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On the Solution of the Two-Sex Mixing
Problem

C. Castillo-Chavez! and S. Busenberg?

! Biometrics Unit/Center for Applied Mathematics, 341 Warren Hail, Cornell Univer-
sity, Ithaca, NY 14853-7801
? Department of Mathematics, Harvey Mudd College, Claremont, CA 91711

The work described in this paper has been motivated by work with Keaneth Cooke.
Ken has used his considerable experience in the modeling and analysis of disease
transmission, and most recently in the development of models that may help
our fight against AIDS. Many of the ideas discussed in this aritcle arose out of
our study of Ken's work, our discussions with him, and our collaborative efforts
with Ken over the years. We dedicate this paper to him as we celebrate his 65th
birthday.

Abstract

In this paper we describe an axiomatic framework that allows for the general
incorporation of sexual structure into two-sex pair-formation models for sexually-
transmitted diseases. A representation theorem describing all solutions to this
mixing framework as perturbations of particular solutions is proved. Two-sex age
structured demographic and age-structured epidemiological models that make
use of our framework, and are therefore capable of describing the dynamics of
individuals and/or pairs of individuals, are formulated.

1 Introduction

The modeling of sexual transmission of diseases can be said to have its genesis in
the work of Sir Ronald Ross. Several ideas introduced in his modeling work on
malaria have proved to be very useful in the development of a mixing framework
for social/sexual interactions as well as in the development of models for the
spread of venereal diseases. For example, the recognition that there must be a
conservation of the number of interactions between individuals invelved in a dis-
ease transmission process, a fact often ignored by modelers, was already clearly
articulated in Ross’ work on malaria. For malaria, this meaat that the number of
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bites on humans must equal the number of humans bitten (Ross 1911, p. 666-7).
In sexually transmitted diseases (STD’s) we recoguize this constraint requiring
the equality of the number of sexual partnerships formed between individual hu-
man interacting groups (a kind of group reversibility property or a conservation
taw.) The consequences of this constraint will be further discussed later in this
paper. Ross also observed that models with fixed and variable size populations
must be treated differently, and may have radically different properties (Ross
1916, pp. 212, 215, 222). The fact that in the study of the dynamics of malaria
the size of the host and vector populations play a key role in transmission forced
him to introduce a special mixing structure given by a linear function of the
ratio of the vector to host population sizes. We will show later that all solutions
to our two-sex mixing framework are given by multiplicative perturbations of
these special solutions.

Models for the spread of STD’s were not systematically studied for over fifty
years. In 1973, Cooke and Yorke analyzed and developed the first models for the
spread of gonorrhea. This and subsequent papers re-opened this important area
of research which reached a significant plateau with the application of these new
adavances to the problem of gonorrhea dynamics and control. A description of
these applications to U.S. data is clearly detailed in the monograph by Hethcote
and Yorke (1984). .

This paper is organized as follows: In Section 2, we formulate a general two-
sex model for the spread of gonorrhea. This model allows us to discuss the prob-
lem of pair-formation or mixing. In Section 3, we discuss some special mixing
solutions and provide a representation theorem for all possible two-sex mixing
(pair-formation) solutions. In Section 4 we formulate a two-sex-structured demo-
graphic model and a two-sex age-structured epidemiological model that follow
pairs of individuals. Models of this type have been formulated earlier by Fredrick-
son (1971), McFarland (1972), Dietz (1988}, Dietz and Hadeler (1988), Castilio-
Chavez (1989), Hadeler (1989a, b}, and Castillo-Chavez et al. (1991). Section 4
begins with an axiomatic description theorem for the two-sex mixing problem in
an age-structured population, and illustrates the role of age—dependent mixing
in contact and pair formation models.

2 Two-sex gonorrhea model with variable population size

In order to provide a context for the sexual interactions of a heterosexual popu-
lation, we introduce a two-sex model with variable population size for the trans-
mission dynamics of gonorrhea, Traditional gonorrhea models (see Hethcote and
Yorke, 1984) have assumed that the mixing subpopulations have constant size.
This assumption may be very useful when we deal with the relative evaluation
of control strategies (loc. cit.). However, this assumption is not appropriate in
situations in which we wish to evaluate the impact of different mixing patterns
in disease dynamics., The assumption of interacting populations of constant size
leads to time-independent mixing probabilities (i.e. constant contact matrices)



82 C. Castillo-Chavez and S. Busenberg

and hence to mixing patterns that are valid only for populatious that have al-
ready reached a steady state.

We consider a population of heterosexually active individuals. This popula-
tion is divided into classes or subpopulations. Classes can be indentified by sex,
race, socio-economic background, average degree of sexual activity, etc. Models
that incorporate factors such as chronological age, age of infection, variable infec-
tivity, and partnership duration can be found in our earlier work (see Busenberg
and Castillo-Chavez, 1989, 1991). An example of such a model is given in Section
4. We consider N-sexually active populations of females and L-sexually active
populations of males. Each population is divided into two epidemiological classes:
.S'J-f (t) and ST™(t) (susceptible females and males, ie., unifected and sexually-

active, at time t); I;f (t) and I™(t) (infected fernales and males, at time t); for
j = 1,.,Nand i = 1,.., L. Hence, the sexually-active individuals of each
sex and each subpopulation at time ¢ are represented by Tf (t) = .S'f () + [jf ()
and T/ (t) = S7(t) + [*(¢).

B}f (t) and B (t) denotes the j** and i** incidence rates for females in group
7 and males in group { at time ¢, that is, the number of new infective cases in
each subpopulation per unit time, B{ (t) and B™(t) are complicated functions
that depend on the frequency and type of sexual interactions that susceptible
fernales of group j and susceptible males of group ¢ have with all other sexually-
active individuals, in this case, of the opposite sex (although this condition can
be easily relaxed).

IfAf and AT denote the “recruitment” rates (assumed constaat), u7* and u["

denote the (contant) removal rates from sexual activity, and 7,1 and y® denote
the (constant) recovery rates from gonorrhea infection, then we can write the
following contact model for the transmission dynamics of gonorrhea:

!
B _ a1 - B0 - sl ++/ 10, W
ari(t
___;f ) - B{(t)~ (v} + uDI (v), @
_‘—ds:; ©) _ 4 _ BP () — 4P ST+ L), (3)
____dl-‘: t(t) = B"(t) - (1" + s (), “

f=1,.,Land j=1,...N.

Of course, this model is not fully described until we provide explicit expres-
sions for B_{ (t) and B(t). The formulae for the incidences will be provided in
two steps: first we will provide expressions for the incidences in terms of the set
of mixing probabilities {pi;(t) and ¢;i(t): i =1,..,L and j = 1,..,N}; and
secondly, these mixing probabilities will be described (in the next section) in
terms of an axiomatic system for sexual interactions.

To describe the formulae for the female and male incidences we need the
following definitions:
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pi;(t): the fraction of partnerships of males in group i with females in group

j at time ¢,

g;i(t): the fraction of partnerships of females in group j with males in group

{ at time t,

T (t): male population size of group ¢ at time ¢,

T}f (¢): female population size of group j at time .

c;: average (constant) number of female partners per unit time of males in

group i, ot the **-group rate of (male) pair-formation,

b;: average (constant) number of male partners per unit time of females in

group j, or the j*A-group rate of (female) pair-formation,

B disease transmission coefficient (constant) of males in group i,

,8}' . disease trapsmission coefficient {constant) of females in group j.

Using these definitions we obtain the following expressions for the incidence
rates:

B0 = 5570 YA, ®)
=T
and
L
a0 =vsf0 oSGy

i=1

3 Two-sex mixing framework

Special solutions for one-sex mixing popuiations were obtained by Noid {1980),
Hethcote and Yorke (1984), Hyman and Stanley (1988, 1989), Jacquez et al.
(1988, 1989), Blythe and Castillo-Chavez (1989), Castillo-Chavez and Blythe
(1989), Gupta et al. (1989), and Anderson et al. (1989). A representation theo-
rem describing all solutions as random perturbations of random (proportionate)
mixing, based on the work of Blythe and Castillo-Chavez {op. cits.), was obtained
by Busenberg and Castillo-Chavez (1989, 1991). Models that follow pairs of indi-
viduals (two-sex models) can be found (in a demographic context) in the works
fo Kendall (1948), Keyfitz (1972), Parlett (1972), and J.H. Pollard (1973). For-
mulations of the standard two-sex mixing pair-formation framework are found
in the work of Fredrickson (1971) and McFarland (1972). Application of the
Fredrickson-McFarland framework to epidemiological models has been carried
out by Dietz (1988), Dietz and Hadeler (1988), Castillo-Chavez (1989), Wald-
statter (1989), Hadeler (1989a, b, 1991), and Castillo-Chavez et al. (1991). In
this section we provide an alternative approach to the process of pair formation.
This axiomatic framework was introduced in Castillo-Chavez et al. (1990), where
gsome special solutions were found. We use the set of mixing probabilities {p;; (£)
and gji(t): i=1,..Landj = 1,..., N} to describe the mixing/pair formation
in a heterosexually active population throngh the following set of properites or
axioms:
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Definition 1. (pi;(t}, ¢;:(t)) is called a mixing/ pair-formation matrix if and cnly
if it satisfies the following properties {at all times):
(A1) 0<py; €1, 0<qu<l,
(A2) SN py = 1= D%, a5, whenever T # 0 # 5T
{(A3) T pij = 6T qji, i=1., L j=1,..N
(Ad) pij = ¢gji = 0 by definition if c‘-bj’.'[}""l'}f =0for some(,0<i< L
or for some 7,0 < j < N.

Note that (A3) can be viewed as a conservation of partnerships law or a group
reversibility property, while {A4) asserts that the mixing of “non-existing” or
non-sexually active subpopulations cannot be arbitrarily defined. For the gonoz-
rhea model, and most deterministic models for STD’s, subpopulations that are
sexually active do not become extinct and do remain sexually active for all time.
We now proceed to characterize a useful solution, namely Ross’s solution.

We note that (A2) and (A3) imply the relation

L N
YoaTrm =3 4T/ (7)

i=1 =1l

which states that the total rate of axquisition of of female partners must equal
the total rate of acquisition of male partners. In fact, summing (A3) over j and
i and using (A2) we get

N
C‘TZZE}J’I:‘JQJ"
i=1
L }L N
el =33 T g

i=1 i=1lj=1
Changing the order of summmation we obtain (7) since

>

L N
J=li=

6T g = 3 6T].

1 j=1

Definition 2. A two-sex mixing/pair-formation function is called separable if
and only 1f

pij=mipjand gji = g, i=1,..,L; j=1,.., N
This definition leads us to the following useful characterization of two-sex
separable mixing functions.

Theorem 1 The only separable solution ts the Ross solution given by (pij, ¢ji) =
(ﬁj :ai) where
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_ b; T" _ I . )
Dy = '—"'_'_“_- 7i= ————; J=L..N andi=1,...,L
’ 21 1 ' EN b Tf

Proof. Suppose that {pij, ¢j;) is a separable mixing function satisfying (Al Ad).
By (A2), whenever c.-b,-f[}’“'l"f # 0, we have for all j and {

1=4g; Eq, q,k, k a constant
i=1

1
l—-p.z:qJ 52— { a constant

which implies ¢; = & and 7 = ¢, for all 4, j, hence,
Gi =G =k =T (8)
pij = Bip; = £pj = 7. 9
If (8) and (9) are substituted into (A3) then
I tp; = b;T ki or Ty = 4T e (10)
Summing over i, we get

L L
7 ZC‘T:" = bﬂ}f Z?' = b,-T}f,

i=1 i=1
since from (A2) and (8) YF 7 =1. Thus
b; T/

?=—L—'—'—— j=1,...,NA (11)
! Et‘:l C‘I:m

Summing (10) over j and using (A2), we have

N N N
GT}F‘Z?,':?.'Z%I}! or c;T{":ﬁ'.ijTJf

j=1 i=1 j=1

Thus
_ ol

cm e i=1,..,L
N E"'-xb'T’r ’

Conversely, using (7), it is easy to see that (P;,7;) satisfies (A1)- (A3), a.nd
we note that it vacuously satisfies (A4).

(12)

Remark 1. Note that from (A3) it follows that, if g;; # 0, then
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Pii _ bJTIf
TTR Y i

and hence using (A4), we see that p;; = 0 if and only if p; = 0. Thus, the support
of any two-sex mixing function is equal to the support of (ﬁj,E,-).

(13)

)
%

We now use Equations (11), {12) and (13), to generate more solutions to
axioms {A1)-(A4). We begin by introducing some new terms. Let

(#7}) = The males’ structural covariance matrix (0 < ¢7}) denoting the
degree of preference or affinity (i.e., the deviation from random mixing)
that group i-males have for group j-females, j = 1,..,.N i =1,.., L.

P = 5 Pr# = The weighted average preference of group i males ,
i=1,...,L.

RP=1-¢6* i=1,..,L. (14)
We require that RT* > 0, and that
L N
Y= Pediip: < L. (15)

i—1 i=1 k=1
Similarly, let

(q&f,—) = The females’ structure covariance matrix (0 < ¢Jl,-) denoting the
degree of preference or affinity (i.e., the deviation from random mixing)
that group j-fernales have for group i-males, j = 1,..,N,i, ..., L.

E‘; = Ele&'kéfk = The weighted average preference of group j-females,

i=1..N.
Rl=1-4, ;=1,..,N (16)

Again, we require that R; >0, and that

N

N L
Sdg =3 weha < L (17

i=1 i=1 k=1

With these assumptions and definitions, and with the additional condition
(22) which is given below, we observe that a solution to axioms (Al) - (Ad) is
given (formally) by the following multiplicative perturbations to the separable
mixing solution (7;,7;)

RI R
— '§ m . .
Pij = Py _—__—_+¢i‘ ' ‘:1:"-:['; J= 1v"-yN' (18)
! ! {Ef=1ka£ J] ‘
o)
Gi=% | =g % (19)
[Ef:z qERI:“ !

We now show that (pij,gi), t=1,...L, j=1,...,N given by (18) and (19) is
a two-sex mixing matrix. The fact that axiom (A4) holds follows immediately
from (18) and (19). In order to show that (A1) and (A2) hold, note that
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N N — nf N

m | izt BBy = m
> pij = R [—JF':J"R—? + |2 9%
=1

k=t Peily j=t
N

=R+ T4 =RP+(1-RT) =1,
i=L

and, similarly
L
Zq_js' =1,
=1

thus (A1) and (A2) are satisfied.
Note that axiom (A3) is satisfied if

BRI R m pf
aTp; [*—ﬁﬁ—f + 45?;] = b6;T{7 [TR?‘_‘J_ + ¢%; (20}
Ek:l Pl Ek:l FPNine

By observing that ¢;T7*p; = b;T/F;, due to the fact that (F;,7;), is a two-sex
mixing function, we see that (20) holds outside the commeon support of (F;,7;)
and (psj,q;:), if and only if

R{RT RPRY

[-———-—N’ —7+ ”,‘] = [———L — +¢§.} : (21)
Lim1 Py 2ok=1 T BT

Further, (21) holds if and only if

.
1 1

m_¢l. = RPR! - —— ]

! ’ ! .Ef.—.1?kRg‘ 2=t B RL

i = nf L —
= A RI Ef:lptRk—Ek=l QER;,-n ]
BR .(Zf=1§kR?)(2f=1§kR{)
=RrRS e Gl ~ Tiei Pt ]

T (ke @R (Tin PeRY)

or equivalently, if and ounly if

N = pf L
m DR — ) o T R
e;=¢;-‘.-+1'?«""R}r Ek-l E4le Zk_l(h % ] (22)

= N —
. (Ef:l 'IER?)(ZkﬂPI:R{:)
In order to show that every solution of axioms (Al}-(A4) is given by Equa-

tions (18)-(19) we proceed as follows. Using property (A4) we observe that p;; /p;
and g;;/§; are well defined on the support A of (5;,7;), and therefore from (13)

@ = g_f-' >0on A.
_ b 4
Properties (Al) and (A2) imply that there exist ¢ > 0 and a set of positive
integers Q@ C Z3 such that p;;/B; = gji/T; > €. Thus we can define
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= {(1,7) : -4- > £}, and a set related to Q defined as follows
{i: (4, ]) E Q for some j}. We now define the following functions

@
Q
L
= exg(i) D xglk)qe,
k=1

N
= exgli) D_ xg(k)Pe,
k=1

where y denotes the characteristic (or indicator function} of a set. Note that we
can think of Q as a “connectivity set” which specifies all male groups which have
contacts with the jth female group.

We now note that

L L 2
E Rgi=¢ (Z X’Q‘(kﬁk) : (23)

k=
and
N N 2
ZRIP;*E(Z xz(k)T 5 ) (24)
j=1 k=1
Hence
R}fRE" Zk IX_(k)'Ik
———— =€ bt Rat Al 25
et R{B xa(Ixqli )Ele Xa‘(k)Pk )
and
R{RP Tbes Xg (k)T
—_—= sl R Ay (26)
Zf:x RYT, GX“( )H )Zk 1x“(k)‘1k
Now let 2 7
pij k=1 Xg k)G
m = 20 exo(ixgli) ST
. ! p; EX"‘( ) )Zk 1Hk)Pk
e xg(¥)
’ i ; et EL
éis T exg( )X‘(J)m
From the last two expressions we see that
L
Zsﬁ '5; = 1 — exgl(i) Y xg(k)qe = I,
j=1 k=1

and

10
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N
Zsﬁ,.q‘ 7Y xglk

=l k=1
Further, since

N =
i xgb)pe Loy xgkix
Teaxg®)% e Xg(k)Pe
We see by using (23)-(26), that Equation (22) is automatically satisfied. From
the definition of ¢7} and from (25) we obtain (18), and (19) is obtained similarly

using (26).
Hence we have established the following results:

$7 — ¢1; = exg(ixgld)

Theorem 2 Let {q& } and {¢f } be twe nonegative matrices. Let £ = Ek =1 Pt
¢ and t Ek_l qkqéjk where {(3;,%:) § = L,..,N andi = 1,...,L } de-
notes the set composed of the Ross solutions. We also let B = l— i o=
1,..,L and RJJ =1- J,J = 1,.., N, and assume that ¢ and qﬁ;f. are chosen

tn such ¢ way that (22) holds and RT" and R}' remain nonnegative for all time
t > 0. We further assume that

L L N
SN m =)D Pdumi <1, ®

i=1 i=1 k=1

and

=l k=1

N
S d3,=3" sy <
i=1
Then eguations (18) and (19) give a solution of azrioms (A1)-(Ad). Conversely,

any solutions to arioms (A1)-(A4) is given by Equations (18) and (19) with (¢}
and {qﬁ_{,-} satisfying the above conditions.

Remark 2. ¢77 and ¢f can always be chosen in such a way that R* and Rf
remain uonnega.tlve for all time (for example, let them be in the interval [0,1]).
However, there is no recipe for specifying necessary conditions for guaranteeing
condition (7) because it is intimately connected to the time-dependent values
values of Tf and T7", and hence to the behavior of the dynamical system. Con-
sequently, the a.dmnsmble dynamical systems must be structured so that (7) is
satisfied for ail time (including t = 0).

An important question is whether it is possible to have a separable solution
in one one of the two sexes and not in the other. This is settled in our next
results which serves to ellucidate the meaning of the preference matrices o7
and ¢r’ These matrices, of course, reflect the actual proportions of pau:mgs
that occur rather than the personal preferences of the individuals in these pa.u-s
Consequenly, the balance law (22), which is imposed by the symmetry of pairings,

H
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fixes the structure of one of these matrices once the other is given. In the case
where one of the sexes has a separable solution, the condition imposed on the
other by (22) is quite strong, as is seen by the following theorem.

Theorem 3 [f either¢f} =, 0 <@ < 1, Vi, jorif ¢/, =8, 0< 3 <1, Vi, j,
then p;; = B; and ¢;; = ;, that is (18) and (19) reduce o the unique separable
Ross solution.

Proof, Suppose that ¢§‘ =a, 0<a< 1 foralli, j. Then Ef = &, and Rf =l—a
for all . Thus

Rm
=T (1= @) = . 2
vt {( )Ek 1 T RY "} 0
But from (22)
m _ r —a (1-“)—Ef=171'1-13k
§=ar il )[ (- @) Sl kT ] -

which implies that

a) — 2& 1 ‘IkRm}

(1
=) p =1~/ —a+R"'[
z P Zk lquﬂ‘

Thus (1—a)

EL~1 T R7

which implies that R™ = §, an arbitrary constant. By the definition of R" we
have 0 < § < 1. Now, using (28) we get 4]} =1 -8 = 8, with 0 < § < L. From

(23) we obtain
_ [(1—a)s -
gGii =g —5—- +a ]| =74;.

Similarly, starting with ¢77 = 5, and using the above argument we have p;; = p;,
and the proof is completed. O

l=a+ R —F—"—

Remark 3. As in the one-sex framewortk, the only separable solution is pro-
portionate mixing. Theorem 3 shows that solutions cannot be separable in one
sex and not the other. Solutions where one sex chooses while the other does
not are applicable to models for vector-transmitted diseases in which the vector
exhibits strong host preference, while the host is just a “moving” target. Clearly,
the balance condition (22) imposed by the pairing hypothesis imposes an auto-
matic “preference” restriction on the host even though the preferential seeking
is performed by the vector only.

Remark 4. Several other one-sex special solutions have been discussed in the
literature. These include “preferred” mixing, like-with-like mixing, etc. (see Nold

12
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1980, Hethcote and Yorke 1984, Blythe and Castillo-Chavez 1989, Castillo-
Chavez and Blythe 1989, Jacquez et al. 1988, Hyman and Stanley 1989, Gupta
et al. 1089, Blythe et al. 1989, etc.), and the several examples of their gen-
eral solution given by Busenberg and Castillo-Chavez (1989, 1991). Blythe and
Castillo-Chavez (1991a) have established explicitly that all these solutions are
special cases of the general solution of Busenberg and Castillo-Chavez (1989,
1991).

A derivation of this general solution which explains the steps on the basis of
demographic reasoning through the budgeting of rates is found in Blythe et af
(1991a).

Remark 5. The gonorrhea model found in this section, but for one-sex popula-
tions, was introduced (along with some generalizations) by Castillo-Chavez and
Blythe (1990) as a simple device to easily test mixing patterns. A thorough nu-
merical analysis of these mixing matrices (one-sex framework) is found in Blythe
and Castillo-Chavez (1990b). A discussion of methods for estimating the mixing
matrices (one-sex framework) from data can be found in Blythe et al. (1991),
and Pugliese (1990).

4 Two-sex age-structured models

We formulate two-sex models of the SI type with age-structured models. One
follows individuals while the other follows pairs. Extensions to models for other
diseases such as AIDS or gonorrhea that require a different epidemiological and
compartmental structure can be easily formulated following the approach found
in Busenberg and Castillo-Chavez (1989, 1991) and Castillo-Chavez et al. (1991).
To formulate these models, we need a description of mixing functions that in-
corporate age (risk can be easily incorporated, see the above references). Pairing
is defined through the mixing functions:

p(a,a’,t) = proportion of partnerships of males of age a with females of age

a’ at time ¢,

¢(a’, a,t) = proportion of partnerships of females of age a with males of age

_a at time ¢,

and we let

C(a,t) = expected or average number of partners of a male of age a at time

t per unit time,

D(a’,t) = expected or average number of partners of a ferale of age a’ at

time ¢ per unit time.
The following natural conditons characterize these mixing functions:

(Bl p,g 2 0.

(B2) fy pla,d’,t)da’ = By a(d,e,t)da=1,

(B3) p{a, a',£)C(a, t)T™(a,t) = ¢(a’, a,t) D(d’, T/ (a', t),

(B4) C(a,t)T’"(a,t)D(a’,t)Tf (a',t) = 0 — p(a,a’,,t) = ¢(a’,0,8) =0,

I3
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Conditions (B1) and (B2) are due to p and g being proportions. Condition
(B3) simply states that the rate of pair formation of males of age a with females
of age a’ equals the rate of pair formation of females of age a’ with males of
age a (all per unit time and age). Condition (B4) says that there is no mixing
in the age and activity levels where there are no active individuals; i.e., on the
set £(t) = {(a,a',t) : C(a,t)T™(a,t)D(a’, )T (a’,t) = 0}. This last condition
is usually vacuously satisfied in most applications. The need to state it derives
from the proof of the Representation Theorem (Theorem 2).

The pair (p,q) is called a two-sex mixing function if and only if it satisfies
axioms {B1-B4). Further, a two-sex mixing function is called separable if and
only if

P(ﬂ, a’: t) = pl(a, t)p'l(“rr “') and Q(araln t) - ‘Il(a: t)qg(a’, t)'

If we let
ho(a,t) = C{a, )T (a,t) (29)

and
ho(a',t) = D(d', )T (d, 1) (30)

then, omitting ¢ to simplify the notation, we establish the following result:

Theorem 4 The only two-ser separable (Ross) mizing function satisfying con-
ditions (B1-B4) is given by (3,7), where

Ha') = hy(a’)
"= b (wda’ G
hP(a) (32)

#(a) = 137 hy(u)du’

The proof is found in Castillo-Chavez et al. (1991).

We now let m(a,t) denote the density of (uninfected) males of age a who
are not in pairs at time ¢, and let f(a’,t) denote the density of (uninfected)
females of age a' who are not in pairs at time ¢. We assume that D and C
(as defined above) and pym and p; are functions of age (the mortality rates
for males and females), o denotes the constant rate of separation, and we let
that w(a,a’,t) denote the age-specific density of hetercsexual (uninfected) pairs
(where a denotes the age of the male and o the age of the female). Using the
two-sex mixing functions p and ¢, we arrive at the following demographic model
for heterosexual (uninfected) populations:

dm Om _ * / !
e ~C(a)m(a,t) /0 p(a,a’,t)da

% 33)
— tm(a)m(a,t) +./o (1 (a") + olw(a, o', t)da’,

I
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af  of _ N
5t + EPe —D(a'}f(a ’t)«/o q(a’,a,t)da .
~u @0 + [ lim(a) + rho(a, ', ),
9
dw dw Jw , , ,
o T A e = P )f(d', t)g(a,a’,t) (35)

= [ps(@") + pm(a) + 7]w(a, ', 8).
To complete this model we need to specify the initial and boundary conditions.
To this effect we let Ay and Ay denote the female age- and sex-specific fertility
rates, and let mq, fo, and wy denote the intial age densities. Hence, the initial
and boundary conditions are given by

m(0,t) = /om Am(a)uw(a,d t)da, (36)
f(0,8) = -/ow As(aw(a,d t)da’, 37
w(0,0,£) =0 (38)

£(a,0) = fo(a), m(a,0) = me(a), w(a,a’,0) = wo(a,a’). (39)

A preliminary analysis of this demographic model in found in Castillo-Chavez
et al. (1991). If we let o — oo then (formally) the above system approaches
ther classical McKendrick/Von Foerster model (see loc. cit.) This demographic
model, in conjunction with the McKendrick/Von Foerster model, will be used to
forrmulate epidemiological models through the usual creation of the appropriate
epidemiological compartments (see Hoppensteadt 1974, Dietz 1988, Dietz and
Hadeler 1988, Castillo-Chavez 1989).

We begin by letting T™(a,¢) and T/ (a’,t) denote, respectively, the male
and female densities of single infected individuals. Hence, the heterosexual pairs
are denoted by: wms(a,a’,t), was(a,a’,t), wmp(a,a',t), and warr(a,a',t}. If
we use the notation with the appropriate indexing (that is f m, F, or M) in
order to denote susceptible females and males and infective females and males,
respectively. We then arrive at the following epidemiological model that follows
pairs:

om(a,t) Om(a,t * f gt
m(68)  Im8D) o Coy(a,timiat) [ pms(a e )da

—-Cmp(_a,t)m(a,t)/:upmp(a,a',t)da’ — pm(a)m(a,t)
+ [ " [ (@) + o(a, )ty (3, ', )’ + f ur(a)

+ a(a’, a)jwmp(a,a’, t)da’, (40)

of(a", af(a’, P ' o ’
f(at t)+ féift)x*Dfm(a't)f(a't)fo qymlda’,a,t)da

s
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o]
- Df,w(al.t)f(ﬂ'.l)[ grarla’, a,t)da — ps(a) f(a', )+
0

/0 (e (@) + o{a’, )] (a, @', t)da

+'/0 [pm(a) +o(d, Cl)]wa(a,a’, t)da, (41)
BM a Mia
C‘gt,t) + a a(alt) :—CMf(a’t)M(ait)/ﬂ—mp&{j(a,a’,t)da’

~ Caee(@M(@,0) [ prer(a, o, O’ = ()4 (s,

+/0 [, (a") + (', )Jwaes (a, o' £)da’

+[ [’Jf-"(ﬂ") + o.(atl a)]wMF(a, a',t)da’, (42)
0
dF(a' t aF(a' t , , oo ’

E; ) + 3(‘;, ) = —Dpp(a’,t)F(a ,t)‘/; ¢rm(a,d',t)da

— Dppla’ ) F(d, t) /000 qu(g, @', t)da — pr{a")F(a’,t}
+ /00 (tm(a) + ala’, a)|wmpa,a’ t)da
0

+ Am@M(G) + o(a’, )]wpr(a, a', t)da, (43)

Owym(a,a',t)  Jwim(a,d' i Owim(a,d,t , , ,
! éﬂ 4+ a(a" ) , Fwy ét ) = Dym(@) (0, )smia’, . 2)

— (o(a’, a) + im(a) +,u](a’))wfm(a,a",t), (44)

' ' '
dupm(a,,t) | Swrm(e,a,t) | Jwrml® ') _ b () f(a' grmlasa,t)

da da’ at
~ (o(d', @) 4 () + pr(a"))wrm(a, a', 1), (49)
L) | Bupm 0 3
Dupu(3,8,1) | Dortt P~ Dyae(e' ) (o' Oyl ,8)
— (o(a', @) + ac() + 11 (@))wpar, (46)

3 , !,t 3 , ',t 8 , ',t , , )
wpua(: a',t) + WFMBS a,t) wPMé: a',t) = Dra(a)f(d', arae(a’, a,t)

~{o(a',a) + pu(a) + pr(a))wrac(a, a't), (47)

with appropriate initial and boundary conditions (see Castillo-Chavez 1989). It
is important to note that we have used “restricted” mixing functions, that is,
mixing functions that deal exclusively with certain “pairs”(namely, mf, M, Mf,
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and MF), and hence the mixing axioms {B1)-(B4) have to be re-interpreted in
this context (see the above references).

An SI model that does not follow pairs but individuals is therefore given by
the following set of equations:

dm(a,t) + dmfa,t)
at da

—Cm(ﬂ,t)m(ﬁ,f)/o Brm(8, & )P(m+anyy+r){a, ', 1)

Fla't)
Fla',t) + fla',§)

da’ ym(aymia,t),

(48)
af((.;t’t) + afg:' t) = - Df(a’,t)f(a" t)'/; ﬁu;(a, a’)q(J+F)(m+y)(a,a',t)
Mia,t) ,
(e, +miag o #m(@ 0,
(49)
IM(a, oM (a, o ’ ’
3(: t) + 3(a t) ::Cm(d,t)m(a;t)./n ﬁpm(a'a)P(m+M)(f+F)(a,a ,t)
F(a',t) .
Fa',t) + f(a',t) da' — pp{a)M(a,t),
(50}
BFE; ,t) + 35(;(;1’ t) =Dy (d, t)f(a"t)/; Bra1 (2, 0")a(s 4 Pyt (@2 2')
M(a,t) , ’
M{a.d) 3 m{a 50~ Hr(@)F.0),
(51)

where Brm(a’,a) and S (a,a’) represent the appropriate transmission coetfi-
cients. For a detailed derivation of a related model for one-sex populations see
Busenberg and Castillo-Chavez (1989, 1991).

5 Conclusion

In this paper we have given an axiomatic definition and found a representation
theorem for the general solution of the two-sex mixing problem. This representa-
tion theorem is based on multiplicative perturbations of the Ross solutions which
are the only separable solutions of this problem. We have shown that there are no
solutions that allow for one-sex preferential sexual systems with proportional or
random mixing in the other sex. These results generalize the corresponding the-
orems for the one-sex mixing problem that we previously obtained (Busenberg
and Castillo-Chavez 1989, 1991.) We have also formulated a model of the SIS
type for a discrete number of groups. We outline generalizations to age-structed
populations through the introduction of two epidemiological models that incor-
porate this mixing framework at the level of individual interactions or at the level

|+
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of pair dynamics. We point out that although models of Lhis type have been for-
mulated before (see Dietz 1988, Dietz and Hadeler 1988, Castillo-Chavez 1989),
here they have been formulated explicity under a unified framework.

Finally, we note that S. P. Blythe (1991) has shown that our original solution
(Busenberg and Castillo-Chavez, 1389, 1991) provides a representation theorem
for the n-sex problem. Nevertheiess, the separation of the mixing into two mixing
matrices (p and q) provides useful results, such as the imposibility of single sex
preferential solutions (see Theorem 3) that are not immediate from our original
formulation. This extra information arises from the breaking up of the group
reversability property (Axiom A3) through the use of the connectivity properties
of the groups involved (for example, individuais of the same sex do not mix, and
all pairings involve one member from each sex group).
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