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1. Intredgeron

Taking the charge of the Molokai conference
literally, this paper discusses problems in ecology
and epidemiology that represent grand scientific
challenges. The areas that we will discuss are of
fundamental scientific importance; they are also
ones where the potenual for supercomputing to
have major impact is tremendous, but not yet
realized.

Supercompuling represents a novet tool that
complements experimentation and classical theo-
retical approaches. [t can transform the way ecol-
ogists and epidemiologists even frame their ques-
tions, freeing them from constraints that have
been taken for granted. Such liberation will take
time, but the issues are too important to delay
initiating the process.

In this paper, we join ecology and epidemiol-
ogy — more precisely, the epidemiology of infec-
tious diseases — because they represent closely re-
lated subjects. Ecology deals with the relationships
between organisms and their environment, which
includes other organisms and other species; among
the interspecific interactions of concern are com-
petition, predation, and parasitism. The dynamics
of infectious diseases represents a special case of
the latter: an interaction between parasite or path-
ogen and host, where the particular infectious
agent may be a virus, a bacterium, or other
organism. Viewing the dynamics of infectious dis-
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eases within an ecologicai as well as an epidemio-
logical context has provided a new perspective on
disease spread, control, and evolution [1.25], and
has given new impetus to modeling efforts.

Given the parailets discussed in the last para-
graph, it is not surprising that efforts at modeling
ecological and epidemiological interactions, though
historically they developed separately, have fol-
lowed quite similar paths. The classical fare in
both fields has involved dynamical systems of low
dimensionaiity, in large part in deference to what
could be done anaiytically. In ecology, statistical
mechanical theories of interacting species have
been deveioped, but have had no real impact on
the subject because the necessary simplifying as-
sumptions cannot be justified btologicaily. Eco-
logical systems are not composed of ensembles of
interchangeable particles, and show tremendous
heterogeneity and complexity across a range of
scales. Analytical approaches have not been capa-
bie of dealing with the full range of complexity,
although of course they remain critical elements in
any integrated approach to studying complex
ecosystems. The supercomputer complements these
methods. and opens up dramatic new possibilities
for understanding the structure and dynamics of
ecosystems and epidermucs.

2 Feolouicad Systems

In the eariy part of the twentieth century, two
views of ecosystems were advanced. One, due t0
Gleason [18], argued that plant communities were
very loose assemblages, that spectes were distrib-
uted individualistically, and that stochastic factors
were of major importance. The contrary view [13]
argued that the vegetation at a particular location
would tend to an asymptotic state, the climax,
determined by local climatic and edaphic (soil)
conditions and consisting of a single or a small
number of competitively dominant species. The
latter point of view was also represented in the
mathematical theories of Lotka (28] and Volierra
(34], whose approach was developed to describe

0376-5075,/89,/33.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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animal communicss, but was applied more gener-
ally. These models. which are taught in introduc-
tory ecology courses and continue 1o provide grist
for the mulls of mathematicians today, consist of
systems of differental equations representing the
dynamics of interacting species. treated as if
chemicals in solution. The emphasis s almost
aiways on the asymptotic behavior, which usually
iavolves convergence Lo a singular pornt or a limut
cycle. The general charactenstics of such ap-
proaches invoive determimism. predictability, ho-
mogenerty. and equilibrium, all of which are fea-
tures that cause the ecologist some concern.

The most influential applications of these equa-
tions have been to pairs of interacting species:
attempls to expand beyond this have led to some
interesting mathematical excursions, but to very
littie biological success. Given the uncertainty with
which the forms of the equations. much less the
parameters, are known, the classical problems of
analytical compiexily, sensitivity to parameters
and initial conditions, and error propagation have
seriously restricted our ability 1o use such for-
malisms (o predict the dynamics of ecosystems.

Equaily probiematic s the fact that the choice
of the ecological species as the fundamental unit
to use in modelling 1s arbitrary. In some cases, one
must break the spectes into age classes, develop-
mental stages, genetic types, or social groups. In
others, it is appropriate to lump species iogether
into groups that perform similar functions. In-
deed, it may be appropriate to do both at the same
time, lumping together the juvenile stages of a
group of species that show similar behavior at that
life stage. and creating different groupings at adult
stages. Indeed. any choice of aggregate variable is
10 some extent arbitrary, suppressing heterogene-
tty within a group in an attempt o organize
individuals tnto aggregates for which some char-
acteristic behavior can be assumed.

One of the most intriguing aspects of a popula-
tion’s structure 1s its spatial distribution. In much
the same way that a population can be subdivided
into age groups, it can be subdivided into local
subpopuiations; and it is this patchiness of popu-
lations, coupled with environmental variability,
that accounts for the coexistence of large numbers
of species that otherwise could not exist together.

For continuously distributed species, as for ex-
ample oceanic plankton, continuum descriptions
are appropriate; and a considerable literature ex-

15ts based on the resultant coupied parabolic par-
ual differential equations. Such approaches can be
very mstructive in (reating such probiems as the
spread of invading species. including those that
cause epidemics, and there (s a beautiful and
applicable mathematical literature that emerges
from such descriptions on the asympiotic spread
of propagation [24.32) Nonetheless, such ap-
proaches are not easily extended to the considera-
uon of localized random disturbances, which are
common features of ccosystems, and for which
percolation theory and approaches involving inter-
actng particle svstems [26.35.15] mav be more
appropriate. Furthermore, most ecologists are un-
able to take data over a continuum of spatial
scales stmultaneously, and tend to select study
sites of fixed (and small) size for reasons that have
more t¢ do with logistics and finances than with
science.,

One of the most exciting challenges facing eco-
logical theorists is to address these and other
guestions by developing methods for relating
processes taking place on different spatial, tem-
poral, and organizational scale. A proper theory of
scaling for ecosystems should stimulate experi-
mentation and data collection that address ex-
plicitly the manifestation of patterns on multiple
scales, and provide the basts for extrapolation
from data collected on one scale to patterns on
broader or narrower scales. Such a theory also
would address two related and emerging problems
of substantial applied importance. The rapidly
accurnulating base of information arising from
remote sensing is restricted in resofution by the
minimuimn pixel size that can be used; theories that
can (nterpret that information in terms of processes
played out on finer scales are a fundamental need.
Furthermore, as attention turns to global climate
change and its implications for Earth's ecosys-
lems, various modeling groups have seen the at-
tractiveness of coupling global climate models with
models of the dynamics of ecosystems; such ap-
proaches would allow one to address not only the
effects of a changing climate on ecosystems, but
also the reciprocal effects that altered ecosystems
{for example due to deforestation) must have on
climate change. Yet the typical scales of resolution
tn global climate models are orders of magnitude
coarser that those used in ecosystemn models; and
even with massively parallel processing, the poten-
tial for refining the grid of the climate models is
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severely limited. Thus the alternative approach
must be developed, of scaling up ecosystem mod-
els to provide believable models at the landscape
level. This is the ultimate goai of our approach.

A necessary siep in developing a landscape
model is to define a fundamenzal scale, that of the
primary building block of the larger model.
Processes occurring at smaller scales are repre-
sented by their average effect on processes at the
fundamental scaie. For example, one of the sys-
tems we are modeling is a serpentine grassland at
Jasper Ridge, Caiifornia, and the fundamental
scale we have chosen is a 10 x 10-cm area. (We
will use the Jasper Ridge model in the [ollowing
discussion to illustrate our approach.) Of course,
the chotce of any scale is to some degree arbitrary,
ignoring heterogeneity within a cell in order to
retain a fundamental unit sufficiently large that its
dynamics are statistically reasonably predictabie.
We also are investigating models that account for
dynamics occurring at a smaller scale ~ tracking
mortality, reproduction, and competition as a
function of spacing at length-scales on the order
of millimeters or centimeters in an atiempt to find
an optimai degree of resolution. [n this paper, we
ignore the finer details and mode! demographic
processes as a function of population densities
within a 10-cm by 10-cm neighborhood.

One of the factors influencing the choice of
fundamental scale of the Jasper Ridge model is
the size-scale of disturbances affecting the grass-
land, since it has been established that species
distributions at Jasper Ridge are controlled 1o a

- large extent by disturbance regime {21}, approxi-

mately 10% of the landscape is disturbed per year
by the actions of small mammals and insects. To
capture the landscape dynamics of the grassland,
we choose the fundamental scale of the model
(100 ¢m®) an order of magnitude smaller than the
size of a typical disturbance (1100 cm’ on average
(21
Once the scale of the smallest model unit is set,
the second step in our approach is to build a
landscape level model by constructing a 10 cell
grid incorporating dispersal, competition, and spa-
tially correlated extrinsic factors. The dynamics
portrayed at the landscape level are generated by
copies of a basic demographic model running in
~ch fundamental unit, or grid cell, of the land-
scape ( Fig. /). The model in its simplest form can
be run efficiently on a microcomputer; but as
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Fig. 1. General structure of the Jasper Ridge sarpentine

grassland model as it runs within individual cells of the

model grid. The same model structure is used for each

species, with connections between species coming

through competitive interactions during the flowering

stage. Connections among cells of the modet grid occur
through dispersal.

greater detail is added, it is necessary to use the
facilities of the Cornell National Supercomputer
Facility (CNSF). This is particularly true when we
wish to explore parameter space in detail. Because
of these considerations, the model is being coded
in FORTRAN: and the same version, with slight
modification, can be run on an IBM clone, the
CNSF, or a Macintosh. Spatial and temporal sta-
tistics applied to model output are more computa-
tionally intensive than the model runs themselves
and must, in general, be conducted on the CNSF.
The structure of the model is designed to capital-
ize on the parallel capabilities of the CNSF.
Currently, the Jasper Ridge model is built
around four plant species, chosen to represent
demographic types characteristic of the plant com-




i ki

Y

Al idthed

I TETN

Ly " .

-

268 S.A. Levin et al. ' Dynamical Models of Ecosystems and Epidemics

A
9
i |
: s © -["f'-— No Disturcanca
! 2 |
L 5 I
| o 0 |
! 5 '
i 2 i
} g = |
: i
= |
I 10 i
t
§
! 3 T T " T 1
! Q 20 40 §0 a9 tag
; Tima Slap
B c
L 50 -
L Suly Disturbance
o ql¥ Mo Disturbanca &0 -
3 3
= = No Distwbance
o » a
2 T R0
3 3
2 3
< e < 20 4
) H
[l & I
=X - '
19 0 4
3 L L | L R 2 Aol Disturbanca
o] 20 40 50 30 1030 Q 20 40 50 30 160
Tirme Stap Tima Stap
|

Fig. 2. Mean abundance at each time step tor Lashthenia califormca, one of the four species in the Jasper Ridge modetl,

averaged over ali cells of the same disturbance type. [A) The model run as one cefl for 100 generations with no

disturbances. (B) The modei run as a 100 x 100 gric of cells for 100 generations with no disturbances. (C) The model run as

100 %100 grid of ceils tor 100 generations with two disturbance types, Aprit and July, affecting approximately 10% of the
model cells during gach time step.

munity. Connections between the species occur
through competitive interactions, which, in the
current version, act to modify seed production as
a function of the densities of the four species
within each model ceil. This represents a major
regulatory feature of the demographic model, as it
introduces a density-dependent dynamic regulat-
ing the production of seeds by individual plants.
As density within a cell increases, seed production
by individual plants declines, The dynamics are
such that each species, in the absence of dis-
turbance, would reach an equilibrium population
density {or limit cycle) over time ( Fig. 2a); in the
presence of random disturbances, the stochastic
process is statiopary and approximately ergodic
(depending on boundary conditions).

Landscape level processes in the Jasper Ridge
model are produced, in part, through mechanisms
that act to couple dynamics among cells across the

landscape. These include disturbance, dispersal,
and competition. For example, the dispersal of
seeds among cells allows recolonization of a dis-
turbed site, or invasion by an introduced species,
and acts to connect pepulation dynamics across
the grid. Recurrent disturbance is necessary to
maintain landscape level heterogeneity. Otherwise,
synchronization across cells occurs because of the
self-damping of the demographic model within
each cell; thus, without disturbance the model
approaches a stable point or limit cycle at the level
of the landscape through time ( Fig. 26} Without
an outside forcing function, the landscape model
simply becomes a large-scale realization of the
model constructed at the fundamental scale, with
dispersal serving simply to homogenize the system
across space.
Spatial heterogeneity is introduced by disturb-
ing sites at random within the landscape; Monte
v
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Model Grid with Disturbaznces

[0 - No disturbance
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- Apnil disuubance
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Fig. 3. A subsection of the grid for the Jasper Ridge moget showing randomiy distributed disturpances of two types.

Carlo techniques are emploved 10 determune the
location of disturbances { Fig. 7). Disturbances are
allowed to occur over two distinct time periods in
the yearly cycle depicted by the model. The im-
pacts of introducing disturbances are manifold
and depend in part on ume Of occurrence { Fig.
2¢) relative to the seasonal dynamics of species.
Disturbances can affect local population structure
by removing plants from the population before
they reproduce (Disturbance | in Fig. /), and can
have a iarge impact on the iocal abundance of a
species, especially since all of the piants being
modeled are annuals. In contrast, a disturbance
occurring after seed set (Disturbance 2 in Fig. [)
can have either little or no effect on the local
population or a large effect, depending on whether
the seed bank is destroyed. Differences among
species in time of flowering and in dispersal abii-
ity under a disturbance regime can act to create
substantial differences in distributional patterns
observed across the landscape. Another major im-
pact of disturbance is to create a different physicat
environment within affected cells through a change
in moisture and nutrient availabilities [23,30]. This
is modeled as a change in parameter values for
rates of germination, survival, and reproduction of
plants growing on cells affected by disturbances.
Again, environmental differences associated with
disturbances act to create pattern across the
landscape.

Another source of landscape heterogeneity can
be introduced by building environmental gradi-

ents into the model. This would be similar to
modeling a landscape over a range of altitudes ot
range of soil types, where population processes
change in response to a changing environment.
Parameters descrnibing demographic processes
along a static gradient in the model would then be
a function of locaton as well as of disturbance
regime. This provides a mechanism f{or modeling
over several community types and for developing
a model at larger landscape scaies.

Model outputs are anaiyzed by evaluating a
variety of spatial and temporal pattern descnp-
tors: correlograms and semivariograms, power
spectra, fractal dimensions, and nested analyses of
variance (see for example Fig. 4). These may be
used to compare model outputs with data taken
from the natural system, and used to refine the
model. The model itself can then be used as an
experimental tool on the computer, on which the
parameters of various key processes can be varied
to study their importance in defining pattern on
various scales. With Richard Durrett, we have
begun the consideration of percolation model ap-
proximations to our detailed model, in the hope of
gaining understanding of the importance of the
basic processes. Finally, analogous versions of the
model are being implemented for forest systems.

Clearly, it is possible to make a model more
and more detailed by adding complexity. How-
ever, adding complexity to any model can be
dangerous, adding to the dynamical complexity as
well. Furthermore, with increasing resolution come
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increasing computational needs, as well as prob-
tems of parameter estimation. Developing models
at larger fundamental scales 15 one wav to simplity
the process, both i terms of computation and
comprehenston: our goal is to develop these
descriptions by examining the emergent properties
of systems structured at finer scales, and to com-
pare the output of the aggregated behaviors with
observed features of real systems. This is an itera-
tive process, which can be repeated several times.

Yo Epidemiologiced Sysiens
Although Dantel Bernoulli presented a mathe-

matical model for the effects of smallpox vaccina-
tion as early as 1760, current mathematical models

of the spread of epidemics trace back to work of
Enke in 1839 (ses (1¢]). and to the noticn.
advanced by Hamer [19], that the critical process
in the dynamics of disease was tn the contact rate
between suscepubles and infectives (see also
[31.4.29]). The contact rate describes the essennal
nonlinearity in what otherwise is basically a linear
system. The ciassical assumption is that the rate of
new infections is proportional to the number of
infecuves and to the number of susceptibles, an
assumption that is casy to motivate from first
principles when densities are low. [t is recognized
that this simpie reiationship is likely to break
down at hugher densities, but it remains a conveni-
ent starting point for most models in use today. A
related problem. particularly important in the con-
sideration of populations that tluctuate in size, is
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whether contact rates should be functions of the
actual numbers of susceptibles and infectives in a
particular area, or only on the relative proportions
with respect to the total population, including
recovered, immune, and latent individuals. It is
not the purpose of this paper to eater into that
debate, which of course can be resolved only with
regard to particular diseases and under particular
conditions.

Ross [31], in studying the dynamics of malaria,
and Kermack and McKendrick {22] produced two
of the classic papers of the mathematical epide-
miological literature. The contribution of Kermack
and McKendrick was the demonsiration of the
existence of a threshold value for the number of

susceptibles, such that if fewer were present in a
population, a disease could not take hold. Such a
threshold is important for a variety of reasons,
most importantly because it provides a target for
vaccination strategies. If the susceptible popula-
tion is reduced below the threshold value by re-
moval techniques such as vaccination, then the
disease can be controlled. Of course, computation
of the threshold can be problematical and highly
model dependent, and particular interest today
focuses on how that threshold is to be computed
when the population is broken into distinct sub-
groups. This is one of the foci of our own work.,
Another objective involves understanding the
periodic and more complicated behavior observed

¥
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in the dvnamics of many diseases {20,32]. Soper
[33] began the investigation of the causes of Deri-
odic behavior; but the list of contributory causes
continues to expand [20].

The availabiity of supercomputers has ex-
panded greatly our capacity to investigate thesa
1ssues. In particular, paralle processing techniques
are especially suited to the problem of nonhomo-
geneous mixing, which is a consequence of the fact
that populations are subdivided into different risk
groups. Within groups, the rates of interaction are
typically very different than they are among
groups; and furthermore, intergroup interactions
are not likely to be homogeneous. For example. in
the dynarmucs of diseases such as influenza, age is
a primary consideration, since different age groups
have different contact rates, different susceptibili-
ties, and different risks of mortality. For a sexu-
ally transmitted disease such as AIDS, the aduit
population is key: but subdivision is necessary
with regard to sexual preference and behavior. For
ALDS, of course, drug users also represent a risk
category that needs to be considered explicitly. [n
the remainder of this paper, we will discuss briefly
models of three viral diseases: myxomatosis, in-
fluenza and AIDS.

Myxomatosis is a disease of rabbits, and has
been used as a biological method of controlling
the spread of rabbits in Australia and in Europe
[17]. The early success of the viral control soon
was dissipated, however, as evolutionary pressures
drove the virus towards lower levels of viruience.
and the rabbit to increased resistance. Differential
equation models of this system captured many of
the principal features, but were unable to repre-
sent the full complexity: the multiplicity of grades
of the virus, the geographic and seasonal variabil-
ity, the etiology of the disease, and the demogra-
phy of the host population.” As such, still unre-
sotved are explanations of the coexistence of viral
grades in the field, and projections of prospects
for future control of the rabbit popuiation.

Detailed simulations [16] on the CNSF have
demonstrated that even the interaction between
single grades and homogeneous hosts can show
complicated dynamics, including periodic and
chaotic behavior. In particular, the natural oscilla-
tions that are characteristic of any host parasite
system interact with the seasonal forcing that de-
rives from host demographic patterns to produce a
panoply of dyramic behaviors as critical parame-

ters are vaned. Further investigations have eluci-
dated the interacuuns among strains, and the
coevolution between virus and host.

Viral evolution takes on a new dimension in the

- annual ravages of influenza, whose rapid changes,

faciiitated by a particulariy labile molecular struc-
ture, forl host coevolution and result in the
sporadic reappearance of strains long disappeared.
Although the molecular shift and drift involving
the surface antigens of the virus are well under-
stood, such knowledge is insufficient to explain
the interepidemic periods. Such peniods are de-
termuned by epidemiological characteristics, in
particular the time necessary for a sufficient sus-
ceptible population to rebuild after an epidemic or
pandemic. The threshold behavior mentioned
earlier as a general property of epidemics is key to
an understanding of when new outbreaks can oc-
cur. A separate but related problem involves an
understanding of how the seemingly dormant
strains of the virus are maintained for the decades
that can pass before the susceptible population
reaches threshold.

Our tnvesugations of influenza [6,7,27} on the
CNSF have incorporated details of the age struc-
ture of the host population. including age-specific
contact rates, mortalities, and fecundities. It is
well appreciated that the human population does
not mix homogeneously; for example, school
children tend to mix with school children, and
have a particulariy high contact rate and probabil-
ity of transmission of the disease. Non-homoge-
neous mixing of different age groups does not
appear capable of leading to sustained oscilla-
ttons, but can produce oscillations that are very
slowly damped. A separate phenomenon that pro-
duces similar behavior is the cocirculation of dis-
unct strains of the virus, which show partial but
incomplete cross-immunity with one another.
When a full age-structured model is considered in
4 population in which such partially incompatible
viral strains are cocirculating, the two weakly
damped oscillators are mutuaily excitatory; the
result is that sustained oscillations are maintained.
Analytic models have provided deep insights into
this problem, but a full understanding could be
obtained only when those analyses were carried
out in concert with detailed simulations on the
CNSF.

Finally, and most recently, we have turned our
attention to models of the AIDS epidemic. AIDS,
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as a primarily sexually transmitted disease, 15 1
disease for which the assumption of homogeneous
mixing is a total failure. Detailed models [5.8-12]
have been developed that subdivide the popu-
lation into risk groups based on sexual behavior or
other characteristics, and show how to compute
the threshold for such mulu-group modeis. How-
aver, what are needed now are models that incor-
porate the rapidly accumulating information on
human sexual behaviors, and that are tailored to
different geographical regions. For these detailed
models, the supercomputer is essential.

4. Conciusion

We have presented here only the briefest intro-
duction to the application of the supercompuler to
emerging problems in ecology and epidemiology.
In the short space of this paper, it is impossible to
develop these investigations in detail: for that
purpose, the reader is directed to the referenced
works. Suffice it to say that the epidemiological
and ecological problems facing us in the next
decade represent some of the grand challenges for
society: this applied importance, and the models’
rich and fascinating mathematical behaviors, place
them in the elite group of Grand Challenges for
Supercomputing.
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