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ABSTRACT

The increases in sexually-transmitted disease incidence rates such as those for gonorrhea, the
continued growth of HIV/AIDS, and the lack of effective vaccines in the near future, have increased
our need to better understand the processes associated with disease transmission. The bulk of the
mathematical research in the study of STD dynamics has made use of deterministic models. The close
scrutiny of the assumptions associated with the development' of classical deterministic epidemiological
models has led various investigators to their reformulation. The effects of social dynamics through the
processes of pair-formation and dissolution have now been incorporated. New deterministic models that
explicitly incorporate pairs of individuals and follow their dynamics are the object of intensive research
investigations. In this paper we formulate a probability evolution model that incorporates pair
dynamics using the mixing/pair-formation formalism of Busenberg and Castillo-Chavez (1989, 1991)
and Castillo-Chavez and Busenberg (1992). We incorporate this formalism in combination with the
modeling approach used in interacting particle systems (which has great generality and flexibility) to
the study of stochastic epidemics. Our work is preliminary, as the main objective of this article is to
formulate the stochastic analogs of pair-formation deterministic models. By exploiting the additive
(rather than the multiplicative) version of Busenberg and Castillo-Chavez’ representation theorem for
pair-formation solutions, we introduce new forms of frequency-dependent mixing/pair-formation, in
which partners are allowed to incorporate theiy preferences. Analytical results for stochastic models are
usuaily very difficult to obtain. Fortunately, we now have access to fast, powerful and flexible
computing facilities. Large scale simulations are conducted using the Cornell Theory Center’s
supercomputer with the purpose of illustrating the flexibility and simplicity of our approach.
KEYWORDS : stochastic processes, epidemics, pair-formation, STD’s, Monte Carlo simulations,

interacting particle systems, HIV/AIDS, soctal networks.



1. INTRODUCTION

The most recent mathematical studies of the transmission dynamics of sexually-transmitied
diseases (STD’s) have put emphasis on pairs of individuals. Non-infected pairs provide temporary
periods of immunity, as STD’s cannot be transmitted between non-infected individuals. The effects of
temporary periods of immunity in disease dynamics may be substantial and, consequently, they need to
be evaluated. Due to ethical and economical reasons, mathematical models play an important role in
this process. The uncertainties associated with STD dynamics including partnership selection, degree of
sexual-activity, type of sexual activity, etc. may be at least partially stochastic in nature. Furthermore,
the necessity of precise estimates demand the development of methods for measuring the variability in
our estimates. These estimates are possible with the use of stochastic models. Unfortunately, at present
we do not have a stochastic formalism that allows for the simultaneous incorporation of heterogeneous
mixing and pair-dynamics. In Section 2, we introduce the additive version of the mixing formalism of
Busenberg and Castillo-Chavez (1989, 1991} and Busenberg and Castillo-Chavez (1992), which
ent;ompassﬂ all mixing solutions. In addition, we provide an alternative systematic approach for the
generation of a large class of frequency-dependent solutions. In Section 3, we briefly introduce our
prébabilistic models: an stochastic Markov process. We provide a specific formulation of the general
epidemic stochastic model with pairing developed for the study of STD-dynamics. In Section 4,
possible connections between stochastic and deterministic frameworks are highlighted. Because the
structure of the transition probabilities in the model are very complicated, it is hopeless to get
analytical results for this model and hence, in Section 5, we conduct simulations using Cornell’s Theory
Center Supercomputer to illustrate the possible applications of the general stochastic epidemiological
model with pairing. Because we do not want to burden the reader with complex theoretical

mathematical results, we provide in the Appendix, a summary of the mathematical results needed to
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Justify the abstract formulation of the model used in this manuseript.

2. Mixing and Preference Matrices

Sir Ronald Ross developed the first model for the dynamiecs of vector-transmitted diseases to
study problems associated with the control of malaria. R.oss understood the effects potential mixing
effects on disease dynamics due to heterogenous mixing between individuals belonging to sub-
populations with variable population size. He was also aware that modeling approaches used in the
study of the dynamics of vector-transmitted diseases were applicable — —that is, mathematically
equivalent -~ — to those needed ‘o study the transmission dynamics of STD’s. Despite the importance
of Ross’ work, most mathematical models for STD’s ignored the role of variable population size and,
consequently, they also ignored frequency-dependent mixing.

Practical and theoretical questions relevant to the transmission dynamies of HIV/AIDS have
placed the study of heterogeneous mixing at the forefront of research (see Castillo-Chavez, 1989;
Gabriel et al. 1990). The recent work on the effects of the processes of pair-formation and dissolution
on the dynamics of STD’s by Dietz (1988), Dietz and Hadeler (1988), Busenberg and Castillo-Chavez
(1989, 1991), Castillo-Chavez and Busenberg (1992), Castillo-Chavez et al. (1991, 1992) and Blythe et
al. (1991) has raised important questions as to the appropriateness of classical epidemic models for the
study of the effects of heterogenecus mixing in disease dynamics. In this section, we use Castillo-
Chavez and Busenberg’s idea (1992) of perturbing Ross solutions to construct a large class/description
of mixing/pair-formation frequency dependent matrices. However, the perturbations stressed in this
article (as opposed as those previously highlighted by Castillo-Chavez and Busenberg, 1992) are
additive rather than multiplicative. We note that our formalism does not depend on either choice.

However, we have now been able to use additive perturbations to generate a rather large and
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interesting class of solutions which we introduce later in this manuscript. We begin with the definition

of a mixing matrix:

Def Let the letters m and f to denote the parameters associated with single males and single females
and let b"* and bg denote the rates of pair-formation. The matrix (pij(t),qji(t)) is called a mixing/pair-

formation matrix if it satisfies the following properties at all times:

(Al) 0 < p; < Lo <aq; = 1

N — 1= 5L .
(A2) Zj=1pij =1l= Zi:lqji’

(A3) bIT{py = bfoqji’ i=LeqLj=1 N

(Ad) If b:-"bfT{nTJf = () for some i and/or j, then Py = %5 = 0.

Ross solutions are the only separable solutions, that is, they are the only sclutions of the form

ﬁiﬁj and §, G In fact, these solutions can be computed explicitly. They are of the form P = ﬁj and

%; = g; where

bf Jf b:nT{n
p: , Qs j=1,»,Nandi=1,--- L. (1)
J EL mpm’ 1 ZN _fo’

i—lbf 1 j=1bi j

In Busenberg and Castillo-Chaves (1989, 1991), the concepts of frequency-dependent and
frequency-independent preference are introduced through the “preferential” budgeting of pair-formation
rates (see Blythe et al. 1991). In this paper we introduce an alternative concept of frequency-dependent
preference that is directly constructed from Ross solutions. Here is an alternative definition of a

preference matrix:
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Def Given the Roes solution ﬁj, l<j £ Nand§, 1 £ i < L, associated with Lx ¥ interacting

populations, we let the Lx N matrix A = (&;;) denote a preference matrix iff

[FaY

@) TKep=0r1<ic<t

() Thed=01c¢

I
s,
[ Fa

N,

) oz2-L1<ig<LIgisN

If we let = {(131{'13 ti=1,2,..,L j = 1,2,..N} denote the set of all preference matrices, we can

establish the following results:

Lemma 1. II is a nonempty convex set.

Proof: The zero matrix, i.e,, a; =0, Vi, j € II. Convexity is proved as follows: let A,,i=1,2
€ Tand let A; > 0,1 =1, 2 be such that X, + )«2 = 1. A simple computation shows that the

convex linear combinations A, A, + A,A, € II, that is, they satisfy (i}, (ii} and (iii).

Lemma 2. Let A = (a;) denote the preference matrix associated with the Ross solution Ppl Sis W

and q;, 1 < 1 < L. Define a matrix as follows:
P = (1 +ay)p; and q; = (1+ a,)q; (2)

for 1 < i € L, 1 <j < N, then, (p;; q;;) is a mixing/pair-formation matrix.

Proof: Since 3 p;=1and ) a5, = 0then 3 p.=1forall i’s and similarly . & =1 for
all j’s. Because a > —1 then all Pjj and q;; are positive and (A1) and (A2) are satisfied. Using the

fact that Ross solutions satisfy (A3) and {A4) then one easily shows that the the elements of this
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mixing matrix {(p;q;])} also satisfy these mixing axioms. Therefore the matrix (py q) 1s a

mixing/pair-formation matrix.

Lemma 3. If (p;, q;;) is a mixing/pair-formation matrix then it has an associated Ross solution B, !
< i< Nand G, ¢ € i < L. For any mixing/pair-formation matrix we can compute a preference

matrix A = (a;;) such that (p;, q;;) is given by Equation 2.

. = {i- — 1. - . =bTh. &
Proof: LetI={i:¢TP # 0}andJ = {j:bT/ # 0}. Forielandjel, cT]'p; = b;Tlg; >0

i Fa Rt

from the definition of a Ross solution. Thus the ratios

are strictly positive. If we denote them by 1 + «;, then

tf*
p; = (1 + a;)p;and q; = (1 + o3)T;

foriel and jelJ. If for some i and j, where either il or j € J, we have that P = i = B: =3, = 0
theﬁ we let a = 0. Thus, formula (2) holds for all i and j. Furthermore, one can easily verify that A
= (aij) is a preference matrix.

Lemmas 2 and 3 imply that mixing/pair-formation matrices are determined by their associated
preference matrix set. Ross solutions are independent of the activity of their own subgroups (separable
solutions) and, consequently, their corresponding preference matrix is A = 0 (the zero matrix). There
is no preference in this case. If the term a;; > 0 in the preference matrix A = (0‘;‘,‘)’ then we have that
P35 > [‘)j and %; > g;. We say in this case that i and j prefer each other. If o > 0 then from the

definition of preference matrix, we know that there is an i’ such that o5 <0. Consequently, Py < B



-3-

and 4y < Gy and we say that individuals from groups i prefer j more than i’ (or that i’ and j do not
prefer each other—they actunally try to avoid each other). The definition of preference matrix and
Lemma ! make the structure of II clear but there are obviousiy many ways in which one can choose a
preference matrix A. Here we present a simple yet general way of selecting frequency-dependent
preference matrices:
We begin with a Ross solution B, 1 <j< ¥ and q; (< i < L and define the following quaniities:

P; = Py Py Pjpr - Pyand & = -G iy Oy (3)
and let s, t; be real numbers such that - gsitjc‘;;f)j and 2.‘5£ = )} #; = 0. For a given Ross

solution, the elements of the preference matrix A are defined by

ay;=stap Vi (4)

Note that by definition a‘-J{the elements of A) > —1 and that individuals from group i and j prefer

each other if and only if g t;>0.

3. Probabilistic Models

Classical deterministic mo&els for the sexual spread of STD’s such as gonorrhea among
heterosexual populations can be found in Hethcote and Yorke (1984} while classical and pair-formation
models under a unified mixing framework fdr the spread of STD’s can be found in Blythe et al. (1991)
and references therein. A stochastic version of one of the deterrﬁinistic mc;odels found in Blythe et al.
(1991) is provided below. This formulation uses the modeling approach common to interacting particle
systems. Hence, it has great generality and flexibility.

(General Notation

Let X = {0, 1, ---, L} x {0, 1} x {0, 1, --+, N} x {0, 1}\{0} x {0, 1} x {0} x {0, 1} and consider the
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stochastic process §; : X — (0,12 .-}, t>0. Forx = (i, #; j, v) € X, our interpretation of this

process is as follows:

(1) The labels u and » represent the eepidemiological status of the individuals. Specifically, 0 =
susceptible and 1 = infected. The labels i and j represent labels for the groups of males and
females. .

(2) Fori> 0andj >0, £(i, uij, v) gives the-number of pairs where the male is of the i-th type and
has epidemiological status y and the female is of the j-th type and has status » at time ¢;

(3) Singles are labeled by triplets. However, to keep the domain fixed we use four coordinates and set
either i or j equal to zero. Specifically, if i > 0 and j = 0, then §l 5 0) = &0, 4 0, 0) =
&1, 1 0, 1) denotes the number of single males with status g in the i-th subpopulation at time t.
Similarly, if i = 0 and j > 0, then §(0; j, v} = &0, 05 j, v) = (0, ;] v) denotes the

number of single females with status v in the j-th subpopulation at time t.

Let S ={0, 1, 2, ---}* and let ¢ : $xS — (0, co) be a real-valued function—the flip rate—to be
specified later. We view {£;:t > 0} as a S-valued Markov process with flip rate (., .), L.e., if § = & for
some t > 0 then ¢(£, n) denotes the instantanecus rate at which £, may change to the state n. The

generator of this process is

QA(§) = ;df. n){f(n) -~ 1(£)), (3)

where f is a continuous function on S. Thus,

LEge,) = E% e(&, m(f(n) — (&) (6)
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Model Specification

In this section, we follow the notation used in Blythe ef al. (1991) for the specification of analog
deterministic models for gonorrhea transmission, consequently, there is recovery from the disease.
Transmission may occurred only while paired with an infected partner. Tim(.f) denotes the number of
single uninfected males (time is omitted from &) of type i (at time t) that is, Tim(ﬁ) = £(i, 0; 0) + £(],
1; 0). Similarly, 'I‘Jf(é) denotes the number of single uninfected females of type j at time t that is, T{(E)
= §(0; j, 0) + &(0; j, 1). Axiom (A3) implies that the pair formation rates {b{-"({),bjf(f):i, j} must
satisfy the following relationship (that is, they are conserved) which is obtained by summing both sides

of (A3) over both indices:
L N
2 oM =j§lb§(e),1‘§ . (n

We further assume the existence of an underlying mixing/pair-formation matrix (pij(f), qij(ﬁ)) of the
type described in Section 2. To specify the flip rates we use the following notation. For £e85, A C X,
B.CX and AN B = 0, we define 5%6 S as

&(x} + 1 ifxeA
5%(;:):{ &(x) —1 ifxeB .

&(x) otherwise

If we change the notation slightly and now use the letters m and f to denote the parameters associated
with uninfected males and fernales and M and F to denote those associated with infected males and

fernales then one defines the flip rate c(., .) as follows (here v, 4, and ¢ are constant parameters):

(a) Pair-formation

Fori>10,j>0,

.1 -‘y _— .l f E(inu;o)
(6 gty a0 = PHOEO R Oy e Ty
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(b) Pair-dissolution (¢ denotes the pair-dissolution rate)
Fori>0,]>0,

clg, b0 = 0 6 1§, -

(c) Transmission (§ denotes the transmission coefficient—transmission may occur only while paired)

Fori>0,}>0,
o(6, €003 = dpelh 015, 1), o6, € eI = 8yeCis 133, 0)-

(d) Recovery (v denotes the recovery rate)
Fori>0,i>0,

et6, €203 = vpeGi 013, 1), <6, €710 = Twiélh 153, 0

of6, ) = vpeis 13, Dy <L €I D) = e, 153, V-

while for single infected individuals we have
033,
c(6, €80y = 7y 15 0), (6, EQTT}) = 7e€(03 4, Vs

furthermore, for i > 0, j > 0 we have the combined recovery rate

o(6, €I = 1pygéli 153, 1)

(¢) Removal (u denotes the removal rate from sexual activity)

Fori>0,j> 0, u, 1,

o6, €D ) = weCi, 1 i ) ol6 E{f o)) = pm€li 454y 0,

while for the removal rate of single individuals we have that

C(E' e(i,p;‘))) = l‘me(iv B 0), c(ﬁ, f(O,JV)) = Pff(o? i V)‘
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(f) Recruitment (all “recruited individuals are susceptible)
Fori>0,j >0,

o, €000y = A, c(g, 190 = Af

(g) Other

For any other n # £,, we assume c(¢, ) = 0 and ¢(§,6) = — Z c(€, 7).
EFn

4. Comparison with deterministic approaches

From the theory of stochastic processes one knows that the specification of the flip rate c(., .)
uniquely determines a Markov process. To see the relation between this stcohastic system and the
deterministic system in Castillo-Chavez et al. (1991), we let the function f be such that f(£) = £(i,05j,1)

for some i > 0,j > 0. From the construction of the flip rate, we know

1 pair, recovery
f(n) - (&) = {——1 disolution, removal, transmission. (8)
0 otherwise

We observe that the foilowing type of relationship

f . £ Et(i,O;O)
Ebjfft) ft(O: i 1) pji(ft)ft(i,O;G) + gt(i,l;[])

€t(i!0;0)

— vfeNn! .
- bJ(st)pji(Et)Et(l,O;O) + Et(i,l;O)Est(o’ I 1)- (9)

does not hold in general. However, it may be aproximately satisfied when the subpopulation sizes are

large enough and

s f £,(i,00)
bj(ft)pji(st)ft(i,o;o) + £,(1,1;0)

is nearly a constant. In this case, the deterministic system will be a good approximation for the
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stochastic system. By carefully arranging terms one gets from Equation {6) the following equation for
the expected number of (M,f)-pairs wjhidf(t.)= E&(i, 155, 0):

.. . £,(1,0;0) A
%Eft(lv 1; h 0) = Eb{(ft)st(o; 1 l)pjfi(et)&'t(l,O;Ot) + ft(lyl;o) + 7ME‘st,(l! 1; Js 1)

- D“f+ Ha + TME + st + 7F]Eft(i’ 05 J, 1) (10)

Other equations can be written similarly. For example, the equation for E& (i, 05 ), 1) = rjfi‘m(t)

involves the following nonlinearity

. £,(1,0;0)
Eb(€,) £4(0; ), 1) iji(ft)ft(i,O;Ot) + §,(i,1;0)

and can be easily written after a few a.ppropria'ie meodifications.

5. Simulation of the process {£, : t > 0}

From the construction of the flip rates we know that
c(§) = 2. c(& m) < o
nes

We let the sequence § = py < py < pg < - denote the jump times of the process. Then 7, =
Pn—Pp.1 has exponential distribution with rate c({, 1) and we can simulate the process using the
- n-

following procedure:

(i) Set the initial state £; and assume that a sequence of n jump times 0 = o0y < oy <--- <oy and

their corresponding states £, 1 <i< n have been determined.
: i

(i) Get 7, from exp {C(E"n)} and let o ., = oy + Ty

c(fgnv m

C(ean) ’

(iil) Set Ean-{-l = n  with probability

(iv) Define §; = E"n forop <t <oy
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We have implemented several examples of the above procedure using parameters that are roughly
similar to those generated by the Cornell Undergraduate Survey on Social and Sexual Patterns
(CUSSP, see Castillo-Chavez et al. 1992). However, it is not possible for us to obtain estimates of all
the parameters because we only have cross-sectional data. To obtain frequency dependent mixing
rates, one peeds longitudinal data. Here we present the results of some simulations using these data
with the sole purposeé of illustrating the above simulation procedure. We let L=5 and N=4, that is, we
consider 5 groups of males and 4 of females and assume that all of them are sexually-active and hence
capable of transmitting a disease such as gonorrhea. The number of single male susceptibles in each
group is 106, 106, 126, 251, and 543 respectively. The number of single female susceptibles is 376, 500,
354, and 674. We begin these simulated epidemics by assuming that there are only 10 infectives, single
males of type 1 (that is, in the first male group). We further assume no pairs at the begining (t=0)
and proceed to specify the necessary paran.letens. Note however, that the selection of parameters is
complicated by the fact that specific constraints must be maintained (see Equation (7) and Axiom A3).

To model heterogeneous mixing among heterosexually-active populations we need at least two
groups of females and two of males . If K (number of groups of females) = N and L{ number of
group of males) = N™ are large then some of the mixing probabilities pijm(t) and qjif(t) wili be small
making it difficult to detect, through the use of survey methods, interactions between some groups in
the population. The resuits of our survey (CUSSP) suggests that 4 to 6 groups of each sex represent
an upper practical limit on the values of Nf and N™. It is also haud to estimate inter-group frequency
dependent pairing rates even if we had longitudinal data. We proceed to specify frequency-dependent
pairing-rates using the approach that is used in the development of epidemiological models for
communicable diseases (see Castillo-Chavez et al. 1989 and references therein), that is, we use activity
levels to characterize the level of interaction between individuals of different groups. The assignment of
these acitvity levels is subjective, nevertheless it has proven to be extremely useful in understanding the
mechanisms behind the transmission dynamics of diseases such as rubella, measles, and influenza (see
Castillo-Chavez et al. 1989 and references therein). Here we combine these subjective rating system
with the constraint imposed in the form of Equation (7) by Axiom (A3).

We let
qS?;‘- = denote the affinity score that single male individuals of group i have for females of group j.

¢;’: = denote the affinity score that single female individuals of group j have for males of group j.

i=1..,N® j=1,..,N (11)
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The process of model formulation must include the specification of the pair-formation rates in such a
way that Eq (7) is satisfied for all time. This constraint can be met in a number of ways involving
some or all of the elements of the sexual-activity vectors b™(t) and/or bf(t) which may depend on
sub-group population sizes. We further assume that “popular” groups tend to have higher acquisition
rates, that being scarce increases the rate for individuals in any group, and that we need to satisfy

Equation (7) for all time. We define

o) . i)
a(t) ‘3:_——’ of(t) = —— (12)
nngk (t) E Tf(t)

as the fractional contributions of each group to the population of the same sex, and

2

) = Zn(t) olw = Z (6) ¢ (13)

as the weighted average affinity or activity level associated with each group where the weights are
given by the frequency distribution of the opposite-sex types. In Blythe et al. (1991) we found the
following relationships between the ¢’s and Ross solutions

frf o
R . Ay (19
L= T Ny
2 91(t)
=1
b T ¢m(“-) . )
g = N bf'_[‘f _|=1,-~,Na.nd1=1,---, L. (15)
If we let
] ()
PR
k=1

and



bi(t) = (17)

Tfrt N
5(6) I§1¢51(t)

where r denotes the encounter rate then Equation (7) is satisfied. However, the above is just a circular

argument because in fact

- nf ¢
r= L0 = T{":,Zlbf(e),Tj :
1= =

Here we model r by assuming the existence of constants a and b such that

N nf ¢
r= a( 5 Tkm(t)) + b (El Te(t)),

k=1

This assumption allows us to go forward while maintaining the conservartion of partnerships acquistion
group rates law,

~ We notice that if ain(t) is large then q; is large. Similarly, if EJf(t) is large then ﬁj is also large.
If one thinks of the ¢-elements, ¢1fi and % as activity levels then :;5{“(1'.)’3 and 3‘{(\‘,)’3 become a
measure of group-specific frequency dependent mixing, that is, “popular” groups tend to have higher
acquisition rates . These affinities are driven by Ross solutions—a form of proportionate mixing. The
modelling is analogous to that used in classical deterministic epidemiological models with age-structure
(see Castillo-Chavez et al. 1989 and references therein). The ¢’s give a weighted random mixing effect
in which more active individuals will encounter more often more active individuals.

On the other hand, the quantities

P; =Py Py Pipr - Pyand §;=q, 9 Gy A
used to generate the type-preference matrix A defined by oy = sitjq,-ﬁj where s', t; are real numbers

chosen so that a;; > — 1, provide a measure of frequency-dependent group specific preference. in fact
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individuals from group i and j prefer each other if and only if st ;> 0. Being scarce may decrease an
individuals’ pair formation rate relative to the the rate of pair-formation for individuals in alternative
groups, however, these frequency-dependent effects can be easily altered by the proper manipulation of
the products st j

Our simulations are conducted following steps (i) — (iv). We use two sets of parameters (I and
II) and model populations with activity levels (¢-values) that promote like-with-like mixing. Set I is
chosen so that there is strong group preference between males of group 1 and fernales of group 1 (large
¢ values) and s’ t ; is a product of positive numbers. Set II is chosen so that s’ ¢ ; is negative and we
used reduced ¢ values (that is, individuals that like-each other less will also interact less). Specifically,

the matrix ¢ is of the form

0 o™

For set I, we have the following selections:

- =

29.5 0.05 0.01 0.005 25.0

0.0 50 00 0.1 0.01

¢f

0.1 001 543 6.0 10.01

1.0 001 001 50 0.1

L .
9.0 0.01 0.05 0.1
0.01 50 05 04
g7=| 1.0 o001 40 05

0.01 10 001 4.0

1.0 1.0 00 10
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0.1 ~ -
0.3
-1.1
1.0
sp=y —-0.5 and ;=
- 0.4
—-0.4
- 0.3
1.9 L -
0.05 0.05 0.01 0.005 25.0
0.0 5.0 0.0 0.1 0.01
¢fr =
0.1 0.01 54.3 9.0 10.01
1.0 0.01 o0.01 5.0 0.1
r —
0.06 0.01 0.05 0.01
0.01 5.0 0.5 0.4
¢S}’} = 1.0 0.01 4.0 0.5
0.01 1.0 001 4.0
1.0 1.0 0.0 1.0
~ 0.1 r m
} 0.3
1.1
1.0
SII = 0-5 a.nd tII =
—0.4
0.4
-0.3
- 1.9 -

In the parameter set I, we have larger ¢{" and larger ¢{. Thus, m, and f; are very popular or very
active (proportionate mixing). In addition, slt1> 0 gives a;;> 0 which implies that m, and f; have

strong preference for each other. In the parameter set [1, we have smaller #7" and smaller «;6{ . Thus, m,
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and f; are not as popular or as active (proportionate mixing) as in the first case. In addition, slt1< 0
gives ayy> 0 which implies that m; and f; do not prefer each other. Obviously, these two different set
of parameters yield different results. Figures 1 — 6 show that they are indeed significantly different.

6. Conclusions

In this manuscript, we have formulated a proba.biiity evolution model that incorporates pair
dynamics using the mixing/pair-formation formalism of Busenberg and Castillo-Chavez. We
incorporate this formalism in combination with the modeling approach used in interacting pa.rtide
systems to the study of stochastic epidemics. Qur work is preliminary, as the main objective of this
article is to formulate the stochastic analogs of pair-formation deterministic models. By exploiting the
additive (rather than the multiplicative} version of Busenberg and Castillo-Chavez’ representation
theorem for pair-formation solutions (1989, 1991), we were able to introduce new forms of frequency-
dependent mixing, in which partners are allowed to incorporate their preferences in the process of
pairing. We have iilustrated our model dynamics using two mixing preferences. The results are as
expected and attest to the reliability of the model and the value of simulations. We are currently
conducting large scale simulations using the Cornell Theory Center’s supercomputer to gain further

understanding of the effects of pairing in the stochastic spread of epidemics.
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Appendix

In this appeandix, we explain how to construct a transition semigroup and hence a Markov
process using flip rates. Let S be a countable space with its elements denote by lower case Greek letters
such as. &, 1, {, .-~ Consider C =(c(&, n) : €, n€S) as a (possibly infinite) matrix where c(., .} is a
function from §xS to R. For A and B matrices, we define the product AB in the usual way, l.e. the

(&, n) entry is given by EC e Sa(f, ¢)b{¢, n)-

We define the matrix ¢*C through the following power series
20 .n

etC — Z: t;f cﬂ.
n=0

If we have an infinite series, we assume that this definition is conditional on all infinite series being
convergent. Similar convergence properties will be needed in this section. However we do not specify
them explicitely. We require some definitions:

Def 1: A matrix Q = (w(¢, 7)) is called a generator if

Q)  w(&m) 20,VE £
@ T,eswEn =0

Def 2: A family of matrix {P* = (p*(¢, 1)) : t > 0} is called a transition semigroup if

M) pHE M 20, Topte m =1, 20, ¢ €S
i

Gi) PV =pipS t>0,t>0;

Giy PV=1;

(iv) lim,_ o P*=1.

The following results are standard.

Proposition 1. Suppose 2 = (w(¢, 7)) is a generator. Then, Pt = et g well defined for all t > 0 and
{P*: t >0} is a transition semigroup.

Proposition 2. Under the condition of Proposition 1 we have
P&, )~ (¢, 7)
t

(1) w(¢, n) = lim;__ y for all £, n €5;

(ii) -(‘ii—h Pt = 0Pt = PtQ, t > 0.

Suppose {Pt : t >0} is a transition semigroup. We can use Kolmogorov’s Theorem to construct a S-
valued stochastic process {£, : t > 0} such that

. t to—t —t
P&, = & 0<i<n) = p (€, P 2 I(g},6)p ™ -1(¢, _16n) and
such that it is also a Markov process (see below).

Let C(S) be the space of all function from S to R. Any matrix C can be seen as an operator on
C(S), i.e. C : C(5) — C(S), in the sense
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Cf(&) = 322 c(&, p)f(n), VEE€S
n€S

Suppose the generator Q is given and the semigroup and the stochastic process are as in the
propositions. We have

Ptf(f) = Ef(ft)
where {3 = §. Thus,
dri(e,) = $P')

= Pbof(e) = P‘%W(m)f(n)

=pt PLCAORE)
= BL w(umlfin) — (&)l



Figure Captions:

Fig 1. In this figure there are no infectives at time t == 0. The dynamics are of pure mixing/pair
formation. This figure gives the average number of partners that each male individual of group 1 has
from time t=0 to t = 4 years (48 months). Note that at the 35-th month the average was about 7.7.
The title “with preference” means that we used the parameter set I (see the text for details).

Fig 2. Same as Figure 1 but using the parameter set II (title “without preference”). Note that at the
35-th month the average number of sexual partoers is about 0.9.

Fig 3. Here we use parameter Set [. We begin with 10 infectives in the first male group. In this graph
we show the distribution function of the random time at which the total number of infectives reaches
100. For example, we cbeerve that with probability 0.09, the time at which the total number of
infectives reaches 100 is less than (.66 years.

Fig {. Analogous to Figure 3 but using the parameter Set II (“without preference”). See the text for
details.

Fig 5. This picture illustrates the distribution of infectives a year and half later. We use parameter
Set [. One sees, for example, that the total number of infectives 1.5 years after the start of this
epidemic is less than 500 with probability 0.25 or more than 500 with probability 0.75.

Fig 6. Analogous to Figure 5 but using the parameter Set II.
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Initial Condition

susceptible singles
106 106 126 251 543 376 500 354 674
infective singles

10 0 0 Q 0 0 0 0 0
{(s,s) pairs:
0 0 0 0
0 Q 0 0
0 0 0 0
0 0 0 0
0 0 0 0
{s,i) pairs:
0 0 0 ]
0 0 0 0
0 0 g 0
0 0 0 0
0 0 0 0
{i,8) pairs
-0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
(i,i) pairs
0 Y] 0 0
0 0 0 0
0 0 0 0
0 0 0] 0
0 0 0 0



Activity Parameter Set I

0.0 4.0 0.05

9 5 2

0.0 0.0 0.0 g.0¢ 0.0
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1.1 1.2
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1.0 0.0L 0.01 5.0 0.1
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Activity Parameter S .t II
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