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Limit Behavior of Pair Formation for A Large Dissolution Rate

Xiaoclong Luo, Department of Math and CS, University of Missouri, St.
Louis, Missouri
Carlos Castillo-Chavez, Biometric Unit, Cornell University, Ithaca, New

York

ABSTRACT

Considerable amount of research has been cenducted on the general
theory of stochastic epidemic models. Recently, in the study of the trans-
mission dynamics of sexually-transmitted diseases (STD’s), emnphasis has
been put not only on individuals but also on pairs of individuals. STD’s
cannot been transmitted between non-infected individuals, consequently,
non-infected pairs provide temporary periods of immunity which can have
substantial effect on disease dynamics. In this article, we formulate a pair-
formation stochastic model that provides a generalization of the general
epidemic model. Our model can be formulated as a process in which the
transmission rates associated with pair-formation, pair dissolution, and
infection can be realized as a Markov process. Furthermore, by provid-
ing the the appropriate semi-group characterization of this stochastic pro-
cesses, we make the mathematical results and the analytic tools developed
for Markov processes available for thée study of pair-formation models for
STD’s. Finally, we show the connection between classical processes and

pair-formation models.

AMS 1980 subject classification: 92
KEYWORDS: stochastic processes, epidemics, pair-formation, sezu-

ally tranamitted diseases

1. Intreduction



The mathematical theory of epidemics began with the work of Bernou-

lli (1760). In 1889, the Russian Physician P. D. En’ko (see Dietz 1988a)
constructed the first binomial model (wrongly attributed to Reed). The
so-called Reed-Frost models are still widely used in the fields of theoreti-
cal and applied epidemiology. Sir Ronald Ross (1991) - ",ut see also the
work of Brownlee, 1907; MacKendrick 1912, 1926) introduced the mass-
action law in epidemiology, the concept of an epider}liological threshold, and
the first mathematical model for the spread of vector-transmitted diseases
(malaria). In his writings, Ross discussed the potential consequences of
non-homogeneous mixing, demography, seasonality, genetic variability, and
geographical distribution on disease dynamics. Ross understood the effects
on mixing of interacting populations with variable population size. Fur-
thermore, he was completely aware that his modeling approach for vector-
transmitted diseases was applicable (that is mathematically equivalent) to
the study of the transmission dynamics of STD’s. Despite the efforts of
Ross, most mathematical models for STD’s ignored the role of variable
p;opula,tion size and its role on mixing. Practical and theoretical questions
associated with the study of the dynamics of the HIV/AIDS epidemic have
Bmught the issues associated with heterogeneity in mixing to the forefront
of research (see Castillo-Chavez, 1989; Gabriel et al. 1990). The recent
work, on the effects of the processes of pair-formation and dissolution on the
dynamics of STD’s, by Dietz(1988b), Blythe and Castillo-Chavez (1989),
Castillo-Chavez and Blythe (1989), Busenberg and Castillo-Chavez (1989,
1991), Castillo-Chavez and Busenberg (1991), Castillo-Chavez et al. (1991,
1992), and Blythe et al. (1991) have raised important questions as to
the appropriateness of classical epidemic models in addressing the effects of

heterogeneity in disease dynamics. The situation is quite similar in the clas-
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sical stochastic epidemiological literature although some important efforts
in this direction are being developed. Lefevre and Picard (1990) introduce
a multipopulation general epidemic model to study nonhomogeneous mix-
ing, however, they assume that group-specific contact rates are constant
and ignore the dynamics of pairs.

In this manuscript, we provide a realistic and flexible stochastic frame-
work for the spread of STD’s that incorporate the dynamics of pairs. The
development of our epidemic models is based on me"thods common to perco-
lation and interacting particle systems (see Liggett, 1985) as implemented
- in spatially dominated epidemic processes — by Cox and Durrett (1988).
2. Model Formulation -

We begin with a multipopulation epidemic model. Suppose the total
population consists of L + N homogeneous groups indexed by m,,ms, ...,
my; f1, fa,.., fn. Here m; denotes the i-th group of males and f; denotes
the j-th group of females. Each group consists of susceptibles and infectives.
Each infective may be removed permanently because of death from the
disease at a rate depending on the group index. In the model of Lefevre
and Picard (1990), each pair of individuals contact each other at a rate that
also depends on their group indexes. After contact—in Lefevre and Picard’s
model-each pair is immediately dissolved and susceptibles become infected
if their partners are infected. The epidemic ends when there are no more
infectives in the population.

The model in this paper extends the general stochastic epidemic model
by adding the dynamics of pairs. We have the same L + N groups of males
and females indexed by mi,ma,...,mr and fi, fa,..., fv respectively. At
each step in this process individuals may remain single or paired. Homo-

sexually active couples are allowed within our modeling framework. Each
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individual can either be susceptible ( status 0 ) or infectives ( status 1),

Our model makes use of a multidimensional random process {&, : t >
0}. The components of £, are the number of singles or pairs of each type at
time ¢ . The detailed indexing of this process is provided later in this article.
At this point, it suffices to say that £, contains the following information:
(1) The number of (m;, fi)-pairs, i.e., the pair involving a male from i-th
group and female from j-th group; (2) The nurnbt_er of (m;, my }-pairs, i.e.,
the pair involving a male from i-th group and ma.ie from ¢’-th group; (3)
The number of (f;, fi* )»-pairs, i.e., the pair involving a female from J-th
group and female from j'-th group; (4) The number of single males in ;-
th group; (5) The number of single females from the j-th group: (6) All
individuals are classified also by their epidemiological status. For example,
for an (m;, f;)-pair, we need to record the epidemiological status of each
member of the pair. Single individuals need also to be classified by their
epidemiological status as & will record the total number of susceptible and

infective individuals of each type at time t.

To describe &, we index the components of £; or more abstractly the
general configuration € in terms of demographic types (singles or pairs)
with their attached epidemiological status. Here we are dealing with a finite
number of types. These types are called sites as we borrow the terminology
associated with interacting particle systems. The number attached to each
site gives the number of pairs or the number of singles of the type or types
associated with the site. For v = 0 or 1, we use (f;,v) to denote the type of
singles from the f; group with status v. Similarly, we use (mq, u; fi,v) to
denote the type of pairs of males from group m; with status u and females
from group f; in status », (mqi, u;my y#') for the pairs of males where one

is from group m; with status # and the other is from group m,s with statug
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p' and (f;,v; f;r,v') for the pairs of females where one is from group f;
with status v and the other is from group f;» with status v’. Let S denote
the set of all such types. Then, &, as a vector with indexes in 5, is a
function on S with values in Z+ = {0,1,2,...}. If s € S, &(s) is the value
of £ at component s. If X denote the set of all such functions on S and if
|S| denotes the number of members in S then X is just a subset of a |S5|
dimensional lattice. As time ¢ changes, singles may form pairs and pairs
may dissolve and a disease may be transmitted (in p.)a.irs )- The system {&,}
can be seen as a series of changing elements in the set X. Each element of
X is a possible state of the system.

The dynamics of the system is described by the rates at which the
system changes. These rates are a set of nonnegative numbers {c(£,7) :
£ #n,6,n€ X}. Each ¢(&, ) is the rate at which the system changes from

£ to n, e,

P(bern =1l =€) = (€, n)h + o(h),¥t > 0

In Section 3, we specify these rates for a multipopulation general epidemic
model and an epidemic model with pairing. The main mathematical results
of the general model interpreted as a Markov process through its semigroup
characterization are presented in Section 4. The construction of the process

with its mathematical formalization are given in the appendix. In Section

5, we show that the general epidemic model can be viewed as the limit of

our pair formation models when the dissolution rates tend to infinity.

3. Model/Framework Formulation: Special Cases

In this section, we give two specified version of our model before in-
troducing the most general models. Suppose S and X are as in Section 2.

The change transition, or flip rates for the system is given by the set of
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nonnegative numbers {c(&,n) : §é #n,&,ne€ X}. Forf e X,A.B C § and
AN B =10, we define {5 € X as

£(s)+1 ifsed
£8(s)=( &(s)—-1 ifseB
&(s) otherwise
If we think of { as a finite dimensional vector with components indexed
through members in 5, then £ is another finite dimensional vector. &4
is obtained from £ in the following way: we add 1 to those components
with index in (index) set A and subtract 1 to those components with index
in (index) set B. For example, if we let A = {(m;,0; f,1)} and B =
{{m1,0),(f2,1)}, then £4 accounts for the fact that a susceptible male from
group m; and an infective female from group f; form a pair (have a sexual

contact) and there is no disease transmission. For simplicity, we discard

the brace and write , for example, 5((:::3;?_’;:‘)1) = 5&:::8;?;:31})} . Thus,

glmuelifa ) g ceounts for the fact that a susceptible male from group m

(ml -0)-(.f'2 -1)

and an infective fernale from group f; form a pair (have a sexual contact)

and there is disease transmission.

General Epidemic Model Suppose §,,,(éy,) denotes the death rate of an

infective male (female) from group m;(f;) and Bm,.s; Bm;m, » B, Sy de

note the contact rates between male-female, male-male and female-female

respectively. Furthermore, let

(€, Emet)) = Om, E((me, 1))
(&, &(s1y) = 65, €((f5,1))
(6, TIOR8 (g, m)E(Ry )i £ v
c(€,7) =0, else
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where g, h € {my,ma,....mr; fi, 2, N}, 1, € {0,1} and u V v denote
the maximum of u and v. Then, {£;} gives the multipopulation general

epidemic process described by Lefevre and Picard (1990).

Epidemic Model with Pairing In this model, the contact rate used in the

general epidemic model is decomposed into two to include pairing with
possible immediate infection and pairing without immediate transmission.
Furthermore, pairs are allowed to dissolve. As _in the general epidemic
model, an infective male(female) from group m;(f;) dies at rate é., (8, ).
Individuals from group g and A ( g and k can be any m; or f; ) form pairs at
the rate 3, . When one member of a pair is infective and the other is not,
the probability that infection takes place is o, 4, while g — A pair divorce
at the rate o,,. The epidemic ends, as in the general epidemic model, as
soon as there are no more infectives in all groups. However, the process
does not terminate in this case because the processes of pair formation and
dissolution continue. A deterministic analog of this model can be found in
Dietz( 1988b ). This epidemic model with pairing is therefore defined by

the following transition rates
(6, Eme) ) = bmiE((mi, 1)),
(& &5y ) = 85 E((F, 1)),
(&, 60 sy ) = O, E((mi, 1 B, 1)),
o€, 60 1)) = 65,6((g, i £5, 1)),
c(E, 5V y = B 4y wE((g, 1))E((h, )1 # v
(&, €0y ) = Bya (1 = agn )E(g, m)E(hy ), 1 # v

o€, 62 ) = Byw (g, m)E((h,v)) = v
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A6 Eguhtbry <, §((9, 45 5, )

e(€, n) =0, else

No = {Alh .5 {~1,0, 1}isa function }

> the set of 4); Possible changes of tp,e System and Jet

» 00} denote 5 function satisfying the foﬂowing
18:
20,V %y X;
(&n) < %, ¥¢ € X,
o(&m) =0,v¢ ¢ X;
=0,vp EN(E), ¢ €X;
i in terms of the tot

Nl > 1]
of tota] individua.ls Present ip

al Population
total }, where ”-”totul denote;

the configuration Then, thepe

8



are constants C; > 0 and C; > 0 such that

3 el6,n) < Ct + Callélleosat , VE € X.
NEMnew (&}

The general result is that infectious processes with transition rates defined
by (i)-(v) can be realized as a Markov process and a semigroup character-
ization of this process is possible making the results and analytic tools of
the theory of Markov processes available for the analysis of these epidemic

models.

Foré,ne X, let

(&, m) = lIn — £|l = max{[n(s) — §(s)| : s € S}

With this metric, X becomes a locally compact and separable metric space

and if we let

1]l = max{¢(s) : s € S},

and B(X) denote the set of all bounded functions on X with norm

fIl = sup |£(£)), f € B(X),
ceX

then B(X') becomes almost the appropriate Banach space in which we can
study these processes.
Consider the following linear op-éra.tor A : B(X) — B(X) be such

that

Af(E) =" c(&,mlf(n) — (&), € € X,

neX

on B(X) and let C(X) C B(X) consist of all functions f : X — R such
that imyg o f(€) = 0. The restriction of the norm to C(X)

IFIl = sup | f(€)], f € C(X),
teX
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makes C(X) Banach space too. ¢ (X') is the space in which we formulate

the result needed for the formal construction of the above epidemic process.

Theorem 4.1: There is a family of linear operators {S; : t > 0} on C(X)
and a X —valued random process {{; : ¢t > 0} such that

(1) Stes = 5,5

(2) So = I the identity map;

(3) lim,o S, f = f,Vf € C(X);

(4) Sef 20, >0,f > 0;

(8) lISef1l < 11fH,¥F € C(X);

(6) Af =lim,.o {5 f - f};

(T) £5:f = AS. f = S;Af;

(8) Sif(6) = B f(&), £ € X.

(9) If we denote the transition function of {&; : ¢ > 0} as {P*(£,7) : €, €
X}, then 3 P'¢&,n) = 1.

Properties (1)-(3) imply that the set of linear operators {S; : ¢t > 0}
is a strongly continuous semigroup. Property (6) implies that the operator
A is the generator of the semigroup. The process ¢; defined by the set
of transition rates satisfying (i)-(iv) generates a strongly continuous semi-

group on C(X). The proof of this result is outlined in the Appendix.
5. Classical and Pair-Formation Epidemic Models

In this seqtion, we apply the construction of the epidemic process as
outlined in Section 3, to show a key connection between classical infectious
and pair formation models. As a special case, the result below implies
that the Epidemic Model with Pairing of Section 3 converges, when the
transmission probabilities e, 5 = 1 ( or a,, go to 1 uniformly ), to the

General Epidemic model as dissolution rates tend to infinity.
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We start with a stmmultaneous description of both models. Let X, =
{€ € X : &(g,p3h,v) = 0,Yg, h,u,v} be the set of all states or sites with
no pairs. Here, g, h denote any individual or site ( see Section 3 ). In the
classical infectious models there are no pairs and, consequently, they can
be seen as X,-valued random processes. The General Epidemic Model of
Section 3 corresponds to the case where c(£,7) = 0 if { or n ¢ X,. Thus,
all models without pairing can be described by setting c(£,7) =0if £ or i
is not in X, in those models with pairing. "

For models with pairs, we decompose the pairing rates, ¢(&,7), into
several parts. The first part, ¢o(.,.), is the change rate within X, (instanta-
neous pairing rate). The second part, ¢, (.,.), is the instantaneous pairing
rate with disease transmission. The third part, ¢, (.,.), is the pairing rate
without disease transmission. The forth part, oc;(.,.), is the dissolution
rate with parameter . Finally, the fifth part, ¢3(.,.), consists of other
changes which are not affected as o tends to infinity. We note that cp(...)
" is due only to the initial contact and whether or not a more permanent

relationship is formed depends. We can write the above descriptions as

co(é,n) =0, f{g X, orn g X,
. ' RV
cre (6,m) =0, if g £ £V oty
ci-(&,m) =0, if n £ o4
ca(€,m) =0, if n # €510
where Vv denote the maximum of 4 and v. We assume that c3(.,.) as a.n}"
other change rate, = 0 when 7 is any one of the above exceptional states.
In above definition, we assume that £ # 5 and that all (., .),¢1(.,.), €2(.. )
and cj(.,.) satisfy conditions (i)-(v) of Section 4.
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Let

¢ (§,n) =o€, n) + s (é,n) + e1- (§,n) +oca(E,n) +ea(é,m)  (5.1)

where o > 0 is a parameter. Then, ¢,(.,.) also satisfies conditions (i)-(v)
of Section 4.

‘The model determined by the above set {c,(.,.)} is very general and
covers the Epidemic Model with Pairing of Section 3 as a special case.
Here for simplicity, we assume that only one parameter goes to infinity.
The result is the same for multiparameter models as long as the dissolution
rates tend to infinity uniformly. From Section 4 and the Appendix, Cols)
determines a Markov process {¢”} with its Feller semigroup {S?}. The
discussion below addresses the question of what is the limit of {¢”} when
o tends to infinity ?

Intuition says that the population of pairs become nearly extinct if dis-
solution rates become large. {£7 : ¢ > 0} is close to the infectious process
and the contact and infectious rates come from both pairing and transmis-
sion. The construction given in the Appendix shows that the framework
works according to our intuition.
 Let {£7} be the process of this section and start this process at £ =
£ € X,, t.e., there are no pairs at the beginning. Let m; be the first time a
pair appears, 1.e.,

n=inf{t>0:¢ € X,}
and let 7| be the first time the system gets back to X, i.e.,

T =inf{t >n : & € X,}

Since o influences only pairs ( from the definition of ¢,(.,.) ), 7 is inde-

pendent of o. In general, we let
T =inf{t >, : & € X,}
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and let 7, be the first time the system gets back to X, i.e.,
o =imnf{t >r : & € X,},

therefore, 7,4, - [ is independent of o. At time 7, a pair is formed in the
system, i.e. £ ¢ X,. We introduce a corresponding contact interaction
as that it consider pairing as contact, that is to say, the duration of the
pair is zero. When it is pairing with transmission, _they contact with trans-
mission. After contact, they dissolve immediately. Also, when it is pairing
without transmission, they meet and dissolute without anything left. In

the following lemma, we use 7,7 to denote this types of interaction.

Lemma 5.1 : Suppose

c2(§,m) > 0, when &(g, u; h,v) > 0,7 = €508 g b op

Then, for any k and € > 0, there is a A > 0 such that for all ¢ > A we have

PO<r—m<e)>1l—c¢

P(f:; =§7)>1—¢

where {77 is obtained from £7, from partnership of duration zero.

Proof: For the time gap, we use (5.1) and note that the rate of the associated
exponential random variable tends to infinity. That is, events happens
infinitely fast of equivalently given € > 0 7/ — 7 < € with high probability.
We choose o large enough so that the probability of pair dissolution is
greater than 1 — ¢. Hence the event that nothing but dissolution happens
during (7, 7] has a very high probability ( see (Al) in the appendix ).

This completes the proof of the Lemma.
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The change rate associated with the limiting system is obtained as in
the above discussion for the corresponding contact interaction, that is, for

partnerships of duration zero. Let cf5 (.,.) on X, be defined as
{g.8ve),(huve) — {9.8Vrihuvr)
GG Lgmmm” ) = (60 )

and

c(&,1) = co(&m) + &5 (€, 1) (5.2)

for all £ # n,¢,n € X,, while c(¢, €) is specified by the relationship

Z C(gq n) = 0.

n

To fit the general model of Section 3, we define ¢(£,7) as 0 when either of
§ or n is not in X,. From Section 3 and the appendix, ¢(.,.) determines a
Markov process {£.} and its Feller semigroup {S;}. The convergence result
that follows is the main mathematical result of this article. It shows that

our model behaves at it should.

Theorem 5.1: suppose {67 } and {£ } are the processes determined by (5.1)

and (5.2) respectively. Then, as 0 — oc, £7 converges to £, in distribution.

The proof of the Theorem is based on Theorem 2.5 on page 167 in
Ethier and Kurtz (1986). It suffices to show that

lim Ef(E7) = Ef(€), 920 (5.3)

where f € C(X) and ¢ € X,.
A detailed proof of (3.3} can be found in Luo (1990). Here we just
point out the general idea. For any fixed time ¢, the number of pairings is

bounded independently of . The time space graphs {£7,0 < s < t} and
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{£:,0 < s <t} are at approximately in the same location and will be close
to each other as o tends to infinity. Therefore, £7 and ¢, are close for large

o and hence Ef(£7) is close to Ef(£,).
6. Discussion

Here we only considered infectious processes with two stages: healthy
and infected. In practical application, we may have to consider several
stages of infection. From Section 4 and the appendix, we see that the con-
struction of our model does not depend on the number of stages. Our model
and our results will hold for infectious processes with finitely many stages.
Models that allow for the incorporation of age-dependent heterogeneously
mixing populations can be similarly developed. Qur framework provides the
necessary theoretical background for further exploration of general stochas-
tic models with pairing. To apply our models to practical situations, we
need to specify the flip rate matrix ., .). If the flip rate matrix has a simple
structure then we can apply (7) in Theorem 4.1 to the analysis of various
statistics. For complicated systems with large number of parameters, the
representation theorem of Section 4 provides the theoretical foundation for
needed simulations. In this paper, we have used the mass-action law to
model pair-formation. This was done with the purpose of showing the
connection between models that follow pairs and the ( classical ) general
stochastic epidemic model. The use of the mass-action law is however not
considered appropriate in many realistic situation. Generalized mass-action
laws have been developed by Busenberg and Castillo-Chavez ( 1989, 1991
) and Castillo-Chavez and Busenburg ( 1991). Modifications to the frame-
work of this article to take into account arbitrary mixing/pair formation

patterns —generalized mass-action laws— can be accomplished without dif-

15



ficulty and will be published elsewhere. Supercomputers in combination
with modern numerical analysis techniques will help us gain further insight
into these processes. We expect to pursue the numerical exploration of this
model in the near future.
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Appendix

I: Process Construction

In this Appendix, we give the construction of the process from the
change rates {c(.,.)}. Let S, X, My, M:(%) and function ¢ : X x X —

[0,00) be as in Section 3. Form =1,2,3, ..., let
X" ={{cX:6(s) <m,Vs €S}

and truncate the function c as follows

c(é,n) if{#nandé,neX™
c™(En)=¢0 if £ # n and one of them is not in X™

_2(7&5 c*(£,¢) ifn=¢

We construct a series of Markov processes {{* : ¢ > 0} approaching
the required process in the limit. First, foreachm > 1,k > 0and € € X, let

Ti_k be the exponential distributed random variable with rate —c™ (¢, €).

Let Yil . be the Ay -valued random variable such that

c™(§,E+h)

P(Y' =h)=-—
T =0 = =268

(A.1)

We assume that all these random variables are independent. Let £ € X.

We construct all processes {£]* : t > 0} starting at £ at the same time. The

idea is to use 75 | ’s to decide the time gaps among jumps and use er.k 's to

™k
choose landing éite. In order to tie these processes together, we always use
the random variable with the lower index if possible. Thus, for any m < n,
the processes {™ and {" will move together until the first time N (67) is
not contained in X™, i.e., the first time the process £™ can jump out of

Xm.
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The construction of £! is as follows: choose a sequence 0 = M, <

M; < M, < ..suchthat M;,; — M; >2forall j 20. f£ & XM, then

&} = £,¥t > 0. We assume £ € XMt | then, we define ¢! = £,V0 <t < Tf,u

1

and £, =€+ Y. Denote t; =7, and t =1, +7. Forty <t <ty

1
we define ¢ = £} . Then, define &, = ¢} + Y:'zl

& . By an easy induction

argument, we can define £ for all ¢ > 0.

Suppose £;,0 < ¢t < 00,1 € i £ m are given and define =t
until the first time cMm+: (£1, 65 ) # Mm(E1, €M), i.e., the first time ™!
can jump out of XMm . £**+! is defined in the same manner as £! was. This
completes the definition of all the processes {{* : ¢ > 0,m > 1}. Finally,
for each m, let o, = inf{t > 0 : Mm+1 (§1 1) # Mm (g7 €M)}, From

this construction, the following result follows:

Lemma A.l: For any n > m, we have

& =6,0<t<om.

To pass to the limit, we need to establish the following lemma.

Lemma A.2 : o, is increasing in m and

lim o, = oo a.s.
m=vo0
Proof: From the definition of ¢™(.,.), it is clear that o, is increasing in m.
To see that o, - o0, we note that at time ¢ = a0, N (&) C X Mmer \
XMm  Let g/, be the first time the total population reaches M, —3. Then,
Om = 0. It suffices to show o/, — 0.
Let Ty be the total individuals at the beginning. For i > 1, let ¢; be

the i-th time a new individual is added to the populations. Then, o/, >
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tM,,-3-T, and the lemma will be proved if we can show that lim;_.,, ¢; = oc.
By the condition (v) in Section 3, t;;; —t; has a rate no larger than C, +
Ca2(Ty + ). Suppose r;’s are independent random variables exponentially

distributed with parameter Cy +C3(Tp+i), respectively. Then, t; is bounded
below by Z;;:, ;. Since Z;_‘__E Er = Z;;L m goes to infinity as

. . i—1
¢ — 00, a standard martingale convergence theorem shows 3 .~ 7; — 0

a.s when ¢ — oo ( see e.g. Luo (1990) ). Therefore, the lemma is true.

The required process {{; : t > 0} is defined as
& =¢&",t<on

By Lemma A.1, the process is well defined and by Lemma A.2 the process
is defined for all ¢ > 0.

II: Mathematical Justification

In this section, we show that the process defined in this appendix
is determined by the c-function. First we look at the generator and the
sermigroup determined by the process {* : ¢t > 0} for each fixed m.

Let X, B(X) and C(X) be as in Section 3. Let A,, : B(X) — B(X)

be such that

An f(E) =) ™ n)f(n) — FEN.€ € X.

neX

Then, An is a bounded linear operator on B(X). From Ethier and Kurtz
(1986) page 162, we know A,, generates a semigroup {S™ : ¢ > 0} on B(X)

which can be written as

SU &) = Ef(EM), e X
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where {€™} is the process constructed in this Appendix. It is the Markov
process corresponding to the semigroup {S{* : ¢ 2> 0}. We summarize the

results as follows:

Proposition B.1 : There is a family of linear operators {S™ : ¢ > 0} on
C(X) such that

(1) S3, =Sy ST

(2) S3 = I the identity map;

(3) limeo S* f = £,Vf € C(X);

(4) ST f>20,¥t20,f>0;

(5) NS Il < WIFII VS € C(X);

(6) Am f = lime—o +{S* f — f};

() %S0 f = AnST f = ST An f;

(8) ST f(&) = E f(&7),§ € X.

(9) If we denote the transition function of {¢* : ¢ > 0} as {P*(£,n): €,n €
X}, then 30, P¥(€,7) = 1.

We define a family of linear operators on ¢ (X) by

5:f(§) = B¢ f(&)

where ¢, is defined in this appendix. To complete the mathematical jus-

tification we need to show (1)-(9) in Proposition B.1 hold for {S;} and
§e-

S; is well defined We need to show S, f € C(X) for f € C(X) or

||c|11i31oo Sef(§) =0

. Indeed, for any € > 0, we have a M > 0 such that [[£]] > M implies

[f(€)] < €/2. For fixed ¢ > 0, by the argument in Lemma 5.1, there is a
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A > 0 such that P(§ € XM) < ¢/2||f|| if ||€]l > A. Thus, for |[€]] > A,
we have |5, f(£)] < e, i.e. Hmygj—oo Sef(€) = 0.

From the definition of {S:}, we know (2),(4),(5), (8) and (9) are true
for {S;} and ¢&,.

{S:} is a semigroup We first note that from a similar argument as above

we have
im S f =S f
Write S7* S f as
ST f=SPSPf = STUST = Sf] + ST (S f]

and take the limit for m — co. With (5), we have
Strs f = S5eS, f

i.e. (1) is true.

{5:} is strongly continuous For any fixed £ € X and any ¢ > 0, by the

argument in Lemma 5.1, we can choose a mg >> 1 such that |57"° f(¢) —

Sef(€)] < eforall 0 <t <1. Thus,
St f(€) = ST f(&) =[S f(€) — S f(€)]

Letting t go to 0, we know (3) is true for Si.

Generator of {S:} For f € C(X),£ € X, let

Af(E) =Y cl&,mf(n) — F(&)]

neX

It is easy to see from (iv) that Af € C(X). We are going to show

Af =lim —{S,f - f},9f € C(X)
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First, we claim limm—oo Am f(é) = Af(£). Indeed, let m be large
enough so that £ € X™

An f(€) =D ™ (&) f(n)

neXx

= > d&n)f(n)

nexm™

= 3 ol& i) - £(6)]

neX

- Z C(f,fi)f(fl)

ngxm™
— Af(&)

as m — oo, where we made use condition (iv) in Section 3 and f € &(X).
Thus, for any ¢ > 0, we can choose a M > 0 such that A, f(&) — Af(€)]| <
¢/3 for all m > M. Note that |5, f(£) — 5" f(€)] < 2{|f||P(om < t) <
2||f|P(e2 < t) =0oft) as t — 0. Fixam > M + 2, choose a § > 0 such

that .
ISP F(E) = (O}~ An S(E)] < e/3
2Pz < B < ¢/3

for all £ < §. Thus, for ¢ < §, we have

(S F(6) = F(O) - Af(©)] < ¢

i.e., (6) is true for S; and A.
From (1) and (6}, we have (7) completing the proof.

We conclude that {S,} is a Feller semigroup on C(X) and {£} is a
Markov process with values in X ( see page 169 in Ethier and Kurtz (1986)

). These completes the proof for Theorem 2.1.
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