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1. INTRODUCTION

Epidemiology is the study of the spread, in space and time, of diseases, with ihe objective to trace fac-
tors that are responsible for. or contribute to, the occurrence of a disease. Epidemiology is concerned
with human. animal as well as plant diseases. but antropocentrism manifests itself in the predominant
attention for human diseases and diseases affecting economically important livestocks and crops.

For 2 long time infectious diseases dominated the field (note, however, that for most diseases it was
not always clear that they were caused by an infective agent). Gradually, and notably in the industri-
alized world. degenerative diseases. like cancer and cardio-vascular dysfunctions, became prominent.
Recent events, in particular the advance of the human immunodeficiency virus and the resurgence of
malaria. have put infectious diseases back to the forefront.

The work of an epidemiologist comprises

- description:  laying out an atlas displaying the incidence (the number of new cases per unit of
time) or the prevalence (the total number of cases) as a function of geographical posi-
tion and time (see Cliff & Haggett (1988) for a master piece)

- data analysis: trying to find causative effects, such as contaminated drinking water in the case of

: cholera (see Clff & Haggett (1988), Ch. I) or estimating relevant parameters (see
N.G. Becker (1989)) by a careful (statistical) examination of the available data

- explanation: developing theories based on mechanistic considerations at the individual level

- prevention:  designing control strategies, for instance screening or vaccination programs

- prediction:  forecasting future developments in incidence and prevalence

Az :’;:{-\- 'g

The present paper is concerned with mathematical models for the spread of infectious diseases. The
understandable expectation that such models are primarily useful as a tool for prediction is actually
(and unfortunately) not warranted, since, as a rule, our knowledge of key parameters and our under-
standing of the details of the transmission mechanism is so poor, that accurate quantitative results are
out of reach. However, as I hope to demonstrate, models do enhance our understanding of the causal
relationship between phenomena at the population level and mechanisms which act in and between
individuals. Moreover, they are helpful in evaluating the possibie effect of control measures.
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Let me briefly fist some of the Justifications of mathematical modelling exercises in epidemiology
(see Hethcote (to appear) for a4 more extensive list).

A mathematical model requires a precise formulation of hypotheses concerning the physiologicai
and behavioural mechanisms involved. Thus we become aware of working hypotheses which may oth-
erwise 2o unnoticed and which, actually. may deserve serutiny.

Mathematical modelling may catalyse the introduction of key conceps. For instance. the basic
reproduction ratio R, {cammonly but incorrectly called *basic reproductive rate’) was introduced by
Str Ronald Ross in 1909 when be analysed a mathematical modei for matana transmission. R, is
(roughly speuaking: a precise mathematical definition is given below) the number of secondary cases
produced by a tvpical infected individual, By definition then the prevalence increases when Ry=>1
and decreases when Ry<<l. Ross showed thar for malaria Ry is proportional to the quouent of
mosquete density and human population density and that, consequently. the disease can be climinated
in a certain area by sufficiently reducing the mosquito density.

Mathemuticat models ailow us o do thought experiments where actual e€xXperiments are impossible,
immoral or would demand too much time and/or money. An example is provided by the comparative
study of various vaccination schedules aiming at the elimination or eradication' of (chtidhood)
diseases (see Knox (1980Y, Anderson & May (1985.1y and van Druten e.a. (1986))

Mathematical models ullow us 1o identify "mechanistic’ links between various kinds of data. Not
only can theyv be used for pdrameter estimation, but thev may also make us aware of Our igrorance
concerning numerical values of key parameters (e.g. the distribution of the number of different sexyal
partners per vear) and tell us, via g sensitivity analysis, which parameters deserve to be called key
parameters,

To put the work described below into perspective. I next want 1o present two ways of classifying
epidemic modeis followed by a list of phenomena that can occur on various time scales.
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Suppose that after infection the disease develops as an autonomous process within the infected indi-
vidual or, more precisely, that the invading organism reproduces within the host at such a rate that
further infections are irrelevant (examples inciude measles, influenza and rabies and fall under the
general heading of micro-parasitic diseases). [rrespective of the precise nature of the physiological
variables required to describe the ‘state’ of an individual accurately, we can then work with a ‘d-age’
representation, where d-age refers to the time r elapsed since infection. In particular we can use a

t. Elimination requires that the disease-free state is made stable: when the discase causing organism has disappeared world-
wide. but re-introduction would cause an epidemic. we speak of eradication,



o

rAEL . oaks

e

3

function A. describing the average infecrivity as a function of 7. as our main modelling ingredient.
Typically the graph of A is as depicted in Figure 1. One can interpret A either as a determinisuc pro-
perty or as an expectation., where we imagine very many ‘stochastic’ individuals {distributed in a
manner which does not change under the influence of the progressing epidemic). In this way the fami-
liar ‘compartmentai’ modeis of the S-E-I-R (Susceptible-Exposed-Infectious-Removed) type are
included (here residence time in each compartment is exponentially distributed while the infectivity is
a fixed constant during the stay in the [-compartment: see Section 4).

For other diseases infection is not a unique event, but rather a repeated process. Meanwhiie repro-
duction within the host can or cannot take place. The number of parasites a host harbours can be
taken as a rough description of the ‘state’ of an individual (with respect to the disease). Schisto-
somiasis and other worm diseases are the basic examples of such macro-parasitic diseases. In this
paper we shall not be concerned with the corresponding class of models (sez Anderson & May
(1985.1), Hadeler & Dietz (1984) and Kretzschmar (1989)).

The essential mechanistic difference between both kind of models derives from the environmental
impact after the first infection. The much discussed but little understood phenomenon of ‘superinfec-
tion’ in maiaria (see Bailey (1982) and the references given there} indicates that faithful models of
malaria may require a submodel for the interaction of the immune system and successive broods of
parasites. So. in other words, the two types of models reflect current practice rather than a dichotomy
of the natural world.

As already indicated above. we may, starting from stochastic models at the individual level. arrive
at dererministic models at the population level by applying the law of large numbers. Truly stochastic
models are needed to describe what happens in smaller groups. like households. schools or farms. In
this paper we restrict ourselves to deterministic models. See Bartlett (1960), Bailey (1975), Becker
(1989), Frauenthai (1980) and Ludwig (1974) for stochastic models.

What are relevant questions that mathematical models should help to answer? [ shall briefly review:

{i} invasion

(it} the time course of an epidemic

{iii} recurrent outbreaks

{iv) endemic steady states and oscillations
{v) regulation

{iy Given a popuiation in a demographic steady (at least at the time scale of disease transmission)
state, does the disease prevalence increase when initially very low? In other words: what is Ry
and is it bigger that one?

The invasion problem is actually relevant for the eradication/eliminaticn problem as well. As a
rule nonlinearities in epidemic models exhibit a certain monotonicity which makes the disease
free state globally stable when Ry<<1. So if a disease has already established itself in a population
and we wonder whether certain control measures would be strong enough to get rid of it, we can
equivalently ask whether or not the control measures would bring R, below one.

(i) When Ry>1 the introduction of the disease agent will trigger an epidemic. Suppose we may con-
sider the population as demographically closed at the time scale of disease transmission, then we
may ask such questions as: when do prevalence and incidence reach their maximal values and
how big will these values be? What fraction of the initialy present susceptible population escapes
from ever getting the disease? As early as 1927 W.0. Kermack and A.G. McKendrick analysed
such questions in the context of a rather general model (see Kendail (1956) for a detailed analysis
of a special case; how much Kermack and McKendrick were ahead of their time cannot be
judged from later references. which usually deal with the special case only, but only from reading
the original paper!).
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{ii) At the end of the rapid epidemic outbreak the disease agent may go extinct for lack of sufficient
susceptibles (of course in the coniext of a model we need to take stochasucity inte account (o
describe this phenomenon). Subsequently a new susceptible population is built up at the demo-
graphic time scale. When the susceptible population is well above threshold again, re-introduction
of the disease agent (another chance event) triggers another epidemic. Etc.. Measles on Iceland
are the standard example of such recurrent epidemic outbreaks at irregular intervals (see Cliff &
Haggett (1988) and Bartlett (1960)).
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FIGURE 3 — 35

(ivy When a disease is continuously being transmitted at the demographic time scale it is called
endemic. It is still an open problem to characterize the ‘boundary’ between the cases (iii) and
(iv), for instance in terms of a critical community size or a sufficiently fast demographic turnover
{see Bartlett (1960) and Schenzle & Dietz (1987)). A key question pertaining to the endemic
situation is: should we expect a stable steady state or oscillations? How do the average pre-
valence and the period of the oscillations (if any) depend on relevant parameters? (see papers in
Part III of Levin, Hallam & Gross (1989) and the references given there.)
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{v) How does a disease affect the growth rate of its host population? How do demographic processes
and disease transmussion interact?
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Typically one finds multiple threshold values for contact parameters. Bistability and large
periodic outbreaks may occur. {see May, Anderson & McLean (1988), Diekmann & Kretzschmar
(submitted) and references given there).

Note that in (i) and (ii) one ignores the demography, in (iii) demography and disease transmission
are decoupled by a time scale argument, while in {iv) and (v) it is exactly the interaction of these
which is the object of study (In (iv) the influence goes one way only, from demography to disease
transmission, while in (v) it goes both ways.). What the appropriate question is depends partly on the
relative magnitude of the various time scales and partly on our own interest: which time scale do we
want to consider? (See the very readable introductory article ‘Ecology in theory and application’ by
S.A. Levin in Levin, Hallam & Gross (1989).)

We refer to Diekmann, Heesterbeek, Kretzschmar & Metz (preprint 1989; to be elaborated into a
book) for a more extensive survey of epidemic modelling in the style of this paper.
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2. THE INVASION PROBLEM
In this and the following sections [ report on results obtained in joint work with J.A.P. Heesterbeek
and 1.AJ. Metz.

We have introduced a function A to describe the expected infectivity as a function of d-age 7. But
‘infectivity” is an ill-defined concept and a further specification may depend on the particular charac-
teristics of the transmission mechanism. As a rule, however, the function 4 combines information on
the probability (per unit of time) that contacts take place and the probability that, given a contact.
the disease agent is actually transmitted (in a sufficient quantity).

The probability that contacts take place may (or may not) depend on population density. It is com-
mon habit to write any such dependence expiicitly as a factor multiplying 4. and to incorporate in A
itself only information which does not depend on population density.

In 1927 W.O. Kermack and A.G. McKendrick proved that the introduction of some infectives into
a (demographically closed) susceptible population of density S triggers an epidemic when Rg>1,
where. by definition

w0
Ry := S [A(ndr (2.1
4]

In contrast, no epidemic occurs when Ry<1.

Two assumptions underly their resuit:
[)  contacts between individuals occur according to the law of mass action. and
2}  all individuals are equally susceprible
(recall that possibte differences with respect to infecriviry are incorporated in the definition of A4 as an
expected infectivity). Given these assumptions Ry is the expected number of secondary cases per case
and the result corresponds exactly to what common biological sense would tell.

Whenever ‘satiation’ reduces the tendency to make contacts. the law of mass action is not appropri-
ate. In fact. for sexually transmitted diseases (STD's) and for diseases transmitted by mosquito’s while
taking blood meals. a more appropriate assumption is that the number of contacts an individual
makes per unit of time is independent of population density (obviously such an assumption is violated
at very low densities). In general one may assume a saturating functional response

A(S)

to describe phenomenologically the dependence of infectivity on population density. For instance,
Dietz (1982) suggests taking the Holling function

S -
1+¢c§

(Side-remark: In ecology the Holling function describes how the number of prey caught per predator
per unit of time depends on prey density. The expression was derived by Holling from a mechanistic
submodel for the predation process, assuming that the prey density is constant on the time scale of
the predation process {or, in other words, that there are far more prey than predators). In the present
context we need to model contacts within a population and the Holling argument breaks down. So the
expression is purely phenomenological. In work in progress J.A.P. Heesterbeek and J.A.J. Metz seek
to replace the Holling time scale argument by one appropriate for the epidemic situation in order to
derive an expression for A on the basis of mechanistic arguments.)

We conclude that relaxing the first assumption underlying the Kermack-McKendrick threshold
theorem is a straightforward matter: one simply defines

AS) =

Ry = A(S) [A(ndr. (2.2)
Q

(Side-remark: When we want to take into account that ‘contacts’ may last a non-negligible period of
time, matters become more complicated. For STD’s such pair-formation and dissociation seems an
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essential ingredient of the transmission mechanism. In joint work with K. Dietz and J.A.P. Heester-
beek we are developing methods to calcuiate R, for cpidemic models that incorporate pair-
formation.)

We now concentrate on relaxing the second assumption. When there are differences in both suscep-
tibility and infectivity, it is no longer immediately clear how to take expectations, since the transmis-
sion process involves the product of susceptibility and infectivity. [n order to proceed we introduce a
variable £, which we call the h-state (h for heterogeneity), and which takes values in a set . the A-
state space. The h-state can be static or dynamic, discrete or continuous. Examples include age, sex.
suffering from another STD, average sexual activity, spatial position. Next we introduce a function

A(rgm

1o describe the expected infectivity of an individual which was infected 7 units of time ago while hav-
ing h-state », towards a susceptible of #-state . Note that, by parametrizing with A-state at infection
we avoid, for the time being, having to specify the dynamics of A-state. Thus we retain generality
without too much notational burden. At a later stage we have 0 make submodels in order to specify
A on the basis of biological and or sociological assumptions concerning the disease and the contact
process.

Apart from the functuon A (r.£,7), which is the basic modelling ingredient, we need to specify

S

the distribution of the population density S with respect to h-state in the demographic steady state
and, if mass action is not appropriate, the functional response map A. The questions [ want 10
address are: given A.5 and A, how do we define Ry and how do we compute Ry?

Fist of all we linearize. Since we did not yet write any equations the reader may wonder what we
have in mind. In the present context linearization simply means that we ignore the fact that the den-
sity of susceptibles decreases due to the infection process. In our calculations we keep the density of
susceptibles at the constant level S, rather than taking its time change, as the disease makes victims,
into account.

Next, we ignore the real time development and concentrate, instead, on the associated generation
process which evolves in discrete steps. Maore precisely we introduce the nexi-generation operator K(S)
defined by

(K(SNE = MSHO[ [A(rgmdremdn. (2.3)
2 a

Here ¢ describes, for a certain generation, the distribution with respect to A-state at the moment infec-
tion occurred (so fq®(n)d7n is the total number of cases in that generation) and K(S)¢ does exactly
the same for the next generation. Technically we consider K (S) as a linear operator mapping L ()
into itself. The question is whether or not we can meaningfully summarize the properties of K(S) in
one number and if so, what that number 18,

The operator norm of K(S), Le.

IK(SH 2= wih‘*:’l 1K (S)el

gives a worst case estimate: it yields the highest multiplication factor that can occur when going from
one generation to the next. Since the distribution in the second generation will be different, the multi-
plication factor in going from the second to the third generation will, in general, be less. This point is
nicely demonstrated by the matrix

0 as

as 0

which describes host-vector transmission or male-female sexual transmission. The norm equals the
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maximum of a,; and a,,. But if we start, for instance, with the vector ((1)) the multiplication factors

will be, aiternately, ¢.; and a1, So, on average over the generations, the multiplication factor equals

a8 -

In general the average multiplication factor over many generations is

py 1= lim IK(Sy™l/m
m—x

the so-called spectral radius of the operator K(S). Since K(S) is a positive operator {note that the
interpretation implies that §20 and 4 =0 and that. consequently, K(S) maps the cone of non-
negative functions into itself) one has, as a rule, that

(i) oy is an eigenvalue and the corresponding eigenvector ¢, is non-negative,

(it) py is strictly dominant, i.e. all other elements of the spectrum of K'(§) are strictly less in absolute
value,

(iii) for all positive ¢ one has that

K(SY"d ~ clp)plie, for m—x

where all dependence on ¢ is through the positive number ¢ ().

[n other words, transients may depend on the precise manner in which the disease entered into the
population (as described by ), but after a while the distribution with respect to -state of subsequent
generations becomes fixed and the numbers increase each generation with a factor pq. Therefore we
now take as

DEFINITION. Ry =py. In words: Ry is the spectral radius/dominant eigenvalue of the next generation
operator K(S).

Note that here we run with the hare and hunt with the hounds: we linearize because only the initial
phase has our interest and then we iterate very often since we don't want to be bothered by the pre-
cise details of how the infection was introduced. If it takes very many iterations indeed before one
observes the stable distribution ¢, and the multiplication factor Ry =p, for the linearized problem, it
may be that the noniinearity is already important. This certainiy happens for large spatial domains
(where travelling waves describe the spread of an epidemic; see van den Bosch, Metz & Diekmann (to
appear) and the references given there) and probably for the spread of HIV in a population which is
structured according to sexual activity (see Los Alamos Science /8 (1989)). In general it is determined
by two factors:

i) the difference, in absolute value, between the dominant eigenvalue and the rest of the spectrum,
and
iy quantitative aspects of (irjreducibility (in a manner of speaking: the ‘distance’ from reducibility).

In any case Ry <l guarantees that no epidemic will occur upon introduction of the disease.

[n order to be sure that any introduction leads to an epidemic when Ry>>1, we of course need to
assume that K(S) is irreducible.

An endemic steady state S is (partially) characterized by the requirement that the corresponding
K(S) operator has dominant eigenvalue one.

When the spectral radius of K(S) depends monotonically on § the condition Ry <1 guarantees glo-
baf stability of the disease free state (the presence of the disease will lower the number of susceptibles
available). But for STD’s one may consider

ASXE) = _ S8
fe@msS (mdn
Q
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and then one does not have monotonicity. In such cases subcritical bifurcation of an endemic steady
state at the critical value Ry =1 is possible (see for an example Huang, Cooke & Castillo-Chavez (pre-
print) or the paper by Castillo-Chavez, Cooke, Huang & Levin in Castillo-Chavez (ed.) (1989)).

The linearized real time course is described by the integral equation

(0.8 = MO [ATEmit—Tmdrdy 24
2 0

where i{t. £) is the incidence rate (the rate at which new cases occur). To verify that (2.4) should hold
one just has to ‘read’ it in terms of the biological interpretation of i A(S) and A. The ‘Ansatz’
i(r, H=eM{{f) leads to the requirement that ¢ is an eigenvector corresponding to the eigenvalue one
for the operator

(Kao)® = ASYD[ [AlnEme dro(mydn. (2.5)
Q0

This then defines the rate A4 at which the incidence will grow during the initial phase of an epidemic.
Monotonicity arguments yield the equivalence

R0>1 = f\d>0 B

The nonlinear ‘real time’ equation is obtained by letting S in (2.4) depend on time and performing
the appropriate bookkeeping for S(z). Note that it does not make sense to consider a nonlinear gen-
eration process, since infectives are confronted with the prevailing ‘environment’ (i.e. the available sus-
ceptibles) in real time, and not on a generation basis. Only when the environment {s constant, as iU is
in the linear approximation, can we consider the associated generation process by itself.

This ends our motivated definition of Rg. The claim is now, that one can use the definition of Rg
as a tool to derive epidemiologicaily interesting conclusions. In order to substantiate this claim we
have to deal with two aspects:

i) the specification of A and A for various structuring variables on the basis of submodels

ii) the actual computation of R,.

In the next section we list some special assumptions on 4 which allow us to reduce the last problem
to a very simple one. In section 4 we indicate, by presenting several examples, how 4 can be com-
posed from more basic modeiling ingredients. All of this, however, will remain quite abstract from the
point of view of someone interested in, say, public health policy. And indeed, much further work is
required before one can come up with the kind of graphs (or more sophisticated pictures) that can
possibly catch the attention of public health authorities. The results presented below provide a basis
for subsequent work with a more quantitative signature. The thesis of van den Bosch (1990) shows at
the same time that it is not always trivial to apply applied mathematics and that a successful biologi-
cal operationalization of abstract mathematical results is sometimes possible (the subject is plant
pathology and he shows how results on the asymptotic speed of propagation of solutions of certain
integral equations yield biological insight concerning the spatial spread of plant diseases; also see
Diekmann (1986) and van den Bosch, Metz & Dieckmana (to appear)). It is conceivable that the work
described in this paper will have a similar follow-up.

3. REDUCTION
In special cases Ry allows a characterization that is amenable to calculations. We start with a case
where one can even find an explicit expression for Ry.

Suppose that both the infectivity of an infective and the susceptibility of a susceptible are possibly
influenced by their h-state, but in an independent manner. More precisely, we shall assume that

[A@EEndr = a(®bm) €BY
0
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and speak about separable infectivity and susceptibility. (When 4 is a multiple of a one can also speak
of ‘weighted random mixing' or “proportionate mixing’). Biologically this corresponds to the situation
in which the distribution {over the A-state space {) of the "offspring’ (i.e. the ones who become
infected) is independent of the staie of the ‘parent’ (i.e. the one who transmits the infection}.
Mathematically it guarantees that the operator K(S) has one-dimensional range. Hence there is only
one candidate for an eigenvector and we find

Ry = [bimA(S)n)aimdn. (3.2)
2
Next, suppose that individuais make extra contacts within their own group. We take
=
JArgmdr = a(biny+c(@E—) (3.3)
0

where § is Dirac’s “function’. Some straightforward manipulations lead from the eigenvalue problem
K{S)Yp=pd to the characteristic equation

b(MA(SHna(n)
dn = L. 34
({ p—c(mA(S)n) (

The left hand side defines a decreasing function of p which tends to zero for p— 0. The largest real
root Ry is larger than one if and only if either
(i c(EOASE>1  for some £
or, otherwise,
. b (A(SHma(n)
(it) dn>1
5{ L —c(mAS)m)

We refer to Diekmann, Heesterbeek & Metz (1990) for a further interpretation of these conditions
and references 10 the relevant literature.
We conclude this section with a multigroup version of separable infectivity and susceptibility. Let §
be of the from (i, &), where i can take the values 1,2,....,n and & takes values in & (so
"

Q= L;J!{i}XQ,-).

Assume that
A G ELG. EdT = alE)by(E). (3.3)
0

This is a conditional independence assumption. Indeed, when we normalize g; such that

[algIASHi, §)dE =1

)
the conditional (on the first component being /) probability density function for 4-state at infection is
independent of the s-state of the one who infects and given by a;(-)A(S)(i. - ). Then

(K(S))i &) = ASXi, §paig)S [byE)ey, §)dE;
FAN+)

and we conclude that, in order to be an eigenvector, necessarily
i, &) = o, A8 E)ai)
Substitution then yields that the vector o should be an eigenvector of the matrix M with entries

my = ﬂj bl ENASY. §)a,(§))dE,. (3.6)
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In particular. Rq is the dominant eigenvalue of the matrix M. Thus we have reduced the dimension
of the eigenvalue problem that characterizes Ry {rom ¢ 10 n.

The essential point is that the independence assumption (3.5) allows us to average out one com-
ponent of the A-state. A simifar procedure works when the first component can-take infinitely many
values, but then. of course, the reduced problem will still be infinite dimensional.

4. STRUCTURE IN INFECTIVITY AND SUSCEPTIBILITY

To warm up we neglect heterogeneity and show how to compute A (7) from an underlying stochastic

model at the individual level. Consider a discrete finite d-state space. We label the d-state by
"

i=12,..,.n. Let b with I b,=1 denote the probability distribution for d-state at the moment

=

immediatety following infection. Let < denote the n X n-matrix of iransition rates. Then I has non-
negative off-diagonal elements and T is defective (i.e., its dominant eigenvalue is less than 0) due to
death or removal (i.e. the definite loss of infectivity). Let h denote the vector of infectivities associ-
ated with the various d-states. Then

A(T) = <heTb> (4.1

and
[d(ndr = —<h, ST > (4.2)
0

As an example consider a herpes infection which, after a first infective period. may become latent.
resurge with a certain probability per unit of time etc. (see for instance Tudor (1990)). Let 1 denote
the infective state and 2 the latent state. Let g denote the rate of going from 1 to 2 and & the rate of
going from 2 to 1, while p denotes the death rate. Then

—o—u 8
b =((1}) and k2 =0. So in this case

a4+

_frw
A, " (4.3)

e
f A(ndr =
2
which shows how R, depends on the recrudescence parameter 8.
We now switch to heterogeneity. Let £ be a measure for sexual activity. We consider £ as static and
adopt the proportionate mixing assumption with a(§)~&. To express that sexual desires can become
satisfied we take

S
A = —E. (4.4
[nS (m)dn
Q
Together these assumptions lead to (Dietz, 1980)
Jn*Smdn _
Ry ~ & = mean + —2Ra0Et (4.5)
[nS (mydn mean
2

which shows that the variance in sexual activity can contribute substantially to the value of Rg! As
presented here the result applies 1o homosexual contacts but, using the conditional separability of sec-
tion 3, it is easy to extend it to heterosexual contacts (see Diekmann, Heesterbeek & Metz (1990) for
more details). '
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As a general ‘decomposition’ we can write

A(r&m) = h(n)[a (0P (r.9.m)d8 (4.6)
Q

where 4 denotes the "intrinsic’ infectivity (say, the amount of virus shed) as a function of d-age 7, and
P(r.8.n) denotes the probability that the A-state is 4, given that the h-state was 7 + units of time ago,
while a(£,8) is a measure for the intensity of contacts between individuals of A-states £ and 8. In the
deterministic case P is a § ‘function’. For instance, when A-state is static we have P{r. . my=8(G-m
and when we use ‘age’ as /-state variable we have Bir.8.0y=06(8—~n—m). In the stochastic case we
have to provide a submodel for the movement through Q. In Diekmann, Heesterbeek & Metz (1990)
this is worked out in detail for an STD for which both infectivity and susceptibility are enhanced by
some other STD (causing ulcers and the like that enlarge the probability that transmission takes place
upon contact) that is in an endemic state. The state space £ consists of two points (suffering from the
other STD or not) and individuals jump back and forth between these points depending on the force
of infection (for the other STD) and the curing rate. The paper also deals with the case where sexual
acuvity is another component of the /4-state. Exploiting multigroup separability an explicit expression
for Ry is derived.
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