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Abstract

The dyr;amics of a plankton-fish model comprising phosphorus, algae, zoo-
plankton and young fish are analyzed for different values of average light
intensity, phosphorus concentration in the inflow and adult fish biomass.
Light intensity and water temperature are periodically varied during the
year. while the other parameters are fixed at realistic values. The analysis
is carried out with a continuation method for the study of the bifurcations
of periodically forced continuous-time nonlinear systems. The large number
of bifurcations of different types indicales that the dynamics of the model
can be very complex. Int fact, multiplicity of attractors, catastrophic tran-
sitions, subharmonics of various pertods, cascades of period doublings and
strange attractors arise for suitable values of the parameters. The resulty
are in agreement with the most recent theories on food chain systems and
periodically forced predator-prey systems. They also suggest that large year-
to-year differences in food chain dynamics need not always be attributable

to external factors like interannual weather variability.
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1 INTRODUCTION

Historical time series of plant, animal and human populations are often so
irregular that it is hard to imagine that these populations are near an equi-
librium. Nevertheless, some sort of periodicity is sometimes detectable in
these time series. Examples of this kind are insect-pest outbreaks in forests
{Rovama, 1984}, algae blooms in artificial reservoirs and lakes (Harris. 1986).
fluctuations of some animal populations (Schaffer,1984), dynamics of child-
hood diseases (Schaffer and Kot, 1985) and many others. Nevertheless. aiso
in these cases, the deviations from a periodic pattern are conspicuous. Such
deviations were attributed to various difficulties that arise when collecting
data (measurement noise), or to Auctuations of environmental factors influ-
encing the populations (process noise). In other words, scientists believe
that, in the absence of measurement and process noise, populations wauld
he coustant or periodic and that all deviations from these modes of behavior
would be due to random accidents.

The discovery that nonlinear dynamical systems can behave in a purely
chaotic way in the absence of exogenous noise sources has radically modi-

fiedd this belief. In other words, it coutd be that many of the deviations of

a population from an equilibrium or a cycle are due to the .nternal mecha-
nisms of reproduction and growth of the population and not to the influence
of external forces. May (1974) was the first to paint out this possibility in
a study on insect populations with nonoverlapping generations. Since then.
the problem of deterministic chaos in population dynaniics has been intensely
investigated. The analysis of many classical models has proved that chaos
may arise for suitable values of the parameters characterizing the population.
Among these studies we can recall those on parasitism (May. 1985: Lauwerier
and Metz, 1986). competition [Gilpin, 1979}, sex (Caswell and Weeks, 1986}
and predation (Inoue and Kamifukunioto, 1984; Schaffer. 1983: Rivaldi ¢
el., 1991 and the recent investigations on food chains (Scheffer, 1990; Hast-
ings and Powell, 1991) and on a chemostat with a predator. a prey aml a
periodically forced inflowing substrate (Kot ¢# al., 1991). However. detecting
chaos from real population data, which are. in anv case, affected by sone
kind of noise. is, at least equivocal. Identifving the presetce of deterministic
chaos in such time series requires the capability of distingnishing hetween
non chaotic time series affected by noise and chaotic time series aliected Iy
noise. Nevertheless, the nse of numerical techniques has allowed different an-

thors to conjecture the presence of chaos, for example. in the dynamics of the



Canadian Lynx population (Schaffer, 1984), in the growth of some species
of trees (Gutierrez and Almiral, 1989), and in certain childhood disease epi-
demics (Schaffer and Kot, 1985 Olsen, 1987; Kot et al., 1988; Sugihara and
May. 1990). As a result population communities have all the ingredients
of strangly nonlinear dynamics (for a debate on the importance of chaos in
biology sce Schaffer and Kot, 1986; Berryman and Millstein. 1939: Poui.
1991a,b).

This paper is devoted ta the study of a model of plankton dynamics in
a seasenal environment. [n addition to the effects of light. temperature and
nutrients on the planktonic system, we take the impact of planktiverous fish
into acconnt. Traditionally, this aspect is rarely considered in plankton mod-
els (see. e.g., Jorgensen (1933) for a review), although the dominant influence
of fish on plankton in many aquatic systems is now documented by a large
number of studies (e.g., Lamarra, 1975; Leah et al., 1980: Cronberg, 1ya2:
Shapiro and Wright, 1984; Reinertsen and Olsen, 1984; Levitan et af.. 1985).
Field data and laboratory experiments show that the dynamics of the popu-
lations coexisting in a water body are rather complex, although some general
patterus are mostly identifiable. A well known scenario is the occurrence of a
spring bloom of algae fallowed by a zooplankton peak inducing a rlear water
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phase, which: subsequently. changes to a more turbid situation with low zoo-
plankton densities (Sommer et al., 1986). {n other cases continuing regular
density oscillations are found, especially of large Cladocerans (Mc¢ ‘auley and
Murdoch, 1987). Often. however, field data on plankton show considerahble
irregularity. Algae do peak in early Summer {hlooms). but the amplitude and
the time of occurrence of these blooms and subsequent zooplankton peaks
are often quite different from one year to the next. The concentration of the
limiting nutrient (in general phasphorus). as well as the biomass of young
fish feeding on zooplankton, follows a simpler pattern during the yvear, hut
these patterns often vary conspicuously and aperiodically through vears. [n
short. recorded time series of phosphorus, algae, zooplankton and fish elearly
point out two characteristic frequencies. A low frequency (one vear period)
cbviously due to the one-year pericdicity of the environmental factors (light
intensity, water temperature,...) regulating the growth of all species involved
in the process, and a high frequency (1-2 months period). Nevertheless. ran-
dom deviations from the average periodic pattern are not negligible. These
deviations have been, until now, explicitly attributed to the unpredictable
fluctuations of enviroumental factors. In other words, algae, zooplankton.
and fish populations would have exactly the same patterq repeating each
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year (periodie solution of "period one”) if the environment were perfectly
periodic.

Without having the intention of underestimating the role of the environ-
mental rancdomness, this paper presents the results of a study which shows
that plankton dynamics can be intrinsically chaotic. This fact could have
been somelow conjectured by a naive analogy with the most recent results
on periodically forced predator-prey systems (Rinaldi et al., 1991: Kot et
al., 1991). But the models discussed in these contributions are not suited
for describing the planktonic system. For this reason we have performed a
systematic and detailed analysis of all possible modes of behavior of a more
complex model, Qur model is composed by five compartments. namely, phos-
phorns, algae, zooplankton, young fish and adult fish {the last considered ax
a parameter), and encapsulates the most important processes (influence of
light intensity and putrient concentration on algal growth, functional re-
sponse of zooplankton and fish, recycling of phosphorus through excretion,
decomposition and mineralization, temperature dependence of growth and
mortality rates....). The discussion is carried out with respect to three pa-
rameters: latitude, phosphorus concentration of the inflow and fish biomass.

Light iutensity. water temmperature, and recruitment of voung fish are taken

as periodically varying input functions of the model, while all other param-
eters are Axed at realistic values. The analysis shows that such a madel has
very complex dynamics, comprising multiple attractors. catastrophes. snh-
harmonics and chaos. Multiplicity of attractors can lead to high sensitivity
to noise; catastrophes imply conspicuous variations of Uie populations for
small variations of strategic parameters; subbarmonics correspond to pert
odic behavior with long periods (3.4,... vears); chaos implies no pendicity
whatsoever although patterns may look periodic at first sight.

The paper is organized in sections. In the next section we present am
moadel and outline its limitations. In Section 3 the continuation method wsed
to rompute the bifurcations of the model is described. [n the fourth section
we present the results of the analysis in terms of bifurcation curves 1 fwo
dimensional parameter spaces. The presence of chaos 15 detected by means
of Poincaré sections which point out the fractal geometry of the atfracturs.
Finally. in Section 3 we sunumarize the results and outline the most important

directions for further research.



2 MODEL DESCRIPTION

The tnadel considers the part of the aquatic ecosystem depicted in Fig.1.
Each compartment shown in the figure corresponds to one state variable in
the model. except for the biomass of "adult fish” which is kept constant. as
will be discussed later. Obviously, the variables represent complex groups of

species. Assuming that bydrology is constant the formulation of the model

15 as follows:
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P = phosphorus concentration
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algal concentration
Z= zooplankton coucentration

F = young fish biomass

Vo = adult fish biomass

Fy = phosphorus concentration of the inflow

Lo = average light intensity

L = light intensity

Pa (pz) (pF) = amount of nutrient released by decomposition of a ynit of
dead algae (zooplar{kton) {young fish)

£z (&r) = amount of phesphorus excreted by zooplankton (fish) per unit of
algae {zooplankton) eaten

my (m%z) {my) = mortality rate of algae (zooplankton) (young fish}

& = inverse of retention time

€4 (€2} {ef) = efficiency of algae (zooplankton) {voung fish)

it Lp) = reeruitement rate of voung fish

o
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d(t. Ly} = aging rate of young fish
v = selfshading capacity of algae

3% = maximum rate of phosphorus uptake

% = maximum grazing rate of zooplankton
8¢ (47, )= maximun predation rate of young (adult) fish
ki kz. kp. kv, = half saturation constants (i.e. values of A, Z F. and Vj ar

which the rorresponding functional responses are half maximum)

Table 1 gives the dimensions of parameters, the range of realistic values.
aud the relevant sources of this informatien. In all figures which follow
phosphorus concentration { P) is in mgPI~*, while algal ( 4), zooplankton (7}
and young fish (F) concentrations are in mgdw!=!. The stars ™' appearing in
equations (1)-(1) denote a temperature dependence. In accordance with the
most commonly used Q9 approximation of Arrhenius law. all parameters
varving with temperature are assumned to double every |0 degrees. The
corresponding values at 20 degree Celsius are indicated in Tah.1 without "',

Light juteusity L and water temperature T are assumed to be sinusoidal

functions of t{day):

27
= n—=t
Lit) = Lo(l + eLsinz )

T(8) = To{L + epsin et - rr))
165
where t=0 at Spring Equinox. [n order to reduce the number of parameters.
the average light intensity Lo, obviously inversely related to latitude. ha
been selected as an independent parameter. while =1 has been Rxed to sh
days and €;, Ty and er have been related through linear regression to £,

using data of lakes at different latitudes. The result is
e = 2.3027 — L0048 Ly

To = 0.034L,
er = 0.8¢r, = 18421 — 0.00381,
In the following we shortly describe the rationale hehind the niodel formnla
tion, concentrating on the less traditional aspects of it.
The phosphorus equation (1) contains the following terms: net inpnt.
uptake by algae. release fron: decomposing algae, zooplankton and fish awml
finally excretion by zooplankton and fish. The concentration £ is kept con-

stant and is used to set the nutrient level in the system, Seasonal variations in

10



processer like uptake by and release from sediments and aquatic macrophytes
are neglected. Nutrient release from decomposing organisms is considered an
instantaneous process, and excretion by zooplankton and fish is taken pro-
portional to their consumnption rates.

The algal equation (2) consists of a growth term, mortality due to zoo-
plankton grazing, hasic mortality and an outflow frotm the system. The
growth ¥, ohviously dependent upon phosphorus concentration, is also a
function of light. The Moned function for light dependence can be easily
justified (Cornelli, 1939} and serves to describe the competition effect due
to self shading. The grazing ¥z by zooplankton is also written as a Monod
formulation (type Il functional response).

Zooplankton, in the model, should be thought of as large Cladocerans
like Daphnia species. This group represents the most dominant grazers of
algae and is also most vuinerable to fish predation (Scheffer, 1991, and refer-
ences therein). Concerning the zooplankton equation {3} 1t should be noted
that there are two different predation losses, one for adult fish, and one for
‘voung of the year fish. Young fish are supposed to have a type [I ¥ fune-
tional respouse, whereas the adult fish have a type LI functional response
¥;. because unlike the voung fish, the larger animals are able to switch to

1l

alternative prey (Scheffer, 1991),

The equation for fish (4) is probably the least traditional part of the
model. Generally. plankton and fish dynamics are not deseribed in the saine
madel. The rationale iehind this is that the characteristic time scales of these
groups differ quite substantially. This might be true if one focuses on the tutal
biomass of the fish population, but certainly not if the planktivorous caparity
is of interest. Young fish of almost all species go through a stage at which
they are obligatory planktivores. Therefore, the yearly recruitment which
often gives rise to massive peaks of young fish, causes the predation pressuce
of the fish community on zooplankton to show a pronounced seasonal peak.
Unfortunately, it is not reasonable to put this peak into the model as a forcing
function, since it is known that there are large interannual differences in
young fish survival, depending on the availability of plankton at the moment
that young fish are in their planktivorous stage. Equation (4) shows how this
complex interaction with fish is incorporated in the model. The amount of
adult fish. as mentioned before, is treated as constant with respect to the time
scale of interest. Young fish have a consumption dependent hiomass growth
and a fixed mortality. In addition. there is an input. proportional to the
amount of adult fish representing recruitment, and an output representing
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the aging of young fish. Obviously, the latter process would put them in
the adult fish class, if this class were modelled dynamically. The input and
output of young fish is uniformly spread over some time. The timing of
recruitment is especially relevant in this context. It is formulated in such a
way that the input process is finished 6 weeks after the temperature reaches
14 degrees Celsius, which is the moment that, on average, young fish start
to forage heavily on large zooplankters. More precisely, the recruitment
function ([t Lo} 1s equal to 0.005 for 20 days starting from day r, = 138 -
0.26 Lo (typically the beginning of May) and 0 otherwise, while the aging
function d{¢, Ly) is equal to 0 for 120 days starting from day r,. and to 0.05
for the rest of the year,

The model is rather complex compared to traditional models used up to
now . Although, crude simplifications are made, and many potentially in-
teresting factors are still left out of consideration, the number of parameters
is large. This prohibits an extensive analysis aver the complete parameter
space. After having checked that the qualitative behavior of the model is
sound for all realistic values of the parameters, the strategy has therefore
heen to analyze the behavior of the model with respect to just three parame-
ters: the light intensity (Lg). the phosphorus loading ( Py} and the adult fish

1y

hiomass (43} All other parameters are fixed in the middle of the realistic

ranges given in- Table [.

3 THE METHOD OF INVESTIGATION

The model, adding the equation £ = | {t imod | vear). can be transformed into

an autonomous five-dimensional system for which four-dimensional Poincars

section and four-dimensional first return map
{P(O). A, Z(0). F(0)) — {P(1).A{L). Z(1) FLL))

can be defined (Arnold, 1982; Guckenheimer and Holines, 1983}, Thix map
specifies the values P(1), A(1), Z(1), F(1) that the four state variables have
at the end of the vear. once the values Pi0), A(8). Z(0). F(0) that the same
variables have at the beginning of the year are known. Fixed points of the
k-th iterate of the map correspond to periodic solutions with period k vears.
We will refer to these points as period k fixed poiuts, 1t should he noted
that a periodic solution with period k corresponds to a k-ple of period &
fixed points of the Poincare map. Closed and regular curves {invariant tori
on the Poincaré section correspond to guasi -periodic solntious. while irregn.

lar invariant sets {strange attractors) carrespond 1o chantic solutions, Fixed

g



points of the Poincaré map can bifurcate at some parameter values, In the
following we will discuss hifurcations in two-dimensional parameter spaces
and will therefore talk of bifurcation curves. In all our figures we will only
display bifurcations involving at least one attractor because only these bifur-

cations are of biclogical interest.

We use the following notation for fixed point codimension one bifurca-

tions,

f™* - flip (period doubling) bifurcation curve, For parameter values on this
curve the map has a period k fixed point with a multiplier pi* = _|.
When this curve is approached, a stable cycle of pericd k loses stability

7

and smoothly becomes a stable cycle of period 2k.

t*) - tangent (fold) bifurcation curve. For parameter values on this curve
the map has a period k fixed point with a multiplier y“k) = 1. On this

curve a stable and an unstable cycle of period k collide and disappear.

The bifurcation curves presented in the following section have been corn-
puted by means of a continuation method interactively supported by the
program LOUBIF developed by A, Khibnik. Yu.A. Kuznetsov, V. Levitin
and E. Nikolaev at the Research Computing Centre of the USSR Academy

15

of Sciences at Pushchino. The method can be briefly described as follows
{Khibnik, 1990a.b). Each bifurcation curve is computed by projecting a one-
dimensional manifold located in the six-dimensional space (P A Z Fopy )
on the (p, py) plane, where p and p; are two parameters (for exammple B,
and Lg}. The manifold is determined by the four fixed point equations and
by a bifurcation condition imposed on the multipliers of 1he fixed point. This
condition is written using the characteristic polynomial det(.J — ;f}. where
J is the Jacobian matrix of the proper iterate of the Poincaré map at point
{P.A.Z, F)and ! is the 4x4 unit matrix. More precisely, the bifurcation con-
ditions are det(J + I) = 0 for flip bifurcation and det(J — 1) = 0 for tangew
hifurcation. In the program LOCBIF the bifurcation curves are computed
by means of an adaptive prediction-correction continuation procedure with
tangent prediction and .Newton correction. All relevant derivatives. as well

as the Poincaré map. are evaluated numerically.

4 ANALYSIS OF THE RESULTS

In this section we present and interpret bifurcation curves in the parameter

spaces (£, Ly) and {15, Lg). These curves are only some of the bifurcation

)
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curves we have obtained. In particular, we do not display bifurcation curves
involving only unstable modes of behavior, because they are of no biolog-
ical interest. {They are needed only if one likes to fully understand the
global bifurcation structure of the system from a purely formal point of view
{Kuznetsov ef al., 1992).) We also do not show bifurcation curves that we
have detected only in very small regions of the parameter space because we
are not sure whether they correspond to relevant phenomena. For these rea-
sons. the analysis is not complete and the modes of behavior we point out are
only samples of the dynamics of our plankm-n-‘ﬁsh model. Nevertheless, these
samples are quite interesting and tefer to chara'cteristic phenomena that we
have checked to be robust with respect to parameter perturbations.

In order to be as clear as possible, we present the results in three different

subsections dedicated. respectively. to multiplicity of attractars. catastro-

phes and chaos.

4.1 Multiplicity of attractors

It is already known {Muratori and Rinaldi, 1989 Scheffer, 1991) that even

the most rudimentary food chain model composed of a prev, a predator and

a constant suberpredator has multiple attractors in the abseuce of seasonali-
ties. On the other hand, it has been pointed out recently (Rinaldi «f al.,1991)
that periodic variations of environmental factors can easily give rise to nmi-
tiple attractors even in the simple predator-prey models which have only ane
attractor in a constant environment. Thus, multiplicity of attractors mas
also be expected in our plankton-fish model, which is more complex than a
simple food chain and has many periodically varying factors.

Fig. 2 shows two sets of bifurcation curves in the parameter space
{Po. Lp). In Fig. 2a we have two branches of a tangent bifurcation of petriml
1. In the shaded region delimited by the two curves, the system has rwo
stable cycles of period 1 and an unstable cvcle of period 1. When a bifurca-
tion curve t7 is crossed coming from iuside the shaded region . one of the
two stable cycles collides with the unstable one and disappears. Thus, i the
shaded region we have coexistence of two distinct stable cveles of period 1.
while outside that region we have ounly one stable mode of behavior. Fig. i
shows the two coexisting attractors for point 1 of Fig. Za. [n both cases algae
peak three times per year and zooplankton peaks (essentially) two times per
vear, but the amplitndes of the vscillations

are ruite different. Of course, each of these attractors has its own hasin

L9



ol attraction, so that, in the presence of heavy intermittent noise, the system
will randomly visit the two attractors.

Fig. 2b shows another set of bifurcation curves, namely fip of period 1
and tangent of period 1. When the flip bifurcation curve M is erossed from
helow, a stable cycle of period | loses stability and becomnes a stable cycle of
petiod 2. In the shaded region of Fig. 2b we have two attractors: a cvele of
period | and a cyele of period 2. Fig. 4 shows these two attractors for point
L of Fig. 2h. Recognizing that the second attractor is not a cyele of period
1 requires a close look: this is because point | in Fig. 2b is situated near the
flip bifurcation curve fI*) where cycles of period 2 degenerate into cycles of
period |. The period 2 behaviour shown in Fig. 4b is an example of sub-
harmonic behaviour. The occurrence of subharmonics in the model suggests
that plankton communities can vary periodically with period k=2.3,... years

even if environmental factors do vary periodically with period 1.

4.2 Catastrophes

Macroscopic transitions can easily occur for small variations of a parameter

in a nonlinear system with multiple attractors (May. 1977). Perhaps the best

known example (Noy-Meir, 1973) in population dynamics is the crash of food
chain systems for an increase of the exploitation rate of the top predator
{adult fish in our case}. On the other hand, it has been recently ascertained
(Rinaldi ef al.. 1991) that seasonalities can favor catastrophic transitions in
simple predator-prey models. Thus, it may be expected that our plankton-
fish model can also undergo substantial transitions when parameters like
phosphorus or adult fish biomass are slightly perturbed. Confirmations of
this conjecture can be found in Figs. 5.6. In each one of these figures the
two stable modes of behavior are shown. In Fig. 5 the transition is obtaiye|
by towering the phosphorus concentration of the inflow (see points 2 and 3
in Fig. 2a). Since the catastrophe is associated with a tangeut bifurcation of
period 1, the system "jumps” from a cycle of period i (Fig. 3a) to another
cycle of period | {Fig, 5b). Nevertheless. the two cycles are different. the first
one having much more pronounced oscillations. In Fig. 6 the ratastrophe is
obtained by increasing the biomass of adult fish so that a curve of tangent
bifurcations of petiod 3 (see curve ¥ of Fig. 12 below) is crossed. The
attractor, just before the bifurcation, is therefore a cycle of period 3 (Fig.
6a), while, just after the bifurcation, the system behaves aperiodically on
a strange attractor (Fig. 6h). Notice that the aperiodicity of the strange

20



attractor is more casily seen in the dynamics of the higher trophic levels

(fish) then, for instance, in phosphorus and algae.

4.3 Deterministic chaos

Deterministic chaos has been shown to be possible in many simple coutinuous-
time population models. Food chain systems have been proved to be chaotic
even in the constant parametet case (Hogeweg and Hesper, 1978; Schef-
fer, 1990: Hastings and Powell, 1991). The classical predator-prey inodel
can I)E(“Oll‘l(’ chaotic when one of its parameters is varied periodically {lnoue
and Kamifukumoto, 1984; Schaffer, 1988: Toro and Aracil,1988: Allen. 1959
Kuznetsov et al., 1992; Rinaldi et al.,1991} and the lowest amplitude of the
seasonal variation needed to generate chaos can become quite small if there
are many periadic factors acting on the system {Rinaldi and Muratori, 1991 ).
Finally, a chemostat model compased by nutrient, prey and predator has also
been shown to be chaotic for suitable amplitudes of the periodically varying
inflow concentration of the nutrient (Kol ef al., 1991}. It would, therefore.
he at least surprising if our plankton-fish model would not he chaotic in some

subregions of the parameter space.

Fig. 7 shows a complete set of flip bifurcation curves in the parameter
space {Fo, Lo} and three distinct regions in which chaos may arise. If the
phosphorus concentration of the inflow Py is slowly increased over time and
the average light intensity Ly is fixed at a high value (e.g.. Lo=190). the tnodel
predicts that the standard period 1 periodic solution wll first bifurcate into
a period 2 periodic solution (on curve f1Y) and then, for a slightly higger
value of Fy. double again its period (on curve ) and continue like so wntil
the periodicity is lost. At that point the attractor becames a genuine chaotic
attractor. This region of chaos is characterized by high concentrations uf

phosphorus {eutrophic lakes) so that algae are not nutrient limited. Thix i

-equivalent to saying that plankton and fish are independent of phosphuris

concentration and that the model. in fact. reduces to a three stage fuod
chain. The amplitudes of the light and temperature seasonal variations in
this food chain are rather small because Ly is high. Nonetheless, the existence
of chaos in this region of the parameter space is not a surprise. since food
chain systems can be chaotic in a constant environment especially if growih
rates are high. The closed region of chaos at lower values of Py and L is also
interesting becanse it shows that chaos can he ohtained either hy increasing

or by decreasing the concentration of nutrient, a result similar to that founl

[
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by Kot et al. (1991) for a much simpler model. Finally, Fig. 7 shows that
there are very large regions, in particular in eutrophic lakes, where the system
hehaves periodicaily with period 2.

The strange attractors correspouding to the three points named 1, 2, 3
in Fig. 7 are shown in Figs. 8. 9, i0. The upper part {(a) and (b)) of these
figures shows two different projections of the Poincare' sections. Each dot
in these figures is a sample of the variables indicated on the axis, taken the
same day once a year for 500 times. The lower part {c) of the figures shows
the corresponding time series of one of the populations: as already remarked
for Fig. 6b. the irregularity of the attractor is at first sight more evident for
fish than for algae. An explanation for the large interannual differences in
fish becomes apparent if one samples the zooplankton population at the first
day at which the young fish cohort is fully foraging on large zooplankton {see
dots on Fig. 10c). The density of zooplankton which is of critical importance
to fish at this life stage is highly variable. The match or mismatch of the
appearance of voung fish and the peak in their food availability has been
suggested as the main cause of the huge year-to-year differences in young
fish survival of natural fish populations {Cushing and Dickson, 1976; Cushing.
1932). Our analysis suggests that in addition to meteorotogical variability the
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intrinsic chaos in the aquatic ecosystem is a likely cause of this neclianisim.

The fractal geometry of the attractors is very clear in Figs. 8.9, while
Fig. 10 displays an attractor which, at a first glance, seems to represent
some kind of quasi-periodicity (behavior on torus). Nevertheless. the fractal
nature of this attractor can be revealed by changing the scale of olwervation.

Fig.11 illustrates the results of two successive zoomings into the attractor
and points out the rlassical selfsimilarity property of fractal sets.

To conclude our analysis of chaos, we show in Fig. 12 two other periad
doubling routes to chaos in the parameter space {15, [y}, The Kgure indi-
cates that adult fish biomass might be a critical control variabie, becanse au
increase of this variable can cause either the appearance or the disappearauce
of chaos. The strange attractors correspounding to points | and 2 of Fig. 12
are shown in Figs. l} 14. Also in these cases, the variability of the voung

fish peaks is greater than that of the algal blooms.

5 CONCLUDING REMARKS

We have shown in this paper that the variability of the vearly patterns of

plankton amd fish pepulations {usnally attributed to some environmentat

2

e
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randomness) can be a direct consequence of the biological and physical pro-
cesses characterizing the model. This conclusion is based upon the results
obtained by analyzing the stable modes of behavior of a model with peri-
odically varying light intensity, water temperature, and fish recruitment and
aging. From a technical point of view, the analysis has required the stuly
of the bifurcations of a periodically forced four-dimensional dynamical svs-
temn: a quite difficult problem that could not have been solved by standard
simulation techniques. We have used, instead, a package implementing a
powerful continuation method producing flip and tangent bifurcation curves
of periodic solutions of any period. The package also detects "codimension
two” bifurcation points, a fact that has not been emphasized in the paper
but which is of strategic importance for successfully organizing the analysis
{Kuznetsov et al., 1992).

Sotne of the results we have obtained confirm many of the conclusions
recently obtained by different authors who have analyzed the dynamics of
-imple ecological models. The chaos predicted by our model in eutrophic
lakes at low latitudes seems to be originated by the possibility that three stage
food chains behave aperiodically even in a constant environment (Scheffer,
1990: Hastings and Powell, 1991). The existence of subharmonics and of
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strange attractors obtained through cascade of period doublings is in line
with the analysis carried out in Rinaldi et al, (1991}, while the rarity of
quasi-petiodic behavior is perhaps due to the high ratio between the periad (1
year) of the forcing functions and the period (1-2 months) of the antonomons
oscillations of phytoplankton- zooplankton communities.

There are many raveats when interpreting the results of rather ahstract
models like the one discussed in this paper in terms of real world Liology.
Nonetheless, a number of significant inferences can he made.  Firstly, the
analysis shows that the normal seasonal cycle of light and temperatuee can
easily lock the relatively fast cycling plankton system into yearly repeatedl
patterns. This result will probably be in accordance with general hiological
intuition. More remarkable is the observation that the tnterplay of the season
with the intrinsic rhythms caused by food chain interactions. ran give rise to
more irregular patterns. Sometimes the same seasonal pattern may repeat ev-
erv two or three years, but more often no repetition is found whatsoever. The
pattern is chaotic. although. at first glance. the time series often look more
or less like vearly repeated patterns. This mix of regularity and randomness
ix. of course. in perfect accordance with ohservations on seasonal dynamics in
nature, However, the real world randomness will. no donbi. be also cansed

6



by external perturbations like yearly differences in weather. Nevertheless,
it can he stated that observed interanpual differences in the acosystem dy-
fnamics need not be always attributable to weather or other external forces.
The detected kind of deterministic irregularity offers a good explanation of
a phenomenon that has hothered aquatic ecologists for many years: the ex-
tremely large vear-lo-year variation in young fish survival, Although. the
generated zooplankton patterns often look rather similar in different years.
the timing of their peaks appears to vary. Since the timing of fish spawning
is triggered by temperature, and not by food availability, this can cause the
young fish to be born in a period of either very high or extremely low foud
abundance, resuiting in large differences in survival. The fact that “time shift
irregularities’ causing this match-mismatch process typically arise from the
model suggests that it might be impossible to properly relate the natuyal
variation in recruitment success to weather conditions.

The refationship between the investigated control parameters and the
occurrence of phenomena iike chaos, catastrophes and subharmonics in the
model is rather complex, but some broad patterns can be detected. The
results suggest. for instance, that oligotrophic systems tend to show regular.
yearly repeating, seasonal patterns, Chaos only arises in more eutrophic sit-
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uations. The temperature-light regime of northern countries seems also 1o he
in favor of yearly repeating patterns. The model generales chaos more easily
in conditions associated with warm climates. Of course. these ronclusions are
only based on observations of the behavior in a limited part of the parameter
space, and should therefore be interpreted with care.

Obviously, the work presented in this paper is merely a starting point for
further research. The hewildering range of hehavior suggests that a ietailed
analysis of simplified submadels might be informative. On the ot her hand.
many sources of seasonal variation are still left out of consideration, and
the effects of including these extra perturbations would be worth studying.
Especially challenging seems the search for patterns predicted by the model
in real world data sets (Sugihara and May. 1990). However. in view of the

noisy character of most ecological data this is an ambitious larget.
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TABLE CAPTION

Table 1. The parameters of the model. their units. their minimum and maximum
values and the sources of information supporting these data. In all
figures of the paper. unless explicitly stated. the parameters are equal
to the central value of the range indicated in this tahle.



Parameter

Lg
Yo
Ay
nty
mz
mg
ta
ez
L2

kv,

TABLE 1

Units

calem=day=?
madui=!
mgPl-t
day~!
day~!
day~!
mydu(rg P}~
my P(mgdw)=~}
mgP{mgdw)~!
maP(mgdw)=*
mgP(mgdw)™!
mgP{mgdw)=}

calcm"’day"‘(mgdw)‘if

day=!

mgPday~{mgdw)=!

day~!

day~!

day~!
mg P~}
mgdwi~!
mgdw(~!
mgdw(~!

and references therein.

MinVaiue

0.05
0.1
0.0t
70
0.5
0.4
2.85.19°2
285103
2331078
4.5-10"?
4.35. 103
120
0
0.005
0.5
0.1
04
0.01
0.05
0.25
0.3

MaxValue

400
3
2
0.4
0.25
0.03
125
0.7
06
4.65.10-3
1.63-10-3
4.65-10~3
95.10-3
73-10°3
180
0.05
0.015

-

ot
0.20

08
0.03
0.13
0.73

Source of information

Hutchinson1957
Scheffer1991
Vendegna and Teruggil034
Scheffer1901
Scheffer199]

Schef ferl991"

Schef fer199}-
Schefferigol
Sehef ferl991"

Schef fer1991-

Schef fer1991-

Schef fer1991°
Schef ferlogl-
Schefferl99l*
Steernann and Hansen1939
Matsamura and Sakawal930
Schef fer1991
Matsamurae and Sakawal9350
Scheffer19g1:

Schef fer1091
Matsamura and Sakawaldso
Matsamura and Sakawal9sy
Schef fer1091"

Schef fer1991

FIGURE CAPTIONS

Fig.l

Fig.2

Fig.3

Fig4

Fig.3

Fig.6

The flow of material in the phosphorus-plankton-fish model. Connec-
tions between the two fish compartments represent recruitment and
aging processes. In the model each compartment is described by a sin-
gle variable and adult fish 15 is assumed to be constant. while all other
variables (P. 4. Z. F) vary in accordance with a differential equation
(mass balance).

Bifurcation curves in the two parameters space (Fo.Lg) with b5=1.00.
Fig.(a): tangent hifurcations of period I {on the two curves (! a stable
and an unstable periodic solution of period 1 collide and disappear).
Fig.{h): tangent and fip hifurcations of period 1 (crossing the flip curve
S from the left to the right a stable periodic solution of petiod 1 loses
stability and becomes a stable periodic solution of period 2). Units are
as in Tabie }.

Coexistence of attractors. Two stable periodic (a) and (I solutions
of period | corresponding to the same parameter values. Po=0.346.
Ly=303. 15=1.00. See point 1 of Fig.2a. In the second attractor {h)
algae and zooplankton blooms are much more marked. Concentrations
are in mgduwi='.

Coexistence of attractors. The attractor {a) is a cycle of period 1.
while the attzactor (b} is a cycle of period 2. The parameter values are
Fo=1.710. L4=379.5. 15=1.00. See point 1 of Fig.2b. Algal concentra-
tion and young fish hiomass are in mgduci—}.

Catastrophic transitions. Two stable cyveles of period 1 for the same
average light intensity (£,=308) and adult fish hiomass (1¢=1.00). and
for slightly different phosphorus concentrations of the inflow ( Fo=0.330
in Fig. (a) and P,=0.323 in Fig. (h)}. See points 2 and 3 in Fig.2a.
Lowering the concentration of phosphorus in the inflow generates a
catastrophic transition from a cycle with marked algae and zooplankton
blooms to a smoother cycle.

Catastrophic transitions. A stable cycle of period 3 and a strange
attractor for the same average light intensity {L,=340.7) and phospho-
rus concentration of Miflow (Py=1.00) and for slightiv different values

l



Fig.v

[v.A)

Fig.

Fig.9

Fig 10

Fig.1}

of adult fish biomass (1;=2.115 in Fig. (a) and 15=2.150 in Fig. (b)).
Increasing the adult fish hiomass gives rise to a catastrophic transition
from a cycle to a strange attractor.

Flip bifurcations curves f(, fi3_ fi4) iy the two parameter space
(Fy.Lp). with 15=1.00. In the thres dotted regions chaotic behavior
is possible (see also the next three figures showing the strange attrac.
tors of points 1. 2 and 3).

Chaotic hehavior of the model. Figs. {a) and {b) show two projections
of the strange attractor on the Poincaré section. The fractal structure
of the attractor is clearly displaved. Fig. (c) shows the irregular fluctu-
ations of the hiomass of voung fish during a period of 10 vears (the vear
starts the first day at which all the voung fish forage on zooplankton).
The parameter values identifving the attractor are Py=0.837. L4=390.
and 1o=1.00. See point 1 of Fig.7,

Chaotic behavior of the model. Figs. {a) and (b) show two different
projections of the strange attractor. Fig. {c) shows the irregular fuc-
tuations of the algal concentration during a period of 3 vears (the vear
starts the first day at which all the young fish forage on zooplankton).
Chaos can be detected by comparing the minor blooms of each vear.
The parameter values identifying the attractor are Fo=1.192. Ly=334.
and 13=1.00. See point 2 of Fig.7.

Chaotic behavior of the model. Figs. {a) and (b) show two different
projections of the strange attractor. The fractal structure of the attrac.
tor cannot be perceived at this scale [see next figure for two successive
zoonmings). Fig. (¢} shows the irvegular fluctuations of the zooplankton
concentration during 3 successive vears starting the dayr at which all
the voung fish forage on zooplankton. The parameter values identify-
ing the attractor are Fy=0.390. [,=364.8. and 19=1.00. See point 3 of
Fig.7.

The selfsimilarity property of a strange attractor. \When zooming into
a small square around point X of Fig.10a. the “line” representing the
attractor appears as the double line of Fig. (). Zooming more deeply
oh point X the upper “line” of Fig. {a) hecomes the double line of Fig.
(b).

Fig.12

Fig.13

Fig.14

Flip and tangent bifurcation in the two dimensional parameter space
(Vo.Lo) with Py=1.00. The strange attractors present in the shaded
regions are obtained through cascade of period doublings fi!. f43_
and f@® f®__ (see also the next two figures showing the sizange
attractors of points 1 and 2).

Chaotic behavior of the model. Figs. {(a) and (h) shou_' two different
projections of the strange atiractor of point 1 of Fig.12 {o=1.13.L,=360.
Fo=1.00). Fig. (c) shows the irregular Buctuations of vouns fish
biomass during 3 successive vears.

Chaotic behavior of the model. Figs. {a) and (b) show two differ-
ent projections of the strange attractor of point 2 of Fig.12 {1,=2.11.
Lo=3439. Py=1.00). In Fig. {c) the randomness of the algae blooms
is particularly evident on the secondary peaks.
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