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The concept of population viability is probabilistic in nature,
usually being expressed through such indicators as "expected
extinction cime", or "probability of survival for 1000 years™.
Such one-dimensional indicators might be adequate to characterize
empirically-derived extinction risk in steady-state
Circumstances, such as in a long-established and undisturbed
reserve. But they do not serve as well for evaluating viability
in dynamically changing environments, nor for appraising the
circumstantial evidence of risk provided by computer simulation
of a stochastic population model.

To characterize risk adequately in these circumstances regquires
describing a qualitative pattern of risk, sorting out short-term
effects, due to initial population size and environmental state,
from longer-term effects related to the character and quality of
hakitat. Furthermore, the relevant time-scales for the analysis
depend upon the processes of change present in the habitat,
including persistent effects from deliberate or inadvertent
anthropogenic habitat manipulation.

In the present study, alternative extinction risk indices and
sustainability profiles are suggested, appropriate for
formulating a risk management strategy in a dynamically changing
environment. The concepts presented are applied to the problem
of viability assessment of the endangared Northern Spotted Owl,
in the harvested temperate rainforest landscape of the U.S.
Pacific Nerthwest.

Key Phrases: Population viability analysis, managing endangered
pepulations in changing environments, extinction indices vs.
sustainability patterns .

Key Words: Endangered species, hazard profile, conditional
survival profile, Bernoulli valuation, Northern Spotted Owl.



l.Introcdyction

Computer-simulation modeling of the dynamics of small populations
has become a central, perhaps indispensable, tool for the
management of endangered species. Because of the limitations of
more direct, empirical studies—--one seldom has duplicate
populations in the field, with which to experiment or from which
to collect survival statistics--viability assessments necessarily
must fall back on evidence of a mere indirect and circumstantial
natcture.

One of the most widely used approaches has been tc experiment
with artificial populations, existing only within a computer's
dynamic memory. With these it is easy to undertake many
"experimental™ runs of a population's eveoclution over time,
collecting survival statistics or investigating the effects of
deliberate management interventions.

These computer simulation models typically incorporate a variety
of relevant stochastic elements, such as random envirenmental
fluctuations, random demographic variability, risk of
catastrophic events, etc. It i3 in the nature of such models
that they predict ultimate extinction for any population under
continuing risk. (See Appendix Al.) Conseguently one cannot
speak ¢f attaining absolute security against extinction, but must
describe viability in more limited terms, incorporating some
probabalistic measure of "population persistence"” [Ludwig, 1975}.

Typically these measures have been scalar guantities related to
the random time-of-extinction T of the population. Classically,
[e.g. Richter-Dyn and Goel,1972], the scalar indicator of T had
been its expectaticn E(T]. More recently faveored has been the
probability of survival to a specified time horizon T, ,i.e.

prob [T > T.},
[Shaffer, 1983, Salwasser et.al. 1383].

Such indices are useful as measures of comparative risk, but the
numerical values arrived at through computer simulation ought not
to be construed as providing quantitative predictions, to be
applied literally in real-world conservation decisions. While a
computed index wvalue is {within sampling error) an accurate, 1if
incomplete, statistical characterization of the artificial
computer population, its numerical significance for the real-
world population is unkneown, and in principle is unknowable.

On the other hand, the cutput from a computer simulation model
can exhibit a rich gqualitative structure which, if the mechanisms
in the model are empirically-based, is likely to prove robust
through many model refinements and elabcoratiens. Furthermore,
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that structure, much of it probabilistic in character, can
provide substantial insight into the likely qualitative effects
that alternative management strategies would have on the real-
world population's wviability.

The present article pursues this perspective through several
phases. Throughout, we emphasize the decision-theoretic context
of the analysis, in which achieving a level of protection,
against populaticn degradation or even extinction, is to be
balanced against other conflicting societal goals. We begin by
suggesting a way of replacing a single scalar index of viability
by a more complete temporal pattern of hazard, a system
description with qualitative as well as numerical content.

Next we examine wviability patterns that involve population
characteristics other than extinction time T. These may provide
considerable additional insight into the likely implications of a
choice made among decision alternatives.

Finally we reconsider the ramifications of a single decision az a
stage in a temporal decision process, insisting that each
decision stage should be evaluated in reference to the degree of
its reversability and the persistence of its effects. This leads
us to reexamine scalar indices (Bernoulli indices), and to
emphasize a class ©of these that may be particularly relevant for
evaluating actions with attenuated effects. Cnce again, the
single index may usefully be extended to a full temporal pattern.

These general concepts are illustrated through application to a
specific Markov chain model, describing the population dynamics
of the endangered Northern Spotted Owl. Then, in a series of
appendices, the theoretical principles which underlie the
analysis are made precise and analysed mathematically. These
appendices also include the necessary formulas for practical
calculation of the wvarious viability criteria develcoped in the
article.

We note that all of this discussion still abstracts froem a
population's spatial heterogeneity, as does the illustrative Owl
model. This spatial aspect of viability decision analysis will
be the subject of a second article, which is now being planned.

2.The Owl Model

To make our discussion concrete, we shall illustrate the general
concepts through application to a specific meodel, one developed
to examine the population wviability of the Northern Spotted Owl
in the mature ("old growth") temperate rain forests of the
Pacific Northwest. [Lamberson, McKelwvey, Noon and Voss, 1892].



The model is based on the known life-history characteristics of
the Owl as a long-lived territorial species, whose population
dynamics are driven by stochastically-variable annual fecundity,
(the result of fluctuating food supply), and variable dispersal
success, (depending on the availability and accessibility of
suitable old growth home territories). The latter depends in
turn on the degree of fragmentaticn of the bird's forest habitat.
In a badly fragmented habitat, dispersal success will be low ,and
the population dynamics can be expected to show a critical
threshold of population size, below which continued survival is
at high risk (Allee effect--see section 4.).

The model describes Owl demography through a simple set of
stochastic difference equations, tracking the population by means
of an annual census of territorially-established solitary males
and of nesting pairs. The spatial heterogeniety of habitat is
suppressed in this simple model, with habitat quality being
expressed by a single parameter, namely, the percentage of old
growth forest it contains. The model incorporates a stylized
dispersal process, describing search by juvenile males for
suitable unoccupied territories, and search by juvenile females
for established males.

Model parameters include juvenile and adult surviwval rates,
stochastic fecundity, search efficiency, and habitat quality
{characterized as % old growth). These are chosen to fall within
the range of the biologist's current best estimates, and their
sensitivity has been explored.

The model has been studied extensively, by mathematical analysis
of its structure and statistical analysis of repeated simulation
runs. Details of that work are described in the article cited
above. We include here a TurboPascal computer program of the
basic demographic model, along with a list of parameter values
used in the various figures shown.

3. Trade—-0ffs Among Incommensurates

In the Spotted Owl illustration, the central management issue is
how to protect the Owl while maintaining the traditional logging
industry in the Northwest's temperate rain forest. The trade-off
can be presented succinctly in a single graph (fig.1l). This
graph plots the probability of 250 year owl population survival
as a function of the percent of o0ld growth maintained in the
forest. (Recall that, in this model, old growth is always
distributed uniformly throughout the forest.)

Each axis of the graph represents a guality valued by society.
The vertical axis (250-year survival probability) is a measure of
the viability of the population at risk. It may also be regarded



as an indicator of the health of the forest ecosystem.

The horizontal axis (percent old growth left standing) also
measures the amount of forest that is to be dedicated to
sustained harvest. As such it represents a direct market value,
but also may be regarded as a crucial element in sustaining the
traditional harvest-dependent way-of-life of small forest
communities.

Thus it seems unlikely that the values in either axis can be
fully captured in market-based monetary terms. Their trade-off
will be a societal policy decision, achieved through the
political process. Furthermore, as represented in the graph, the
trade-off is zero-sum: one cannot improve the status of either
value without diminishing the other.

A number of environmental and resource economists ([Ciriancy-
Wantrup 1968, Shackle 19369, Bishop 1978] have argued for
proetecting non-monetary ecological, environmental, and aesthetic
values, by maintaining specified "minimum security lewvels" for
them. Thereby these values would be given priority over more
conventional market values, which are o be cptimized through
benefit-cost trade-offs, but only within the specified sSecurity
constraints.

In protecting against risk of population extinction, such a
preeemptive minimal standard would necessarily be probabalistic
in nature. Thus for example a minimal standard invelwving
expectation of extinction might specify that E[T] exceed one
thousand years.

Alternatively, Shaffer {1983] advocated setting a minimal
standard con survival probability to a specified time horizcn, of
the form we have adopted here, e.g. that

prob[T > 2501 > .95.

Shaffer pointed out that, in specifying such a standard, both the
time horizon (here, 250 years) and the security level (here, 95%)
are arbitrary, and that neither can be arrived at on purely
scientific grounds. Both choices, he asserts, "while amenable to
scientific advice and guidance, require a value judgment by
scciety".

One can interpret current U.S. law (the Endangered Species Act),
as establishing Owl survival to be a preemptive value, calling
for a minimal security level in the sense described above. In
principle, one should set the security level for population
viability without any consideration of economic ccsts, such as
the impact on timber harvest. Only within the constraint so
imposed should one then undertake measures for protecting
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competing values, such as the timber industry's stability and
economic efficiency.

In practice, of course, society will look at the two axes
together and choose a compromise, one that is not likely-to be
entirely satisfactory to either party to the dispute.

The scientific task here is to describe, clearly and fully, the
ramifications with respect to all societal goals of the available
choices. On the other hand, it must be recognized that, by
choosing a particular index of Cwl viability as we have done, we
have already framed the terms of the debate. The scientific
issue then is whether we might have done this in a better, more
informative way, by presenting qualitatively a more complete
description of extinction risk than a single suspect number can
provide.

4.The Bayesian Perspective: The Value of Information.

Before examining further the decision-theoretic context for
selecting viability measures, it is desirable to examine briefly
certain underlying principles of inference. To be concrete, we
turn again to the Owl model.

Cne feature of this model is its sensitivity to the dispersal
process, and to the impact of low habitat density on dispersal
success. This feature manifests itself through the presence, in
the simulation output, of a sharp threshold in the graph of
survival as a function of old growth density. For old growth
levels below the threshold (which cccurs around 20% in figure 1),
250-year survival is quite low: above it survival probability
rises gquickly to nearly one. Because of its explicit bioclogical
basis, this "Allee effect” is likely to be robust across a range
0of models.

Cn the other hand, the precise location of the threshold, in
terms of old growth level, is very model-specific. In fact, even
in the present model, the location of the threshold is affected
substantially by changes in the model's parameters, specifically
those which specify the Owl's dispersal search efficiency and the
stability of its food supply. Figure 2 illustrates the changes
in threshold locus that can result by varying these parameters,

within the range of our current uncertainty over their true
values.

How ought one to deal with such differing predictions? 1In
effect, two forms of uncertainty are manifest here: uncertainty
within and uncertainty across models. The within-model
uncertainty is due to process stochasticity, and is captured
through frequency counts in simulation replications. The



between-model uncertainty is due to measurement error in the
parameters, which are presumed to possess "true" numerical values
which we do not precisely know.

Despite these differences, classical decision-theory adopts a
"Bayesian" perspective on uncertainty, whereby the probability of
an event is taken as measuring only one's strength-of-belief in
its occurrence [DeGroot, 1970, Maler 1989]. One thus treats the
two sources of uncertainty on a par. In effect, Bayesian
Decision Theory is willing to contemplate a "lottery" of models,
with expectations for the lottery formed according to the usual
rules of probabilistic averaging.

Hence, if the two extreme curves in fig.2 are regarded as peing
representative and equally likely, they may be combined by simple
averaging. Thereby one arrives at an overall 250-year expected
survival curve--one with a much less abrupt threshold than that
present in either of its component curves.

An alternative perspective, one likely to be favored by
environmentalists, is to protect against the "worst-case
possibility"”, in this instance against the curve to the right in
fig.2. Adherence to this "precautionary principle" ([Shackle 1969,
Perring, 1991] has further Jjustification in the irreversibility
of population extinction, should that event occur.

In either perspective, there is an advantage to be gained for
society by narrowing the uncertainty in the model's parameter
values, both to decrease the risk to the Owl and to increase
flexibility in managing the timber harvest. Such improved
knowledge can be gained, at a cost in time and money, and the
decision to pursue it is an available choice in the management
process. [(Raiffa 1968].

5. The Dynamic Decision-Process: Sustainabilitvy.

Shaffer emphasized the need to decide upon the appropriate time
horizon for survival, but he did not suggest how this might be
done. Certainly the choice of horizon can significantly affect
the character of the results displayed. 1In figure 3, for
example, one sees how, in the case of the Owl model, changing the
time horizon affects the shape of the survival curve as a
function of % 0ld Growth. Note in particular that, as the
horizon is lengthened, the location of the threshold shifts and
the threshold itself is softened.

Of course what we are observing as we lengthen the horizon is,
for each fixed level of Old Growth, a sequence of points,
increasingly remote in time from the present, on the survival
probability time-profile--the complement to the probability
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distribution for the random variable T. Figure 4 shows this
survival time-profile for 25.5% 0ld Growth and a wvariety of
initial Owl population levels. A characteristic property of all
such profiles is that their shape, for asymptotic time,
approaches a geometrical decline [Appendix AZ},

In a decision-theory context, the determination to specify Owl
survival at the 250 year horizeon might reflect a view that a
harvesting error made today could be corrected within a 250 year
time span (for example, by allowing young forests to mature).
This may be so, provided the species does not hecome extingt in
Lhe interim! Thus, accepting a choice of current 0ld Growth
level entails accepting a certain level of risk to Owl viability
during the next 250 years.

This perspective leads to a perception of population viability
as a dynamic gquantity, tied to the status of the population at a
current peoint in time and to the management actions initiated at
that time. Monitoring of sustainability of the population
therefore requires periodic wupdating of the viability index, to
take account of the evolving status of the population, and to
project peopulation vulnerability over the subsequent time era.

These considerations lead us to advocate introducing, into
population viability analysis, the concept of hazard over time.

Specifically, the I-Year Hazard Profile H. (t) is the probability
that, for a populaticon that has survived to time t, the
population will become extinct within the next T years:

H(t) = prob(T st + T |T > ).

Figure 5 shows the 250-year hazard time-profiles corresponding to
the COwl survival time-profiles in figure 4. This figure shows
clearly that the hazard level is influenced for a time by the
initial population size. But that effect is transient, and after
a certain lapse in time (in this case, about 450 years), the
effects of initial conditions have washed out. COnly the character
of the habitat (e.g.the % 0ld Growth) then matters
asymptotically. Of course, by the time transients have died out,
the population may well have gone extinct! (From figure 4,
survival to 450 years ranges from .l to .5, depending on initial
population.)

It may of course be objected that 250 years is too long a time
heorizon in this decision-theoretic context, in that potential
trouble can be detected and corrected more guickly than that.
Figure 6 shows the corresponding 100-year hazard profiles, which
are seen to exhibit a similar behaviocor, and show that, at the
time of the 250-year extinction peak, a disproportionate fraction
of extinctions occur within the first 100 years.
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We note that the asymptortic hazard level depends on aspects of
nabitat quality other than % 0ld Growth. Figure 7 shows how, for
a fixed % 0Old Growth, asymptotic hazard depends on the level of
stochastic variability in the Owl's food supply.

The behavior of the hazard time-profile, including its asymptotic
constancy, is entirely general: It is characteristic not just of
this specific Owl model but of all finite Markov Chain population
models. [See Appendix A3]. It provides a tool for sorting out
short-term transient risks, due to initial population status,
from persistent risks related to habitat design. It suggests too
the desirability of replacing the requirement of a mimimal
security level at a single fixed time horizon by a requirement
of an upper bound on the height of the hazard profile,

6. Qccupanqy Values

Until now we have abstracted from the details of the population
state at time t, retaining only the limited information contained
in the survival profile, which specifies only extinction or non-
extinction at each point in time.
But in fact a simulation run of the Owl model, or any Markov
chain populaticon model, provides much more information than that.
It provides a complete description of a "sample path" X, i.e. it
specifies the complete state X(t) of the population at each time
step t, up to the time of extinction:

X = {X(0), X(1), ... , X(T)}.

In the case of the Cwl model, the "state" description at a
particular time t, namely

X(t) ={X1(t), Xz(t)]t
is itself a vector, specifying the number X,(t)of nesting pairs
and the number X,(t) of solitary males established at territorial
sites. A simple scalar measure of population size is

Y(t) = X, (£) + X, (t),
the site occupancy at t. A related viability measure is

pProb[Y (Ty) 2 Y_,.].

where T, is a chosen horizon and Y_, is a chosen threshold.

In figure 8 we illustrate the use of this measure, specifically
plotting

10
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prob (Y (100) 2 Y(0)],

for a range of old growth and stochastic fecundity levels.
Choosing the threshold at T,=100 to be equal to the initial
population size is especially practical for large scale
simulation models. This is because, without running the
simulations beyond the first 100 years, one automatically is
provided with a lower bound estimate of viability in the second
(and subsequent) centuries as well:

prob [Y (200} 2Y (0}] =2
prob [Y(200) 2¥(0) | ¥ (100)2¥(0) ] prob([¥(100)2Y(0)] 2

prob (Y (100) 2Y (0) ]2.

It is instructive to compare the curves in figure 8 with those in
figure 9, where we have plotted the probability of surviving (at
any population level) to Ty=100. The substantially higher
probabilities in figure 9 reflect the likelihood that many
surviving populations at T,=100 fall below the threshold size.
Significantly, the topolcgical structures of the two figures are
substantially different, implying different prioritizations by
the two criteria.

If the same comparisons are made, but with horizon T,=250, one

finds a different result. Then the survival and threshold-
attainment probability curves have the same topelogical
structure, and it coincides with that seen in figure 8. This

reflects the fact that by t=250 the population distribution
curves have approached their asympotic shape (see below), and
that the threshold-attainment probability structure at t=100
already has anticipated the asymptotic topology.

Figure 10 shows the conditional-occupancy time profile for the
owl model:
C-Occup (t) = E{Y(T)|T>t].

Note that, like hazard, this function is asymptotically constant.
(Appendix 4). Indeed, the conditional probability density
function of Y (t) assumes an asymptotically constant shape, which
is illustrated in figure 11. The peak to the left of this curve
shows the substantial risk of early extinction due to small
current population size.

7. Qrdinal Preference: Pricorities over Distributions
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In figure 12 are shown the survival probability distributions
resulting when the Owl model is run under four different
management prescriptions, invelving two different (high and low)
old growth densities, and two different fecundities {high and
low, where high mean fecundity is accompanied by high fecundity
variance). The results obtained reflect also the initial
population size, which is taken to be the same in all four cases.

Assuming that all four regimes are attainable by habitat
manipulation, one may ask: which should be regarded as preferable
for advancing the goal of Owl viability?

Figure 13 shows the 100-year hazard curves for the same four
management options. Taken together, the two sets of curves
demonstrate the point that viability security is very imperfectly
described by examining a single point on a surviwval profile, such
as "survival until 250 years". From the figures, in the years at
and beyond 250, <the HI/LO option is clearly superior to the
LO/LO option, both in raising current survival and lowering
future hazard. But these positions are reversed during some of
the earlier years, when current management actions will be having
their greatest impact.

Similarly, the HI/HI option is superior to the LO/LO except in
the first few decades. OCn the other hand, the HI/LO is superior
tc the LO/HI, according to both measures, at all points of time.

These insights are achieved by examining survival and hazard
profiles together. However it should be noted that all the
information being utilized is present already in the survival
profile alone, since the hazard profile is calculated from it.
[Appendix A3].

What is needed here is a means to integrate the information
within each of the alternative survival profiles, to arrive at an
overall preference ordering among them.

Such a preference ordering should conform to the usual rules of
rationality. Thus if §,, S,, etc. symbolize wvarious attainable
survival distributions, and preference for §, over S, is denoted
by S; < S,, then one would like at minimum that:

A) (Comparability) Any two distributions are comparable:
either one prefers S, to S,, is indifferent between S, and S,, or
prefers S, to S5,. In symbols,

either S, < S5, or S; = S, or S, » §,,
and

B} (Transitive Law)

I£ 5, <5, and S, < S, then §, < S,,

12
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8. Bernoulli Preference Orxderings

Both of the standard scalar measures considered up to now, namely
I) survival to a time horizon, and II) expected extinction time,
directly induce preference orderings that do conform to these
rules: Namely, one should set S; < 5, when, respectively,

I) prob(T>250 |S;) < prob(T>250 |S,):
or II) E(T |S,) < E(T |s,).

Then conditions A and B may be verified immediately.

More generally , let U(T) be any cardinal utility function on

outcomes T. Thus U is any non-decreasing function of extinction
time. The expectation of U with respect to the survival profile
S is

U induces a preference ordering on surviwval preofiles if
one sets S, < S, whenever E[U(T)|S,] < E[U(T)|S,]. We shall
refer to preference orderings generated in this way as Bernoulli
preference orderings.

E{U(T)] = i U(t) prob(T=¢t).

E=Q

Note that both of the standard preferences orderings cited above
are Bernoulli orderings: They correspond, respectively, to the
utility functions

1) Ui(T) = 0 for T<2S0, U (T) = 1 for T2250;
or II) U,(T) = T for all T.

Certain attributes of these particular orderings may be
considered to be objectionable:

I} U;(T) is discontinuous: Survival through 249 years is
assigned zero value; survival through 250 years is assigned full
value--worth as much as survival through, say, 100,000 years.

II) U (T) is unbounded: Hence valuation is dominated by
what happens at asymptotically remote times.

Of course, as we have noted, in a decision-theoretic context one
or the other of these utility measures may be to some degree
appropriate. However quite possibly one may do better with some
other choice of utility measure. This is the issue we shall be
exploring throughout the rest of this article.
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Bernoulli preference orderings satisfy both properties (A) and
(B) above, and alsc two additicnal properties of importance:

C) ({(Independence) A preference, say for S, over $5,, holds
independent of any probabilistic conditioning. More precisely,
suppose that §,2S,, and that «.S1l+ 'S represents a lottery of the
distributions S, and §, with respective probabilities O and B.
Then, for any S and any o + B=1,

os,+ B's < as,+ Bs.

D) {(Archimedean Property) If $,5 S < S;, then cne will be
indifferent between S and a certain lottery of S, and S,. That
is, there exist probabilities O and B, with o + B = 1, such that

S = s, +B's,,
According to the von Neumann-Morgenstern theorem [Owen, 1982],
these four properties characterize Bernoulli preference
orderings. That is, any preference ordering over survival
probapilities which satisfies the properties (A-D) 1is Bernoulli.
In particular, the Archimedean property reflects the scalar
nature of the Bernoulli orderings--i.e. allowing reduction of
the comparison of two time profiles to comparison of two real
numbers .

In the following section we shall be examining Bernoulli

utilities, other than the usual U; and U,;, for appropriateness as
indices of security and sustainability.

9. Cumulative-valye Utility Functions: Attepnuation

Because of its scalar character, a Bernoulli ordering always does
suppress much of the information contained in survival profiles.
In this sense its appropriateness, for setting priorities, is
inferior to comparing entire hazard profiles. However a
Bernoulli ordering can, with the use of a single numerical index,
capture some of the information most directly relevant to a
particular decision. Where appropriate, this information can
involve the entire time profile.

We shall call a utility function a cumulative-value utjility when

it is of the form

' T-1
u(r) =Y =(t),

=0

where T(t) 2 0 for all t 2 0. The latter condition is equivalent
to requiring that U(T) be a monotone-nondecreasing function of
extinction time. It is an entirely natural condition in

i4

7



conservation biclogy, whare the more delayed the extinction
event, the better off we consider ocurselves to be.

Writing U as a sum permits the interpretation of the individual

term T(t) as the momentary value of population survival during
the single time-step t.

In particular, if ®{t) = a°, for a<l, we shall call U(t) an

attenuated-value utility, with attenuation rate a. Such a
utility seems appropriate in a decision-theoretic context, where
E[U(T)] measures future viability resulting from current actions,
and the influence of these actions gradually weakens over time.

Summing the geometrical series for an attenuated utility,
U (T) = (l-a")/(l-a).

It is easily verified that this utility incorporates an aversion
to the uncertainties of future time, and indeed displays constant
"relative risk aversion" p = -A'U/AU = l-a. [ Hey, 1979.] Note
too that attenuation is formally equivalent to the economist's
"discounting over time", though its rationale is different.

It is sometimes convenient to peormalize this utility function to
VoAT) = (1-2)U,(T) = 1l-a%.

The normalized utility function V, has the useful property that,
for 0O<a<l,

0 < vV, (T) 11 as T | o,

Hence E[V,(T)] is less than or equal to 1, and increases with the
persistence of the process.

The prefererence orderings , induced by Bernoulli attenuated
utilities E[(U,(T}], form a continuum for 0<£a<l. At the extremes
are, when a=l, expected extinction time E[T], and, when a=0,
probability of survival to a finite horizon, prob[T>T,=0]. Thus
U,(T) ranges from being non-risk-averse (with no attenuation),
when a=1, to being wholly risk~averse (with instantaneously
complete attenuation), when a=Q0.

Any one of these Bernoulli expectations provides a security
criterion for evaluating a current action:

T-1

Elu,(7)] = BLY, a%l 2 Uy,

t=0

15
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Oor a sustainability criterion over a range of t:

: -1
v, (t) = B[} a? | ™>t] = oy, ,
a=t
E[U,(T)]! may be calculated numerically in terms of the transition

matrix of the underlying Markov chain. Furthermore, one may
derive a procedure, useful in simulation, for iteratively
calculating the conditional expectation CV,(t). (Appendix 5.)
Figures 14-16 illustrate the application of attenuated utility to
evaluation of the four management alternatives of section 7.

Figure 14 shows the (normalized) Bernoulli valuations E[V,(T)] of
the four options for a range of attenuation rates. Instead of
measuring attenuation by the "attenuation rate" a, we have
preferred the equivalent index V,(250)=1-a’", which measures the
deterministic value accumulated in the first 250 years. Thus,
V,(250) increases with attenuation, appreoaching 1 as attenuation
intensifies (i.e. as al0).

For our application, it turns out that the preference ordering
among the four options is independent of attenuaticn, below
V,(250) = .85. However, with greater attenuation than that, the
survival rates in the very early vears begin to dominate the
index, and the preferences change.

This is confirmed in figures 15 and 16, We cbserve that, when
V,(250)=0.9, the conditional valuation curves CV,(t) do cross at
early times t . Belew about V,{250)= 0.8 the curves separate
completely, and as attenuation decreases, the gaps widen.

10. Geperalized Bernowlli Valuations

It is possible in many ways to assign a utility U(X) to a sample

path X--such an asscciation is called a path fupnctional. In this

way one achieves a preference ordering among paths. Averaging
probabilistically over the sample paths of the Markov Chain &

yields a generalized Berpoulli valuation for C itself:

U'(c) = E[U(X)]xec]

In a particularly simple case,the utility measure U(X) may be a
function G ¢f the state X at a single time horizcon T:

16

/16



U(X)=G[{X(T)].

In section &, we have already encountered several of these for
the Owl model:

1) Site Occupancy: Goee (X} = X, + X, = Y;:
2) Sited Population: Gpop (X) = X, + 2X,;
3) Survival: Geurv (¥7 0) = 0 when Y = 0 and

= 1 when ¥ > 0;
4) Thresheld Attainment: Ginres (¥7 Yoin)= 0 when ¥ < Ynin and
= 1 otherwise.
Note that
E[Gsurv(x(T)) ] = Prob[T>T],

returns us to our earlier setting of valuing survival to a
norizon. Up-dating of this criterion yields the hazard function:

E[Guun (X(£+T) [T>2] = H_(t).
Likewise,

E(Ginres [X(T)] = prob{Y¥(T)>Y,,]

returns us to cur thrashold criterion of section 6. Finally, the
sustainability criterion, of conditional occupancy,

C-0ccup (t) = E{Geep (X (£) | T>t],
also was encountered in section 6.

The idea of cumulative-value utility measures also carrys over to
path functionals. A particular case is an attenuated value
urility measure, of the form

-1

Ulx) =3 at Glx(e)]+glx(T1].

t=0

The corresponding generalized Bernoulli valuation is studied in
Appendix A6, and is shown there, like the ordinary attenuated
Bernoulli valuation, to have a closed-form representation in
terms of the transition probability matrix of the Markov process.

In many other ways Generalized Bernoulli preferences behave like

17
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the ordinary ones, for example in obeying the Von Neumann-
Morgenstern rationality rules. One difference here regards
lotteries: a lottery of Markov chains is pnot Markovian. Thus one

must explicitly deal with the class of Lotteries of Markow
Chains, rather than with Markov chains alone.

11. Conclusion.

It should be apparent that no single valuation measure is
universally best: much depends on the application at hand. One
generalization is that some measures centain more information
than others, but even a complete time-profile, such as the hazard
profile, is an incomplete description of the complete stochastic
process. On the other hand, sometimes much relevant information
can be captured in a single scalar index. The trick is to judge
the information needs for the specific application, and choose
accordingly.

MATHEMATICAL APPENDICES

Al. Discrete-Time Markov Chains

We shall restrict consideration to population processes which are
represented as discrete-time Markov Chains, with a single
absorbing state m=0 (extinction) and transient states m €S =
{1,2,...M}. Similar results to those obtained in these
appendices can be found alsc for continucus time Markowv chains,
including birth-and-death processes, and for diffusion processes.
A general reference on applied Markov chains is [Karlin and
Taylor, 1981].

Let X(t) denote the state of the process at time £t = 0,1,2, ...,
with probability distribution p'(t) = {p™(t),...,p™(t)}. (The

prime denotes vectocr transpose.) Also denote the transition
matrix for the process by

P = [Pu}oM
Therefore
p'(t) = p'(t-1)'P = p'(0) P".

For simplicity, assume the spectral deccmposition

18
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F.§
Be=Y" ALr (ol 1 (a
2

with eigenvalues 1 =X3> 4, 2 Il.,l 2 |K.M| and left and right

eigenvectors 1™ and r™ satisfying

1®rep = A LW ; pr™ = A-r™
In particular,
1 = [1, 0, 0, ...] ; r = (1, 1, 1, ...] = 1.
From this, p'(t) = 19 o(A®y = [i, 0, 0, ...] as t | e,

i.e. eventual extinction is certain.

A2. Transient states

Note that
1 0 . 0
A&rw’l‘“'= 10 ... 0
10 ., 0
Hence,
l 0 LI I 0
o - o (t) @ (8) .o quult)
wo {€) @ () . Qe E)
where qggy(t) = pyy{t) is the t-step transition probability

between transient states i>0 and j>0, and
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11{8) . @)
. . . = QF
e (E) v Qg E)

Here Q = [qg;;]" = [p,]™ is the substochastic matrix of one-step

transitions between transient states
According to the asymptotic estimate in Al, it follows that

Gua (E) = A5 p,M .1 ™M 4 O(AS), for m and n > 0.

Next, dencte survival probability to time t as

M
S(t) = prob[X(t)>0] = Y pa(e).
o=l

In particular, if the initial state is X(0)=m, then

m M
Sitlm) = S,(6) =¥ qua(t) = Af'r, Y 12 + o(|a,]9)

a=1 a=1

Thus S {(t) is asymptofiically geometrical, with ratio o,

A3. Hazard
Let T be the (random) time of extinction. Then
Survival S(t) = prob[T>t]; and
Hazard H.(t) = prob[Tst+t|T>t]
=1 - S(t+1)
‘ S{t)

For geometrically distributed T, where S(t)= 0%, one has
Hy(t)= 1-C6% independent of t.

For Markov Chains,
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S.(t) = prob[T>t|X(0)=m] = prob(X(t)>0|X(0)=m]
= const'A® + o(| A% .

Hence H,(t) = (1 - A%} + O(AS) = (1 - A%,

independent of t and consistent with the asymtotically geometric
character of S(t). :

Ad. Path Functionals

Let X = {X(t); t=0 £to T-1} be a sample path of the Markov Chain €
Then any real-valued path functional defines a utility valuation
U(x) for each path . Averaging probabalistically over paths,

U (c) = E[U(X) | xec]
is a utility wvaluation for the process C.

As an important example, let Us(X) = card[X(T)], any scalar
measure of population size (cardinality) at a fixed time ¥.
When X(0)=m,

M
Uaz = Bylcard(Xx(t)) | X(0)=m] =Y card(X=n) q,(s)

ao=1

Updating provides a sustainability characterization, analogous to
hazard:

Up(£) = Eplcard X(t) |x(0)=m, X(t)>0],

i.e. the expected population size, t years into the future, among
populations still extant at time t. Thus

M M
Up(€) = Y card(X=n) Qu(t) / Y Gumlt).

n=1 n=l

From the asymptotic estimates of Al, as £ Too

Qun (t) approaches A,"'r -1_.'Y, and hence

21

21



o o
Ualt) ~ Al Y card(x=n) 11" / ¥ 10,

a=0 =1

independent of nq.

AS. Attenuated Survival-Values

Note that
-1 - g-1
E[T] = EZ; 1= EZl'prab[I'=sl .
e =0 t=0

A generalization leads to calculation of a conditional attenuated
survival~value:

I~1 8-1
Cvu(t) = B[y a™* | e} = ¥ Y a*fprob[T=s | T>t]

=t g=t+l ¢=C

=2 Y av'prob(T=s | Dt ] = Y a*prob[D>t | £57]

t=t g=v+1 T=c

=Z.:a"s(1:) / ats(t) .
= .

Thus
CVa(t) =1+ 3 a'st / atS(t) =1 + a-CV,(t+1) 5(t)/S(t+1) . (*)
T=t+1
1} For geometric survival probability, with S(t) = G°:
Cv,(t) = 1/(1-a0],
independent of t.
22
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2) For a Markov chain,

Sa(T) = prob(T>t+t | X(t)=m] =

M
Y Tan (%)

a=1

Hence, with S(t) = [S.(t)],% and  CV,(t) = [CV,{t)]|X(t)=m],",
one has

cv,(t) = f:afg'-z. / g1 .

t=0

In particular, for a=1, X,"Q" has elements 2. "3.. (T), equal to the

expected sojourn time in state n, given that X (0)=m.

Also, one may use the iteration formula in (*) to approximate
CV(t) in simulations. To initiate the iterations, one needs to
know CV(t,,,) for sufficiently large t,,. This may be calculated
if t . is in the asymptotically geometrical period, and one has
an estimate of the geometrical ratio O or equivalently the
asymptotic hazard H.

Ab. Cumulative-Value Path Functionals

Next, consider a path utility of the form

-1
u(x) =Y atclx(e)],

=0

where G(0)=0.

With X = {X(0), X(1), ... , X{(T-1)}, let
Keewne = {XA{1), X(2), ... , X(T-1)},

Then
U(X) = G(X(0)] + a UlXme) »

and so, with X({(0) = m, for m = 1 to M,
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M
Us = G(m) + 3 a Gp Uz
m=1

In vector notation, with

0" = [Um],", and ¢ = [G{(m)]," ,
these equations are expressed in matrix form as
U = a Qu' + G, i.e. [(I-aQlU" + G.

Inverting,

U® = [I-aQ]”'G = [I+aQ+a’Q’+']G.

This derivation may be generalized to allow G(0) # 0 and a
terminal g{T-1).
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OWL_DOC.AS

program NewOwi12; {1,000 year survival and expected popuiauon}

{30.000 replicates!} {Vary initial condmons}

{SR'J : : i
{3N+} ! ‘= :

! f

const i ' : ! i r

singsurv=7E-1; pa[rsurv=94E 2. pairmon=6E-2; juvsurv=6E-1: sites=255;

lotsites=100Q: repiscates=30000 search=26; CecadeSpan=200:!

ype | | 5 | j

1

vectr=array(0..200] of word; | i i

1
]
'

matrx=array(0..200, 1..4] of longint;  (Note: Change range of vectr,}

matsx=array(0..200,1..4] of single: {matrx, matsx with DecadeSpan)

{or intiat cond'n options} |

var ! : i | [

[ N.NN, T, Ct.C11, Ct2 Tm, S YearSpan word;  M:longint: !

f ) | '

indicator, fecundlty. avstes, disperse, mate, adjust, |

singles, pairs, Juventles nxtsmgles nxtpairs, usedsnes 'single;

[
i
r
|

I

Yrs: vectr; ; i i ;

f

one, two, InitOccup: array(1..4] of single:

l

survive, popul matrx; P, CO: matsx;  owilfile: text:

L

function xTOy(X Y: extended) extended

begin _ _ .
xTQy:=exp(y" In(x)) ! ' ;

end:.

begin {program OwiExt|n4}

randomize: i [ ! ;

YearSpan:=10"DecadeSpan: . ; ;
for N:=1 to 4 do begin! i i :

IntOccup{N]:=10+10"N- é : ;

one[N] ==0 002’Inn0ccup{N] Snes two[N]:=0.008"[nitOccup(N]"sites:

for ].=0 o DecadeSpan do begm i !

survive(] N]:=0; popul{jN]:=0: {initialize} |

Yrs(j:=10%; ! q ;

end; {j- Joop} i |

i
b !

for Mi=1 to replicates do begin [lhe Mth replicate}

{mmahze generation count, populanon}

S:i=0: T:=0: singles: -one[N] pairs: _two[N}

while (pa{rs>_1) and {Te= YearSpan) do begm {run rephcate}

:ndlcator :=random; {set randem fecu ndity}

!
T
]
I

if {indicator<BE-1) then fecundity:=2E-1 else lecundity:=7E- 1

Page 1
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OWL_DCC.AS

P juveniles:=lecundity "pairs; -
avsies:=sites-pairs-singles:
Jisperse:=1 - xTOy(({1- avsuesnotsnes) search};
mate:=1 - xTOy((1-singlesAotsites), 2 search):

; , i ! ;
(Time step} | ; ? 5 :
nxisingles:=juveniles ‘juvsurv disperse + E :

(singlessingsurv+pairs* pairmort)*(1-mate); ' ?
nxipairs:=(1-2°pairmon)‘pairs + singsurv mate *singles; :
usedsites:=nxtsingles+nxtpairs: E | ‘ i
it {usedsites>sites) then adjust:=sites/usedsites | : !

else adjust:=1: 5 i ,‘ é

smgles =nxtsmgles adijust; palrs =Nxtpairs” adjust: i !

| | i i :

{penodxc record} : ! i i !

if (T mod 10 = O) then begln ! ; F f
S:= T div 10; ; ; ! i
survivefS,NJ: -survwe[S N] +1: j i | f
POpul{S.NI: -popu![S N] + round(smgles + pairs); ; i
end; , , ! 5
T:=succ(T); |
end; {T-loop} . ) 5
end; {M-ioop} . i ! i
end. {N-ioop} : {

for Ct2:=1to 4 do

for Ct1:= Q to DecadeSpan do begin:

PICU1, Ci2]:= survivefCt1, C:2]/rephcales

if survive[Ct1, C12]> 0 . ! - i
then CO[CL1, C12):= ; : ‘

popul{Ct1, ClZI/(survwe{CH Ct2]'sites)
eise CO[Ct1, Ct2}:=0; : ! :

end: (Ct1-loog} 5 : ;
= ! 2 i !

[create ﬁle}

assiqn(QwiFile, "A:\NewOwi12. Dat)

rewrite(QwlFile); i

writeln(OwlFile, | T : ;

‘Lapsed lime vs. survi prob and cond | occup for 25 5% QOld Gromh

i

write(QwlFilg, “sinitOccup’);

for NN:=1to 4 do ! ' : I

write(QOwiFiie, In:tOccup[NN] 10:1):

_write(OwlFile, * ** -

for NN:=1i0ddo ?
write(OwiFile, ImtOccup{NN] 10:1); ’

wr:te!n(OwiFrle)

Page 2
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OWL_DCC.AS

for C1:=0 10 DecadeSpan do begin

write{CwiFile, Yrs{Ci]:10):

for NN:=1 to 4 do

write(OwiFile, F[CLNN]AG: S) : - .i

write{OwiFile, * °~ )

for NN:=1 to 4-do

write(OwiFile, CO[Ct,NN]: 10 5); ; |

writeln(OwliFile); | . : ;

end: (Ct-loop} | ; i
close(OwiFile); i

1

1
i
|

end, | ; ; | ;

F ' : ' ‘ i

DOCUMENTATION FOR FIGURES (Parameter Values) ! i

Oefault Values: As shown in program, except usually 20% of occupied sites are
singles, 80 "6 are patrs : ‘ : E

Fig.1: 40 sites searched

Fig.2: Sites searched: 26 or 40; ) 3 :i i
LoFecun: .25 (prob 8). .5(prob.2), mean 3 -‘
HiFecun: .20 7 mean .3

Fig.3: initOccup: 75% : |

Fig.4-6: OldGrowth: 25.5%

£ig.7: OldGrowth 20%, InitCecup 50%

Fecundity (all with mean 0. 3): ;

Level 1) 0.1 (prob .8), 1.1 (prob .2), : ’ |

2)0.2 0.7 | i ; t !
3)0.22 0.62 ! ; :
4)0.25 0.5 | : ;

Fig.8-12, 15: Lo Old Growth 20% %, Hi Old Growth 25.5%,

LoFecun: .2 (prob .8), .7 {(prob .2), mean .30

HiFecun: .11 1.21 mean .33

Fig.13-14: Fecundity levels:

Level 1) 0.11 (prob .8), 1.21 (prob 2) mean 330

2)0.218 - 0.756 324
o 3)0.2266 0.6386 .309
4} 0.25 0.5 300

Flg 16: % Oid Growth 25.5%,- Fecundity: .2 (prob 8): . 7 {prob .2}i
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Survival Probability vs Time For Various Levels of Initjal
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Cond Qccup Y(1)

Conditional Occupancy vs Time in Various Environments
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Attenuated Bernoulli Value
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VIABILITY ANALYSIS OF ENDANGERED SPECIES:
A DECISICON-THEORETIC PERSPECTIVE

SUPPLEMENTARY REMARKS: PROBING THE ASYMPTOTIC TEMPORAL REGIME

1. 1In the Decision Theory paper it is argued that the asymptotic
behavior of a population, after initial transients have died out,
needs to be explored whenever a current decision's ramifications
persist into that asymptotic era, and especially if such impacts
cannot be corrected for in the interim. For the spotted owl,
this may apply to landscape management decisions, e.g. a decision
to clearcut a particular tract of mature or maturing forest.

This note addresses some aspects of the technical problem of
"seeing into" the asympotic era through computer simulation of a
model. In carrying out the simulations for the spatially-
homogeneous owl model, I found it necessary to carry out at least
30,000 simulation runs to sample each data point. The purpose of
this note is to illustrate why this was so, and to back up the
illustrartions with some simple theoretical calculations.

Figure A illustrates the difficulty. This is the same graph as
in £ig.6 of the paper, except that it 1s run out to 3000 years.
In order to obtain unambiguous results, each graph shown is
obtained from 100,000 simulation runs.

However, hazard is a conditiopal probability, hence an individual
data peoint on the graph calculates the hazard at a particular
time £ by averaging over only those computer runs for which
populations have not yet gone extinct at t. Furthermore, the
number of these drops off geometrically over time, as can be seen
in fig.4 of the paper. From the simulation data, an initial run
size of 10,000 will drop off over time as follow:e:

Initial Occupancy: 20% 30% 40% 50%

Original run size: 190,000 10,000 10,000 10,000
After 400 years:; 701 2,636 4,161 5,056
After 500 years 520 1,972 3,131 3,794
After 600 years 387 1,461 2,350 2,854
After 800 years 219 819 1,327 1,606
After 10Q0 years 123 461 739 901

Thus an initially large set of simulation runs quickly becomes
much smaller and, as it does, sampling errors begin to grow and
distort our estimates of statistical quantities. In figure A,
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for example, with an initial run size of 100,000, sampling errors
become noticable arocund vear 1500, and by the year 2000 they
Severely limit our ability to observe the asymptotically constant
level of hazard.

Thus there is a window in time within which we can observe the
asymptotic regime. It begins when the leading non-unit eigen-
value of the transitien probability matrix finally dominates over
the others, and ends when sampling errors become excessive.

If cne cuts down significantly on the number of sampling runs,
from the 100,000 runs used in fig. A, then sampling error will
become serious at an earlier time, and the window of
observability will narrow.

2. Figures B, C, and D show these effects as they apply to
Observing asymptotic hazard, in the case where the model is run
at 4 differept levels of environmental Stochasticity. Herea,
level 1 has the highest variance, old growth level is 25.5%, and
the figures shown summerize 100,000 runs. Since initial
occupancy is 80%, hazard rises monotonically to its asymptotic
level.

Note that asymptotic hazard increases as environmental
stochasticity increases. Note alsc that sampling error breaks up
the steady-state asymptotic hazard at different times depending
on stochasticity level, with break-up occurring earlier as
stochasticity increases. This is the result of two reinforcing
effects: As stochasticity increases, populations go extinct at a
more rapid rate, and also the variation increases in the sampled
population runs.

As asserted above, the window of observability of the asymptotic
hazard narrows as the run size decreases. The location of both
onset and break-up are subjective, but one may estimate that:

i) For level 4, the asymptotic era begins about at 420 years,
with break-up seeming to occur at

“*2500 years when run size is 100,000;

*1710 years when run size is 30,000;

*835 yrs.when run size is 10,000.

ii) For levels 2 or 3, the asymptotic era seems to begin at 300
years; with breakup occuring about at

*1300 years when run size is 100, 000;

*800 years when run size is 30,000;

*500 years when run size is 10,000;

iii) For stochastic level 1, the asymptotic window begins at
approximately 180 years and sampling-error break-up begins at
approximately

*340 years, when the run size is 100,000;

*165 years--before the asymptotic era--for run size 30,000



3. 0f course there are other aspects of the asymptotic regime, in
addition to hazard, that may be important in devising management
strategies. One is the asvmaptotic population size, which we
measured as conditional occupancy. (In a spatially-inhomogeneous
model, spatial population distribution also will be important.)

In the October version, fig. 10 shows expected conditional
occupancy, and fig. 11 shows its distribution function. (These
are figs. 15 and 16 in the earlier versions). What is important
at the moment is the very small probability densities invelved in
fig. 1ll1: The Owl population sizes are grouped into 26 categories,
with probabilities mostly around .05. It follows that to
accurately graph such a curve, one needs to worry about relative
errors {(i.e. fractional errors) rather than additive errors.

Survival p to a fixed horizon is simply a Binomial random

variable. Consequently, for a sample of size N, the relative
error E/P in a sample estimate P of p, 1is

E/P = 2, /TT=PT7P yI/R,

with confidence 1-¢&. Here 2, = 1.96 or 2.575 resp, when & .05
or .01, (Using the Gaussian normal approximation.}

Thus, with 95% confidence, |E/P|will not exceed the quantity in
the body ©f the following table:

N= 1,000 10, 000, 100,000
P= .5 .078 .020 .006
P= .1 .186 .059 019
P= .01 .616 .195 .062

With 99% confidence,

N= 1,000 10,000 100,000
P= .5 .081 .026 .008
P= .1 .244 .077 L0235
p= .01 .810 .256 .082

It seems reasonable to try to keep the relative error smaller
than .05 in rough graphing, and even smaller for examining more
delicate issues. Note that N is the residual number of xupns not
yet extinct by the asymptotic era, pnok the initial number at t=0.
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100-year Hazard
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