. The frequency w is regarded as known and
is not varied to improve the fit. In the next section the method is extended
to include the estimation of «w. We consider first the simple two-parameter
model of a sinusoid with no added constant. The model is

x,= Acosw! + Bsinwt + ¢, {

and the principle of least squares leads us to minimize

n—1
T(A,B)= 3 (x, —p— Acoswt— Bsinwt)’,
=0

restricting p to be zero for the present, and keeping w fixed. Now

0T

i -2 coswi(x,— A cosw! — Bsinwt),

-%% = —2% sinwf(x,— A coswt — Bsinwt),
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and the equations that result from equating these to zero have the solution

A=d= %{ 2Jur,cos<..:£2(sim.ur)2

~ 2 xsinw Y coswtsinu:},
B=§=%{2x,sinwt2(coswt)2 @

— 2 x,cos0tY coswr sinwr},
where

A= 3 (coswr)? > (sin wr)? - ( 3 coswisin wt)z.

The sums involving only trigonom

etric functions may be evaluated, using
the results of Exercise 2.2, to give

2 (coswt)*= {1+ D, (2w) cos(n - [}, "
2 coswlsinwf = %D,, (2w}sin(n— 1)e,

2 (sinwn)’= 2{1- b, Qu)cos(n= 1y}, :
where |
sinnw/2

D, (w)= nsinw/2

is a version of the Dirichler kernel (Titchmarsh, 1939, p. 402). The sums
involving {x,} usually have to be evaluated directly.

To find R and ¢, the amplitude and phase, we solve the equations
A=Rcos¢ and B=— Rsing. Since R is nonnegative, it follows that
R=(A4%+ B2 The basic equation for ¢ is tang= — B/ 4. However, .the
solution ¢ =arctan — 8 /A is incorrect, since this gives the same value for
—A and — B as for 4 and 8. The full solution is as follows:

rarctan(—- B/ 4), A4>0,
arctan(—B/A)~wn, A4 <0,B >0,

o= arctan(—~ B/A)+ =, A<0,8<0,
~7n/2, A=0,8 >0,
/2, A=0,B<0,

| arbitrary, A=(Q,B=(,

D
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(The FORTRAN function ATAN2(— B, A) returns the required valu_e.)
The mode! that seems appropriate for the variable-slarl data is the
three-parameter “‘sinusoid plus constant” model given in Section 2.1,

x,=pu+Acoswt+ Bsinwt + ¢,

The equations for the least squares estimates of p, 4, and B (which we
shall denote as 3, 4, and B, respectively) are

Y (x,— n— Acoswt — Bsinwr)=0,
Y coswr(x,— p— Acosw — Bsinwr)=0, (3)
Y sinwt(x,— p— A cosw! — Bsinwr)=0.

These too may be solved explicitly (see Exercise 2.3). For the variable-star
data with w=0.220, we find

A=1711, A=-1102, B=8.406,
and hence the estimates of R and ¢ are
R=8478, ¢=—1.70l.

Note that for negative 4'; the argument wr+¢: of cos(wt + ¢) first vams_hes at
f=|¢.:[/w=7.7. Thus the fitted cosine wave has a peak at l=7.7‘, while the
first peak in the data is between 1 =4 and ¢ =S5. Since the peaks in the data
are not evenly spaced, this seems to be reasonable agreement. .

We can find very useful approximations to (3) as follows (see'E:xera'sc
2.4). When the purely trigonometric sums are evaluated, the coefhcmntsl in
(3) involve the term n/2 and terms such as (n/2)D,(w/2). We note f:rgt
that D, (2k= /n) =0 for any integer &, and that |nD,(w)| € 1/(sinw/2). This
Means that the terms in (3) involving D, are, for large n and w not too
close to 0, always small compared with » /2, and sometimes exactly 0. By
Omitting all these terms we find the reduced set of equations

p= 2 X

L N coswt,
2 I
n8 = > x sinwl.
2 {

(We note in passing that the second and third equations are also approxi-
Mations to the two-parameter equations (2).)
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It often happens that w18 larger than 4 of B, and in this case it is unwise
to ignore any term involving u. The approximations are then

npe= 3 x,

,u.Z coswi + -’%1 = 2 X, COS wi, (4)
42 sinwr + "2—8 = 2 x,sinar.

The solutions to these equations (denoted as ﬂ.A~,§) are

(x,— %) coswr, &)

3N 3
M M

and may be regarded as approximate solutions to (3) (see Exergise 2.4).
For the variablg-star data we find p=x=1711, A;l.103, B=8.403,
R=8.475 and ¢=-1701. Notice that the differences between these

values and the exact least squares values appear only in the fourth
significant figure, if at al].

T(i,A,8) and T(%,A, B) are both 26,769.5, to six significant figures. The
approximate solutions are very satisfactory, in that the sum of squares is
increased by less than one part in a million. Either value may be compared
with T'(¥,0, 0)=483243, the sum of squares of the residuals just from a
constant term. The difference T(x,0, 0)~ T (i, 4,B)=215548 [or
T(%0,0- T()?,A-,B)] may be regarded as the amount of squared varia-
tion in the data that can be accounted for by the frequency w. A set of

approximations similar to those used to obtain (5) shows that both quanti-
ties are approximately

(See Exercise 2.5) The error in using this approximation is therefore
around 3 parts in 10,000, in the present case.

22 Lesst Squares Estimation of Amplitude and Phase

Exercise 2.2 Some Trigonometric ldentities

(i) Show that

exp( in?\) -1

n—1
3 exp(iM)= ST
-

Y in)/2)—exp(— inA/2)
-exl:’{,(pl > }cxp(m'i\ 2)—exp(—iA/2)
2 exp(iA/2)

(i) Use the Euler relation
exp(iA)=cosA+ isinA
and its inverse
: I A) = exp(= )
i = — [exp(iA) — exp(
cosA= 4} (exp(iA)+exp(—iA)},  sinA= {

to deduce that

(n=1)A Y sinnA/2
ECOS)U-COS{ 7 } sinA/2 ’

{(n=1)A \ sinnA/2
Esin?\t=sin{ 2 ] sinh/2 -~

(iiiy Use the addition formulas
sin(A+ p)=sinAcosu+cosAsing,
cos(A+ p)=coshcosp—sinAsing,
and their inverses
| cosAcosp =1 {cos(A + p)+cos(A—p}},
cosAsinp =% {sin(A+ p)—sin(A — x)},
sinAsinp= 4 {cos(A— p)}—cos(A+u)},

i i in ut. Note the
1o evaluate T cosAfcosus, T cosArsinpud, and EsinArsin ps
Cases A= K.

15
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Exercise 2.3  Equations for the Three-Parameter “Sinusoid Plus Constant”
Model
The derivatives of

n—1

T(pA,8)=Y {x‘—,u.—ACOSw!—BSinwl)z
(=0

with respect to p, 4, and 8 are

aT

i -2 (x,—p—-4 coswl ~ Bsinwr),

orT

== =23 coswr(x,-p.—Acoswt—-Bsinwr).
0T -

a5 = "2 > sinwr(x,— p— A coswi — Bsinwt),

respectively. Simplify these expressions using the results of Exercise 2.2
and solve them for the least squares estimates i, A, and 8 of u, A, and B‘

respectively.

Exercise 2.4 The Approximate Least Squares Estimates

(i) For the two-parameter model (equations 2), show that
A 2 - o
|4~ - 2 x,coswt| =|D, 2w)||A cos(n ~ l)w+ Bsin(n — 1)

R
nsinw ’

and that similarly

A

2 .
|B= =3 xsinwr| < —&
n nsinw

(i) For the three-parameter model (equations 3), show that

_R__
Asinw/2

|A _l

and that both

~ 2 5 2
|A—-;1-2x,coswt| and !B—;Ex,sinwr

22 Least Squares Estimation of Amplitude and Phase 17
ar¢ bounded by
24 R
nsinw/2  nsinw l‘

(i) For the three-parameter model show that both |/i —A| and |1§ - B|

are bounded by
R [ 2 +— }
nsinw

(nsinw/2)

Exercise 2.5 The Sum of Squares Associated with w

(i) For the two-parameter model, show that
PO 2
T(0,4,B)=3 x2- [(2 yyeosor) 3 (siner)’

~2Y y,coswt, y,sinwl Y, coSw! sinwi
+(2y,sinwr)22(coswt)2]/A. -

NoTe: This may be interpreted as
sum of squares of residuals
= sum of squares of original data

—sum of squares associated with frequency w.

()  Find the corresponding expression for the residual sum of squares

T(E:A,B) in the three-parameter model.
(i) Show that the sum of squares associated with « is approximately

2 2 inowr)
;{(zx,cosw!) +(2x,smml) }
in the two-parameter model, and

2[{ > (x,—)'c)cosw}2+ { 2(y,~)'c)sinwr}2]

n

™ the three-parameter model.
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2.3 LEAST SQUARES ESTIMATION OF FREQUENCY

In this section we show how the methods of Section 2.2 may be extended
to include the estimation of the frequency w. We shall deal only with the
three-parameter “sinusoid plus constant” model, since that is the more
generally useful. However, an exactly analogous method could be used to
estimate e in the two-parameter case. In the next section we shall extend
the method further to the fitting of a number of frequencies (in fact, using
the two-parameter method as the basic building block).
In Section 2.2 we found values i, 4, and B of u, A, and B, respectively,
to minimize
T{uA,B)y=T(mAd B,w)
n—1
= 3 (x,~p—Acoswt — Bsinwi)?,
=0

for a fixed w. It was shown that these are approximately

-1
f=Xx= (st +x,0)
~ 2 -
A(w)== S (x,~ X)coswt,

B(w)= % > (x,~ X)sinwt,
and furthermore that the residual sum of squares is
T{i(w).A (@) B @ho) =T (%A4(0), 8 (0),0)
= T(%,0,0,w)— -;-{,Z(w)2+ B (w)*)
= T(%,0,0,w) - ‘%E (@),

where R (w)? =4 (w)?+ B (w)’. In this section « is regarded as an additional
unknown, and so the dependence of the various estimates on w is shown
explicitly. The best value for w in the sense of least squares is the value &,
that minimizes T { ﬁ(w).A(w),é’(w),w}. The corresponding approximation
is the value & that maximizes R (w)’. Figure 2.1 shows a plot of part of the
latter function for the variable-star data (Figure 1.1). An equivalent func-
tion used in later chapters is the periodogram

Hw)= {;fi(w)z.

23 Least Squares Estimation of Frequency 19
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Figure 2.1 Periodogram of the variable-star data for frequencies w, 0.20 < w < 0.24,

Often, as in searching for a maximum or comparing function values, the
actual values of the function are unimportant, and such rescalings have no

iff‘Pact. We shall therefore also refer to R (w)? as the periodogram when the
difference is irrelevant.

The function
2 - R . R
> [ T(x,Q,0,0)— T{ji(w),A(w),B (w),w}]
was alsp calculated. However, it differed from ff(w)z by at most 0.8, and
hence it was not graphed. The graph shows a clear maximum at a value
Somewhat less than 0.220. The actual peak was found 1o be at w=0.21644.
The P?ak of the ungraphed function above was found to be at w=0.21641.
The difference is minor, especially since it is smaller than the difference
b§tween either value and the value found in Section 2.4. By contrast, the
d'fft!.l’ence is appreciable in the light of the statistical results described in
Section 2.6.

f The least squares estimates of the parameters of a sinusoid with
Tequency w=10.21644 are

i=17.08, A=8480, B=6211,

f=X=17.11, A=8550, B=6225.

Ihg residual sum of squares for f, A, and B is 14,977.2, while that for . A,
nd B is greater by 2.0, a negligible amount.
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The graph also shows a subsidiary peak, or sidelobe. occurring on either
side of the main peak, and separated from it by a trough in which the

" value is indistinguishable from zero. We shalt see in Chapter 3 that this is '

typical of such graphs. The sidelobes do not indicate the presence of other
periodicities.

The maxima of these functions were found numerically, using an algo-
rithm described by Brent (1972). The derivatives of both functions with
respect to w are highly nonlinear and have many zeros (indeed, Figure 2.1
shows that there are six zeros just in the interval 0.20< w < 0.24). This
makes an analytic solution impossible and also renders numerical methods

based on the gradient treacherous. For instance, Newton’s method could -

easily lead us to one of the other stationary points. (The FORTRAN
program used is presented in the Appendix to this chapter.)

Figure 2.2 shows the residuals, that is, the original data less the fitted
cosine term. They have a very pronounced periodicity with a period of
around 24 days, or a frequency of approximately w=0.262. Thus the
original data must have contained at least these two periodic components.

The estimation of a number of frequencies is described in the next section; -

in particular, we shall show that the presence of a second periodic

component, especially one with a similar frequency, can noticeably distort i

the estimates of frequency and of amplitude and phase.

2.4 MULTIPLE PERIODICITIES

It emerged at the end of the preceding section that the data being used as
an example actually contain more than one periodic component. In this
section we describe how a number of components may be estimated, again
using the variable-star data as an example,

The simplest procedure would be to repeat the analysis of Section 2.3,
but searching now for a maximum near w=0.262, the second frequency. If
we distinguish quantities associated with the first (or second) frequency by
the subscript 1 (or 2). we find that G,=0.2621. 4,= —0.7579, and &,=
7.727. However, the expressions for these estimates were obtained by the
least squares fitting of the model

X, =putAcoswt+ Bsinwt+¢,,

where ¢, is the rth residual. The idea behind a least squares method is to
make these residuals as small as possible. In the present case, however, the
residual term necessarily includes the strong periodic component found in
the preceding section. and it does not make sense to try to make this small.

10
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Figure 2.2 Variable-star data with fitted sinusoid subtracted.
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A better approach is to include the second component in the model:
X, =pt+Acosw r+ Bisinw 1+ A;cosw,i + Bysinw,t +¢,.
This leads us to mmimize

n—1

2 (x,—u— A cosw - Bysinw,f — A, 008wyt — B,sinw,r)?
(=0

=T(pt.A,,B,0,,4,,8,,w,), say.  (6)

The most natural extension of the method used in the Section 2.3 to find
a single frequency is as follows. First, we note that for fixed w, and w, the
model is linear in the remaining parameters. Hence the conditionally best
values of these may be found by conventional methods and substituted in
the function T (see Exercise 2.6). This gives us a new function

Ulww)=T(4,4 I’Bl'wl"‘;?) éz’“’z)v

where i, 4,, 1§1, and éz are all functions of both w, and w,. The function U/
Or an appropriate approximation could then be minimized numerically by
one of the methods generally available (see Brent, 1972). Note that, by
analogy with the functions examined in the prece
expect U 1o have many stationary points.

An alternative approach, which also builds on the method of Section 2.3
but avoids the explicit two-dimensional search, is based on the method of
cyclic descent. The general idea of a cyclic descent method is to divide the
parameters into subsets (exhaustive and usually exclusive), in such a way
that the optimization with respect to parameters in any one subset, holding
the remaining parameters fixed, can be done fairly easily. The method then
is to update the subsets successively by solving these manageable optimiza-
tion problems in turn. The basic method cycles through the subsets in
some fixed order, until a complete cycle results in an effectively zero
change in the function to be optimized. In sophisticated algorithms the
subsets may be chosen in a different sequence so as 10 accelerate the
convergence of the method, but we shall not do this. When the function
cannot be reduced by varying any of the subsets of parameters, a (local)
minimum has usually been reached. (For functions with continuous partial
derivatives this is always the case, except for some pathological examp'es.
However, the method can easily fail with functions that have discon-
tinuous partial derivatives.)

For the sake of generality we shall describe a procedure using cyclic

ding section, we can

I2.4 Multiple Perfodicities 23
descent to fit the more general model

m
x =+ 2 (AJ-COSwj!+ B‘,smw}l)+ g,
j=1

the model of “hidden periodicities,” by least squares. First,.mininllization
with respect to p for fixed values of the other parameters is ;tralghtfor-
ward. The optimal value is just the mean of the “corrected”™ series

m
x- > (A4 cosw;t + B;sinw;t),
j=1

Next, if we vary c::,‘,.A « and B, and hold the other parameters fixed, the
preblem is to minimiz:

n-1 m

z X, —u— > (A;coswt+ B sinw,t)— A, cosw,t — By sinw, !
fmi j=1
Jk

n—1

= 2 (y,—A,cosw,1— B, sinwkt)z,
1=0

where

ye=x,—p— X (A;cosw+ B sinws).
Jek

The optimization with respect to w,, 4,, and B, may be done as in Section
23, with the simplification that the single-frequency model does not
tnclude the added constant term.

Thus one cycle of the method consists of these two steps:

(1) correct the data for all periodic components and estimate u by the
Mean of the corrected series;

(W) for k running from 1 to m, correct the series for the mean p and _the
Other tomponents; then estimate w,, A,, and B, from the corrected series.

A FORTRAN program based on this algorithm is presented in the
PPendix to this chapter. It contains a switch (the logical variable AP-
PFLG) which allows one to select exact or approximate least squares for
the single-frequency optimizations.
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. . . 14 Multiple Periodicities
The results for the variable-star data are given in Table 2.1, together P 2

with the values found by the single-frequency method applied to the

600X 75 =50. Hence the unrounded data must have been almost exactly
original data,

the sum of two pure sinusoids. A further curious feature of these data is
Note that the single-frequency estimates of frequency are very close to that frequencies of 0.21669 and 0.26172 correspond to periods of 28.996
the values found by the cyclic descent method of this section. The sine and and 24.008 days, respectively, which are surprisingly close to integer values
cosine coefficients are also similar, although not to the same extent, for the periods of a variable star.

However. the residual sums of squares show that the cyclic descent
estimates in fact provide a noticeably better fit 1o the data. Qur conclusion

Exercise 2.6  Least Squares Fitting with Fixed Frequencies
is that, in the presence of strong components such as these, the single-

frequency estimates do not give an adequate approximation to the least (6) l(lo) ch: Zrt:quatlons that result from equating the partial derivatives of
squares problem and are not satisfactory as estimates of the respective

parameters. We could describe this by saying that the components interfere nel

with each other. The interference is as strong as it is only because both -2 3 (% —u= A, cosw;t— B sinw,r

components are strong and their frequencies are similar. A heuristic =0

motivation for the cyclic descent method is that at each stage we remove -

all components other than the one currenily being fitted, and thus avoid
such interference.

—Ajcosw,t — B,sinw,t)=0,

n—t

=23 coswr(x,~p—A,cosw,— B, sinw,!

=0
Table 2.1 Different parameter estimates for the two-component model
\ — A,Co8wy1 — B,Sinw,1) =0
Residual . 2 2 ? 2 ) '
Sum of Squares Component Frequency A B
n-1
1 0.21644  B8.5495 6.2108 -2 : . )
Method 1% 276.0 2:0 SIne (X~ p— A cosw,?— B, sinw,!
2 0.26211 -0.7579 7.7269
b 1 0.21669  7.6551 6.5912 ~A3c05wy1 = Bysinw,) =0,
Method II 59.6
2 0.26172 0.1565 7.0828 j=| .
L 0. 21666 7 6478 6.4905 Shou: 2. Simplify these eguations using the identities of Exercise 2.2, and
Method 1IIC 54.7 . , : (ii)lhi;l].'they becqme diagonal if both frequencies are multiples of 2n /5.
2 0.26180  0.0006 7.0845 becouy how that if certain terms are ignored the last three equations
S . ¢ the same as those found in Section 2.2 for estimating the parame-
bEstimating the two components separately from the original data. liv.:IOf a smgle component of frequency w, with w=w, and W=uw,, respec-
Cyclic descent method, approximate least squares. app:;- pbtgm bounds for the errors introduced into the solution by this
CCyclic descent method, exact least squares. . Ximation,

(

i) Find bounds for the errors in the approximate solutions
The reduction in the residual sum of squares to 54.7 is remarkable. The

= x’
fact that the data were reported as integers means that they contain errors #
at least as large as that caused by rounding off a number to the nearest A= 2 "i'x cos
integer. Since the error incurred by such rounding off is roughly uniformly Ton & Wl -
distributed from — 1 to }, the mean squared error would be 4. Thus from
this cause alone we could expect a residual sum of squares of around p I

=l & xsingr, =12,
o
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2.5 THE EFFECT OF DISCRETE TIME: ALIASING

So far we have not discussed any restrictions that might need to he
imposed on the frequency, w, of the sinusoids being fitted to our data
Since the units of frequency are radians per unit time, it is natural to
require that they be nonnegative. This may be justified by arguing that,

since cos( — x)=cosx and sin( — x)= —sinx, any cosine wave with negaltive
frequency ~w can be written

Acos(—wr)+ Bsin(—wt)=Acoswl+(—B)sinwt,

as a cosine wave with a positive frequency. Thus the frequencies w and — ¢,
are indistinguishable; they are said to be aliases of each other.

The equal spacing in time of our observations introduces a further
aliasing. Suppose that the sampling interval is A, so that the tth observation
is made at time rA. If the data consist of a pure cosine wave at frequency

(for the sake of argument, with unit amplitude and zero phase), the /th
observation will be

X, =CcoswA.

If we increase w from zero, this wave oscillates more and more rapidly
unti! at w=1/A we have

X, =costm=(—1),

which is clearly the most ra
increase w further, sa
27 /A—w. Then

pid oscillation we can observe, Suppose that we
Y to a value satisfying 7/A<w< 27 /A, Let w'=

X, =coswiA
=cos( 27 _
—cos(A w)IA
=cos(2m ~ w'1A)

=cosw'tA.

In the same way sinwrA= —sinw'7A. Thus the frequencies «w and w' are
also indistinguishable and hence are aliases of each other. We may extend
the argument to any positive frequency, no matter how large.

We conclude that every frequency not in the range 0<w< 7/A has an
alias in that range, termed its principal alias, To avoid indeterminacy, we
shall restrict frequencies to this range. Figure 2.3 shows a number of

) ' 7
2.5 The Effect of Discrete time: Aliasing

EaY

-2 -1 0 1 Z 3
(MULTIPLES DOF PI1)
Figure 2.3 Some frequencies with the same principal alias.

frequencies with the same principal alias. The frequency w[ Ais knowln as
the Nyquist frequency. It is also called the folding frequency, since effectively
higher frequencies are folded down into the inle_rva] 0,7/ A_]. _

The Nyquist frequency is 7 /A in units of radians per unit time. In terms
of cycles per unit time, it is therefore 1 /(24). Sin_ce t_he sampling mterval.ls
4, the sampling rate is 1/4 observations per unit time. Thus the Nyquist
frequency is one-half the sampling rate; in other words there are two
Samples per cycle of the Nyquist frequency, the highest frequency that can
be observed. . .

The phenomenon of aliasing is important not only m.the Fhmce of
frequencies to be fitted to data. It also must be borne in mind when
designing a scheme to observe a time series. Suppose that x(u) is a
function of the continuous time parameter u, and that we wish to sample
*(#) to obtain information about frequencies in some interval, say (wg, w,).

hen usually we will want the Nyquist frequency to be greater than w, so

that all such frequencies are directly observable. However, if x{u) conla.ms

Oscillations with frequencies greater than e, we should choose the sampling

Tquency so that these are not aliased into the interval of interest. In fact,
LR preferable when possible to remove these frequencies from the func-
+ tion before sampling, so that this problem cannot arise.

It should be noted that aliasing is a relatively simple phenomenon. In
8eneral, when one takes a discrete sequence of observations on a con-
Unuoys function, information is lost. It is an advantage of the trigonomet-
"¢ functions that this loss of information is manifest in the easily under-
"100d form of aliasing.

0 the chapters 1o follow, we shall often adopt the sampling interval as

€ Uit of time. Then A= 1, and the Nyquist frequency is simply =. Except

€re otherwise stated, this convention will be implicit.
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2.6 SOME STATISTICAL RESULTS

In this chapter we have described how to obtain estimates of the
coefficients of one or more sinusoidal components in a series. With the
added assumption that the errors in the series are statistical or random in
nature. we may describe the accuracy of those estimates,

Suppose that the data R X, 1 were generaled by the model

X, =utAcoswi+ Bsinwt +a, (7

where ¢, are random errors or disturbances, and satisfy?
E(a)=0,

Ef(aa )= [ r, =r
(@a) 0, otherwise.

The assumption that the errors at different times are uncorrelated is
restrictive and is often violated in practice, We shall see in a later chapter
how to make a more realistic assumption,

Having made statistical assumptions about the nature of the data, we
may now make some statistical statements about the estimates discussed
above. The exact least squares estimates 4 and 8 will' not be considered.
For the estimates X, 4, and B (of . A, and B, respectively) we can find
exact expressions for the means, variances, and covariances. These are all

lengthy expressions. However, it may be shown (see Exercises 2.7 to 29)
that

E(A)=A. E(B)=B, E(%)=p,
varﬁ:varﬁ:gi, varfzg,
n n

corr(A'. B )= corr( E.X)zcorr(f.A-) ={.

If we make the additional assumption that the errors dg...,a,_,are
independent, then by the central limit theorem (see, for instance, Feller,
1968, pp. 244,254) we would expect A, B, and X, as linear functions of the
a’s, to be approximately normally distributed, with the stated means and

variances. This may be verified by showing that the sequences of
coefficients satisfy the relevant requirements.

The case in which w is unknown and has to be estimated is more

"We use the conventional notation £ to denote expectation.

19
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difficult. It was first studied by Whittle (1952) and later by Walker (1971).
The principal results for the estimate & are that

: 1
E (@}=w+ terms involving e

and

24¢

————— +smaller terms.
n*(A’+ BY)

vare=

At first sight, the n = behavior of vard is surprising. since the variance of
an estimated parameter usually behaves like the variances of.A and B, lha}l
is, like n~'. However, we may easily demonstrate that a higher power is
appropriate. .
pgor,:sider the case in which R*= 4%+ B? is large compared with v. Thus
the data consist of clear oscillations, with small errors superimposed. Then
we can count the number of cycles in cur'n data points accuralely, aqd the
only uncertainty involves the magnitude of the odd fraction of a period at
each end of the data. If, for instance, we see m complete cycles, but not
m+ 1, we can say that the period 27/« lies between n/(m+1) and n/{?h
or 2em/n<w<2m(m+1)/n. Thus any estimate of w sljou]d lie wnhxr;
27/n of the true value, and this implies that its variance is of order 1/n
or better. The extra power of » is achieved by the relatively sophisticated
estimate ¢,

The variance v of the errors is their mean square value. The correspond-
INg quantity for the signal is

: 2
ave(A coswi + Bsinwr)’ = ave{ Rcos(w! + )}

= R lave cos(wr + ¢)°

2
_R*
The Quantity
R%/2  mean square value of signal
v mean square value of noise ’
cal}

?d the signai-to-noise ratio ot snor, indicates how well the signal shows

“Pin the noise. The variance of & may be rewritten as

12
nisar

vares=
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which shows, somewhat surprisingly, that a long series is more

important
than a strong signal.

For the variable-star data, these formulas yield standard deviations for
the two frequencies of 1.04x 1077 (for frequency 0.2167) and 1.49 X 10~
(for frequency 0.2613). These values show that the frequencies are in
theory capable of very sharp resolution. It should be noted, however, that
this result depends heavily on the assumptions made, especially indepen-
dence of the errors.

The variances of A and B are increased by replacing « by its estimate &.
The results are

- 2 2

VarA gﬁd.-k_u__,
n R?

- 2 2

\;a’rlng..E-4—4—-'-_8_1
n R?

cov(ﬁ,ﬁ):%%,

cov(/f,é)zlz—vi,

nt R?

cov(ﬁ,é):——%.iz_
n R

Furthermore, estimates concerning different frequencies are, to this
order of approximation, uncorrelated. Since, as Walker shows, A, B and &
are all approximately normally distributed, these results allow us to find
confidence intervals for the corresponding parameters.

In the light of the (approximate) standard deviations of the two csti-
mated frequencies, it is instructive to recall that their final estimates
differed by many tinies these quantities from the first values, computed
directly from the data containing both components (see Table 2.1). Since
the two frequencies are fairly close, they interact or interfere with each
other, and this effect dominates the statistical error, unless it is removed, as
in the simultaneous estimation procedure of Section 2.4. Pisarenko (1973)
has shown that when a series contains two very similar frequencies the
above formulas for variances and covariances may not be valid. Although
Pisarenko's results are for frequencies closer than those in the present data,

they suggest that we should treat the standard deviations given above with
some caution,

i
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Exercise 2.7 The Estimates X, A, and B
‘Suppose that the data {xo,...,x,_,} were generated by the model (7). g
Shhw that
n=1jw o (n—
X=p+a+ {Acos £—2—+Bsm —3 D, (),
where
sinnw/2
D, (@)= nsinw/2

Show also that
d=A+2 3 acoswr+ {Acos(n— 1w+ Bsin(n— 1w} D, (2w)
n

.(..ri;li D, {w). ¢

—2dcos
F=B+2 > a,sinwt+ {Asin{n— 1)w+ Beos(n—1)w} D, (2w)
n

(n—Duw
-~ 2asin —--—2—D,l (w).

s Exercise 2.8 Continuation

The bias of X as an estimator of W is l
b= [A cos —(";—l)w + Bsin (n—_z-l—)ﬁ ]D,.(w)-
since £, Show that
1)< Ei"fT/z' .

“f’he_re, as usual, R?= 42+ B2 Find the bias of 4 and show that it may
“milarly be bounded by

Ry 1, 2 -
nlsine  pisinwe/2)? nsinw/2

_ShUW that the same quantity is a bound for the bias of &.

]
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Exercise 2.9 Continuation

Show that the variance of ¥ is v/n, and that the variances of A4 and g
differ from 2¢/n by, at most, (2e/n)/(nsinw). Find the covariance of 4
and 8. and show that it too is bounded by this same quantity.

Show that the covariances of ¥ with 4 and & are both bounded by
(2e/n)/(nsinw/2).

APPENDIX

The following program was used to fit the two-component mode| discussed
in Section 2.4 and may also serve to fit the mere general m-component
model. Subprograms OPTOM, LOCALM, SSREG, STATS, and PARMS
carry out the actual fitting algorithm. The main program and the subroy-
tine DATIN are used solely for input/output,

These programs may also be used to fit the single-frequency model of
Section 2.3, as a special case of the general model. The exact least squares
method is found by setting APPFLG to -FALSE., and LIM and CONY 1o
values that allow the algorithm to iterate o convergence (say, CONV
=1E—-5 and LIM=5). The approximate method is used by setting AP-
PFLG to .TRUE., and LIM and CONV so that only one cycle is per-
formed (that is, LIM=1 or CONV set 10 a relatively large value, say 7).

Note: If any frequency is initialized at a value outside the range [0, ),
the final value will likewise fail to be its principal alias,

Subprogram LOCALM is from Richard P. Brent, Algorithms for Minimi-
zation withowt Derivatives, © 1973, pp. 188-190. Reprinted by permission
of Prentice-Hall. Inc., Englewood Cliffs, New Jersey. Three statements
have been changed and one has been added for the present application.
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Txercise 2.9 Continuation

Show that the variance of x is v/n, and that the variances of A4 and B
differ from 2v/n by, at most, (20/n)/(nsinw). Find the covariance of 4
and B, and show that it too is bounded by this same quantity.

Show that the covariances of ¥ with 4 and 3 are both bounded by
(2o/n}/(nsinw/2).

APPENDIX

The following program was used to fit the two-component model discussed
in Section 2.4 and may also serve to fit the more general m-component
model. Subprograms OPTOM, LOCALM, SSREG, STATS, and PARMS
carry out the actual fitting algorithm. The main program and the subrou-
tine DATIN are used solely for input/output.

These programs may also be used to fit the single-frequency model of
Section 2.3, as a special case of the general model. The exact least squares
method is found by setting APPFLG to -FALSE,, and LIM and CONV to
values that aliow the algorithm 1o iterate to convergence (say, CONV
=1E-5 and LIM=35). The approximate method is used by setting AP-
PFLG to .TRUE., and LIM and CONV so that only one cycle is per-
formed (that is, LIM=1 or CONV set 10 a relatively large value, say ).

Note: If any frequency is initialized at a value outside the range [0, 7],
the final value will likewise fail to be its principal alias.

Subprogram LOCALM is from Richard P, Brent, Aigorithms for Minimi-
zation without Derivatives, © 1973, pp. 188-190. Reprinted by permission
of Prentice-Hall, Inc., Englewood Cliffs, New Jersey. Three statements
have been changed and one has been added for the present application.
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CONV,
OF THE FITTING ALGURITHM, I[N
NEXT COMES A CARD WITH THE NUMRER UF CUMPUNENTS, IN
15 FORMNAT,
FOLLOWING THIS,
TO BE FITTED,
FREWQUENCY AND THE COSINE A
IF10.5

+ #

AND QUTPUT RESULTS FROM,

LIM AND APPFLG,
Fl0.5,15,L1

IT CONTAINS THE STARTING VALJES
FORMAT,

DIMENSIUN K'bOOIuFREIIDivﬁllﬂloﬂllOl
LAOGICAL APPFLG

CALL DATIN (XeNySTART,STEP,5)

READ (5,1) CGNV.LIH.APPFLG

FORMAT (F10.5,15,L1)

WRITE{6.4} CONV 4 LIM, APPFLG

FORMAT (#0FOR THIS RUN, CONV =#,E12.4/
LIM =2,15/

* APPFLG =#,L5)
READ(S,8) M

FURMAT(15)

00 10 J=1.M

READ 15,2) FREUJ)A(J),B{)

FORMAT {3F10.5)

WRITE(G6,5)

FORMATL#QINITIAL VALUES ARE -#)

WRITE(A,3) CJaFREQJ)4ALI),80d) =1 ,M}

FURMAT (2 COMPONENT +REQUENCY COSINE
*

+ LIS¢F15.7,2E15.6))

THERE IS UNE CARUD FUR LACH FRE

ND SINE COEFFICIENTS,

THIS MAIN PROGRAM AND SUBROUT INE DATIN ARE USED TO
INPUT DATA FOR,

MUDEL OF HIDOEN PERIUDICITEES TO A TIME SERIES.
THE TIME SERIES DATA COME FIRST IN THE [INPUT FILE.
(FOR THE FORMAT SEE DATIN.}

TIME SERIES CUNTAINS THE VALUES OF THE VARIABLES
WHICH CONTROL THE OPERATINN
FURMAT.

FITTING A

THE FIRST CARD AFTER THE .

QUENCY -
IF THE !
IN

SINE#/

CUEFFICIENTSe/

CALL JPT(OM LXaNSRMU  FRESA 48,y CONV 4 LIM, APPFLGY

WRITE{b,0)

FORMAT(£0 FINAL VALUES ARE -2)

WRITE (6,3} CIM FRECIM) G ALTM} o0l IM), 1M=1,M)
$8=0.0

DO 35 [=1,N

TEMP=X{I)-RMU

DA 4 J=1,n

ARG=FLOAT( I~} )®FRE(J)
TEHleEHP-A!JI‘COS(ARGI-H(JJ‘SIN(ARGI
CONTINUE

SS=SS+TEMPRR)

CONTINUE

WRITE (647 RMU,SS

FURMAT{#0FITTED CANSTANT [s 2eL19.0/

+ * RESIOQUAL SUM JF SQUARES [S£,E15.6)

sTae
END

3
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SUBROUT INE DATIN (X'N.START'STEP.HD

THIS SUBROUTINE Is USED TO {NPUT &
LIN RUN-TIME FORMAT) AND SONME AS
CIN FIXED FORMAT}).

A HEADER CARD (72 COLUMNS}
VALUE OF N (15}

1

2

3 THE DATA FORMAT (T2 COLuMNS)
4

SERIES OF VALUES -

SOC1ATED QUANTITIES
THE FIRST FQur DATA CaARDS ARE -

START AND STEP [2F10.5)
PARAMETERS ARE -
NAME TYPE VALUE
ON ENTRY ON RETURN
X REAL ARRAY NOT JSED THE SERIES

N INTEGER NOT JSED
START REAL NOT uSeD
STEP REAL NGT USED
M INTEGER LOGICAL unIT NUMBER

DIMENSTON X{ﬁOOl-HE&DtlB'.FHT(lBI
READ(M, 1) HEAD'N-FHI.START.SFEP
FURHAT!lBAQ/ISIl&AQIZFlO-S)
WRITE(6,2) HEAD.N.FHT;SIART.SIEP

FORMAT{2GTHE DATA HEADER REANS -3

# TIME ORIGIN lSilFll.SI
s TIME INCREMENT 1S#,F1})
READ[M,FMT) (Xlllal=1.N'
RE TURN
END

LI
»
-
XI
m
=]
>
-y
>
-n
Q
]
Xz
y -

SERIES LENGTH

TIME VALUE aT THE
FIRST DATA POINT

TIME INCREMENT
BETWEEN DATA POINTS

JNCHANGED

T 1S ~#/1X,1844/

=« 5)

ﬁﬁ("lﬁﬁﬁﬁﬁnﬁﬂﬁﬁﬁﬁﬁﬂﬁﬁﬂﬂﬁﬁﬁnnﬁﬁﬁﬁﬁﬁﬁﬂﬂﬁﬁﬁﬁﬁﬁﬁﬁ

SUBRUUTINE OPTONM (X.N.RMU.FRE.A.G.H.CJNV.LIH.APPFLGI

THIS SUBROUTINE,
STATS anp PARNS,

FOR THE LEAST-
MODEL OF WIDDE

NAME TYPE

X REAL ARRAY
N INTEGER
RMU  REAL

FRE REAL ARRAY
A REAL ARRAY
g REAL ARRAY

M INTEGER

CONV REAL

LIM INTEGER

APPFLG LOGICAL

WITH SUBPROGRAMS LOCALM,

IMPLEMENTS ThE ALGORIT

SUUARES FITTING OF THE
N PERIODICITIES.

PARAME TE

VALUE
ON ENTRY

THE TIME SERIES
SERIES LENGTH
NOT USED

STARTING VALUES FOR
THE FREQUENCIES Ty
BE FITTED

STARTING VALUES FunR
COSINE COEFFICIENTS

STARTING VALUES FUR
SINE COEFFICIENTS

NUMBER OF COMPONENTS
10 BE FITTED

CONVERGENCE CRITEKION
ITERATION CEASES WHE N
IN ONE CYCLE, WO
FREQUENCY CHANGES By
MORE THAN CONvV

MAXIMUM NUMBER OF
CYCLES UF ITERAT[ON

FLAG CONTROLL ING

WHETHER APPROXIMATE
CTRUEL) DN ExacT
{.FALSE.) LEAST SUUARES
IS TO BE usEoD

5SREG,
HM
RS ARE

UN RETuURN
UNCHANGED
UNCHANGED

cuusrn~f TERM

1

FINAL WVALUES

FINAL VALUES
FINAL VALUES
UNCHANGED

UNCHANGED

UNCHANGED

UNCHANGED

35
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NOTES.

l. IF VALUES OF N JR M EXCEEVING
RESPECTIVELY, 4RE USED,
STATEMENT BELOW SHOULD 8§ CHANGED ACCORDINGLY.

2. USE OF EXACT LEAST SQUARES FAPPFLG = «FALSE,. )
wllL CAUSE LONGER EXECUTINN TIMES,

3. THE FREWUENCIES IN GENERAL CONVERGE Ti) YALUES
WITHIN 2#p|/N UF THE(R STARTING VALUES.,

STARTING VALJES SHIULD BE GIVEN T ar
ACCURACY,

SIDE-LORES.

SINE CGEFFICIENTS ARE LESS CRITICAL,
SET T Zero.

J0 AND 1y,
THE DIMENS TON

REAL LUCALM

DIMENSTION XlNl.YlbDUl'FKEIlOI
LOGICAL APPFLG

DATA EPS /LE=-y/

T=CONV

DELTA =3.l§ZIFLUATtNl

20 10 KOUNT=1,LIM

SUM=Q

0U 20 1=1,N

Yil)l=xt1)

00 30 y=1,.,mM
LRG=FLDAT|I—1)*FREIJI
Y(ll=Yill-:IJI‘CUSlARGI-ElJI‘SlNIARGI
SUH=SUHOY(I¥

RHU=SUM/FLOATINI

TEST=0

DA 40 J=1,M

D0 50 I=1,N

YOI)=X{1)-RMy

DD 50 K=1,M

TF{K .EQ.4) GO TO 50
ARG=FLOATII—1]*FREIK}
Y(I!=Y(lI—AIK)‘CUS(ARGD-B(KI*S]NIARGI
CONTENUE

DUMMY =L OCALM IFRElJl-OELTA.FRElJ]*DtLTA'
+ EPS;T.TENP.?.N.APPFLG)
TEST=AMAX1ITESI.ABSIFREIJI-TEHPII
FRE(JI=TEMP

CALL PARMS IY.N.FRE(Ji,ﬂPPFLG.A(JI.B(Jil
FFOUTEST 7. CONY) RETURN
DELTA=TEST+2.087T

CONTINUE

RETURN

END

*AL10),3(10)
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32

“0

REAL FUNCTION LIOCALM (A,B,EPS,T P XY NG APPF L)
REAL FUNCTION LOCALM (A BEPS,ToF.X)

THIS IS THE FORTRAN FUNCTION LUCALM GEVEN oY
RICHARD BRENT IN

ALGURLTHMS FOR MINIMIZATION WITHOUT DERIVATIVES
(PRENTICE~HALL, 1972},
[T FINDS & LOCAL MINIMUM OF THE FUNCYION F IN THE
INTERVAL (A,8).
T AND EPS DEFINE A TOLCERANCE TOL = EPS®ABS(X)eT,
WHEKE X IS THE CURRENT APPRUXIMATION Ty THE POSITIUAN
OF THE MINIMUM. THE MIN]|MUM IS FOUND wiTH AN ERRORW
OF AT MOST 3eTOL. !
F 1S NOT EVALUATED AT POINTS CLOSER THAN TUL.
A SUITABLE VALUE FOR EPS [S THE SQUAKE RO3IT Of THE
RELATIVE MACHINE PRECISION. FOR MDKE DETAILS SEE THE
ABOVE REFERENCE.

.

DIMENSION YiN)

REAL M

SA=A

SB=B
X=S5A+0,.381966%(5B-54)
W=X

V=n

E=0.0

FX=F(X)
FX=~5SREG(Y ¢Ne Xe APPFLG)
Fu=FX

FV=Fu

M=0.5%(SA+5B)
TOL=EPS®ABS(X)+T
T2=2.0*10L

IFLABSIX-M) .LE. T2-0.5%158=54)) GO Tu 190
R=0-0

+=R

PzQ

LF [(ABSI(E) .LE. TJL) GO TO 40
R={X-W)*{Fx=Fy)

Q=i X-VI®(FX-Fw)
P=(X~V)*Q=-(X-w)*R
U=2.0%(Q-R}

IF (4 .LE. 0.01 GO TO 20
Pa-p

GO TO 30

4=-0

RaEg

E=D

If (ABS{P) .GE. ABSL0.5%2%R)}) GO TO 60

IF (1P .LE. Q% (SA-X)) .OR. (P .GE. Us(SB-X2)) GD TD &9

D=pP/sy
U=X+D
[Fllu-5A ,GE. T2) «AND. {5B-J .GE. T2)1 GO TO 90

IF (X .GE. M) GO TO 50
D=ToL



50

60

T0

90

100

110
€120
129

130
140

150

164
170

180

190

GO 10 90

D==T0OL,

GO TO 90

IF (X .GE. M) GO TO 70

E=58-X

GO Td 8¢

E=SA=X

0=0.381966%E

IF 1ABS(D) .LT. TOL) GO Ty 100

U=X+0

GO TO 120

iF (D .LE. 0.0) 6O TO 110

U=X+TOL

GO T0 120

U=x-TOL

FU=FLU}

FU==SSREGIY4N,U,APPFLG}

IF (FU .GT. FX) GO TO 150

IF (U +GE. X} GO TO 130

SB=X

GO TO 140

SA=X

V=W

FV=Fn

w=X

FW=FX

X=Q

FX=Fu

GO TO 10

IF (U .GE. X) GO TO 149

SA=y

GO Ta 170

$8=u

IF LIFU .GT. FW) .AND. W «NE. X} GG TQ 180

V=h

FV=Fu

W=U

Fw=Fy

GU TO 10

IF ((FU .GT. FV) .AND. (Vv .NE. X) JAND. (V JNE. w))
GO TO 10

V=U

Fv¥=Fy

GO TOQ 10

LOCALM=FX

RETURN

END

OO0 O00

THIS FUNCTION RETURNS THE SUM  OF SQUARES
OR EXACT)

NAME TYPE

L4
N

OMEGA REAL
APPFLG LOGICAL

10

FUNCTION SSREG (Y,N,OMEGA, APPFLG) M

ASSOCTATED WITH OMEGA, PARAMETERS ARE

VALUE ON ENTRY {NONE ARE CHANGED)

REAL ARRAY THE TIME SERIES

INTEGER SERIES LENGTH

THE FREQUENCY

«TRUE. FOR APPROXIMATE LEAST SJUARES,
«FALSE.FOR EXACT LEAST SQUARES

DIMENSION Y{N})
LOGICAL APPFLG

CALL STATS {Y,N,OMEGA,CY,S5Y)

IF (APPFLG) GO TO 10

RN=N

CON=SIN(RN*OMEGA) /S [NCOMEGA)
ARG={RN~1.0)#OMEGA

CLx0.5%(RN+COSIARG) *CIN)
CS=0.5%SINIARG) #CON

SS5=RN~-(C
SSREG={SSHCY#42-2,00CSCYRSYECCRSYS42) /(CCESS-CSE82)
RETURN

CONT INUE

SSREG=(CY®42+5Y+82)82 . 0/FLOATIN}

RETURN

END

(APPRUXIMATE

39
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10

THIS SUBRQUTINE RETURNS THE CQs]
NE
TIME SERIES, PARAMETERS ARE M SINE sums oF 4

NAME TYPE

Y

N

OMEGA REAL THE FREQUENCY

cy

SY

SUBROUTINE STATS lY.NoOHEGA.CY.SYl y

N

VALUE

ON ENTRY ON RETURN

REAL ARRAY “HE T[ME SERIES UNCHANGED

INTEGER SERLES LENGTH UNCHANGED

UNCHANGED

[+ ¥al2XalskalsisizkalslnkalnisinslaRalnlaRulakel

REAL NUT UsED CUSINE SUM

REAL NOT USED SINE suM

DIMENSION Y(N)
CY=9.0

5¥=0.0

DO 10 I=f,N
ARG=FLOAT(-1)#0MEGA
CY=CY+COS(ARG)®Y(])
SY=SY+SIN{ARG)*Y([)
CONTINUE

RETURN

END

10

20

THIS SUBKUUTINE RETURNS THE
LEAST SGUARES ESTIMATES OF THE COSINE AND SINE AR |
CUEFFICIENTS OF A SINGLE PERIODIC CUMPUNENT.

PARAMETENXS ARE

NAME TYPE VALUE

ON ENTRY
KeAl ARRAY THE TIME SERIES

INTEGER SERIES LENGTH

OMEGA REAL THE FREQUENCY

APPFLG LOGICAL «TRUE. OR .FALSFE.

FOR APPROXIMATE OR
EXACT LEAST SQUARES,
RESPECTIVELY

RE AL NOT USED
REAL NOT USED

LOGICAL APPFLG

DIMENSION YINI

CALL STATS (Y ,N,OMEGA,CY,5Y}
RN=FLOATLN)

IF (SINIOMEGA) .EQ. 0.0) GO TU 20
IF (APPFLG) GO TO 10
CON=SIN(RN®OMEGA) /S INIOMEGA)
ARG={RN=-1.0)%0MEGA

CC=0,5% (RN+COS{ ARG «CON)
£S=0.5¢5IN(ARG) *CON

55=RN-CC

DEL=CC®S55-(5%%2
A={CY®55-SY*CS)/DEL
B=(SY*CC—CY*CS)/DEL

RETURN

CONTINUE

A=2.0%CY/RN

B=2,0%5Y/kN

RETURN

AsCY/RN

B=0.0

RETURN

END

SUBRUUTINE PARMS (Y 4N, OMEGA,APPFLG,A,B)

(EXACT Ok APPRIXIMATE)

UN RETURN

UNCHANGED
UNCHANGED
UNCHANGED

UNCHANGED

COS COEFFICIENTY

SIN COEFFICIENT
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