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Chance and Chaos in Measies Dynamics

By B. T. GRENFELLTY
University of Cambridge, UK

[ Read before The Royal Statistical Society at a meeting on Chaos organized by the Research Section
on Wednesday, October [6th, 1991]

SUMMARY

This paper examines the impact of seasonality and chaotic dynamics in simple models for
the population dynamics of measles on the prooability of fade-out of infection. It uses Monte
Carlo simulations of the seasonally forced SEIR model, with parameters appropriate to
a city of | miilion people. The incidence of fade-out in a spatiaily homogeneous model
is compared with simpie spatial models involving various degrees of coupling between
subareas. The results indicate a significant degree of fade-out of infection, which is not
consistent with previously derived criteria for the persistence of measles. Lowering the degree
of spatial coupling does not substantially reduce the extent of fade-out. A simple non-linear
analysis of the simulated series is presented, and the epidemiological implications of these
results are discussed.

Keywords: CHAOS; FADE-OUT MODELS; MEASLES; SEASONALITY; STOCHASTIC PROCESSES

1. INTRODUCTION

In his recent paper, Bartlett (1990) raised some important questions about the current
interest in ascribing irregularities in the incidence of measles epidemics to chaotic
dynamics. The chaotic approach is the latest in a large body of work (reviewed by
Hethcote and Levin (1989)) which seeks to explain the pattern and persistence of
epidemics of childhood diseases. Another, complementary, aim of epidemiological
theory has been to quantify conditions for the maintenance of infection in human
communities. In particular, the seminal work of Bartlett (1956, 1957, 1960) identifies
an urban population of around 250000 as a lower stochastic threshold for the
persistence of measles. The present paper will use Monte Carlo simulations of simple
measles models (Olsen et al., 1988; Olsen and Schaffer, 1990) to explore the relationship
between chaos and persistence. We begin with a brief review of the background to
the problem.

1.1. Detecting Chaos in Measles Time Series

Recently, several groups, notably Schaffer and his co-workers, have identified
measles (and other childhood infections) as probably the best candidates in ecological
systems for the detection of chaotic population fluctuations (Schaffer, 1985; Schaffer
and Kot, 1985a, b; Drepper, 1988; Olsen and Schaffer, 1990; Sugihara and May, 1990;
Sugihara et al., 1990). In analyses based on the comparatively long notification time
series available for measles, Olsen et a/. (1988) and Olsen and Schaffer (1990) propose
evidence for chaos from some European and American Ccities, based on the

t Address for correspondence: Zoology Department, University of Cambridge, Dow"ning Street, Cambridge,
CB2 3EJ, UK.
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reconstruction of attractors, and the calculation of Lyapunov exponents (measuring
instability) and correlation dimensions. F or measles in New York, Sugihara and May
(1990) have also suggested evidence for chaos, based on the internal predictability
of the series. By contrast, the much studied measles series for England and Wales
(Bartlett, 1957; Fine and Clarkson, 1982a, b: Anderson et al., 1984; Dietz and Schenzle,
1985) does not show evidence for chaos according to these methods {(Schaffer, personal
communication, and Sugihara and May (1990)—although it is detected according to
the analysis of Drepper (1988)). Recently, Sugihara er al. (1990) have suggested that
the effect may be due to averaging over the larger spatial scale of England and Wales:
evidence for this source of heterogeneity is discussed later. Casdagli (1992) reviews
the performance of time series methods for detecting chaos in systems subject to
significant noise.

1.2, Models

The main focus in modelling measles dynamics (as reviewed by May (1988)) is to
account for the dramatic recurrent epidemic behaviour of the infection before the
vaccine era and its response to mass immunization (Fine and Clarkson, 1982a, b).
These analyses have been based on various refinements to the basic Hamer-Soper
model (En’ko, 1889: Hamer, 1906; Martini, 1921; Soper, 1929: Bailey, 1957), which is
currently commonly expressed in terms of the so-called SEIR epidemiological model
(e.g. Schaffer (1985) and Bartlett {1990)):

%szu ~ SO b 1) S,
iE(#:bm) S(6) — (m +a) EQ), ()
%@:aaz)—(m +2) I(0).

Here, the dynamics of susceptible (S), infected but not yet infective (E), infective
(/) and recovered (and immune) individuals (R) are represented by a simple
deterministic model in continuous time, which assumes a constant total population
size S+ E+ T+ R, with rate parameters determining average life expectancy (1/m),
incubation (1/a) and infectious (1/g) periods, and a constant infectivity coefficient
b (E and the explicit inclusion of mortality rates are minor additions to the basic Soper
model; Bartlett (1990)). Equations (1), which generate weakly damped oscillations,
have been refined in a variety of ways to produce sustained epidemics. Hethcote and
Levin (1989) review progress in this area, which has involved developing the basic
model to allow for stochastic effects and various sources of heterogeneity in infection
(seasonality, age structure, spatial distribution, etc.). Currently the most refined
deterministic description of pre- and post-vaccination measles incidence in large
comniunities is provided by a combination of age structure (Anderson and May, 1983;
Dietz and Schenzle, 1985) and seasonal variations in contact rate associated with school
cohorts (Schenzle, 1985). :

The proponents of chaos in measles analyse a simpler refinement of equations (1),
based on a periodically varying contact rate

-
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() =byil + by cos(2wi)} ()

(Schaffer, 1985). The propensity for this modification to cause sustained oscillations
is well known (e.g. Dietz (1976) and Aron and Schwartz (1984)). However, Schaffer
(1985) uses a comparatively high amplitude in the contact rate (b, =0.28) to
demonstrate relatively irregular chaotic epidemic behaviour in the model. He counters
criticism of this large variation in contact rate on biological grounds (e.g. Dietz and
Schenzle (1990)), by defining it as an ‘effective’ amplitude which allows the simple
SEIR model to mimic the non-linear behaviour of observed measles data.

One problem with the deterministic SEIR model at this level of seasonal forcing
is that it generates very low incidences of infectives in the troughs between large
epidemics (Olsen and Schaffer, 1990). Olsen e¢ al. (1988) and Olsen and Schaffer
(1990) address this problem by recasting equations (1) and (2) as a stochastic model
(Bartlett, 1957}, which they explore by Monte Carlo simulation. Not surprisingly,
for very large populations (5 million) the resuits of deterministic and stochastic models
coincide. However, in a simulation of measles in Greater Copenhagen (population
| miilion) Olsen et al. (1988) introduce an infective immigration parameter o prevent
fade-out of infection. This population level is considerably higher than Bartlett’s fade-
out threshold, or that observed from other empirical studies (Black, 1966; Cliff and
Haggett, 1988). It prompts the following questions: how does the high level of seasonal
forcing in the chaotic SEIR model affect the degree of fade-out of the infection, and
what effect does the introduction of simple spatial heterogeneities affect the behaviour
of the model? In the present paper, these questions are considered via Monte Carlo
simulations of equations (1) and (2). The following three sections respectively describe
the details of the simulations, document and analyse their results and discuss the
epidemiological implications of these findings.

2. MODEL STRUCTURE

2.1. Basic Simulations

The Monte Carlo simulations of the stochastic analogue of equations (1) and (2)
were carried out on standard lines (Bartlett, 1957). For comparison, the epidemiological
parameters assumed by Olsen et al. (1988) for Copenhagen were adopted-—these, along
with the transitions used in the model, are summarized in Table 1. Rather than adopting
an exponential time to the next event, Olsen et al. (1988) used a constant time step.
Simulations using both methods indicate broadly similar results, although the
exponentially distributed time is adopted here since, in this non-autonomous system,
a constant time step would appear to disregard at least some variation in b as it changes
through time (in other words, a random time to the next step generates a variation
in the next value of b). Simulations were started near the deterministic equilibrium
and.run for 100 years before recording results to eliminate injtial transients (longer
initial periods do not affect the following results). The following analyses are based
on 200 years of simulated monthly data.

2.2. Spatial Heterogeneities

Two basic strategies have been adopted for the inclusion of spatial heterogeneity
in Monte Carlo simulations of measles. The first (Bartlett, 1957) assumes the random
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TABLE 1
Parameter vaiues and transitions used in the measles
Monte Carlo simulations described in the main texr

SEIR model pgrameterst (Olsen et al., 1988)

a 48.67
z 36.19
b, 0.0010107
b, 0.28
m 0.02
vl 21.024
Transitions and races§
-5 mi{S(H+ E() + [N+ R(H)
S—E ble) S(e}y K1)
E—~/ a E{t)
—R gIln
5— m S(n
E— m E(t)
- m i(t)
R~ m R(¢)
—{§§ v

TAIl parameters are in units year ', except b, (vear ~' {nfective ')
and &, (dimensionless).

iConstant immigration rate of individuals into the populations
{for spatial simulations, this is split equally between subareas).
§For the spatial model, these transitions are computed for zach
area, and the cross-infection rate calculated from equation (3).
3§The small increase in population which this implies does affect
the simulations over the time periods examined,

diffusion of infectives between adjacent squares of a spatial grid. The second (Murray
and Chff, 1975) assumes cross-infection between infectives and susceptibles in different
subdivisions of the grid. This preliminary analysis assumes the simplest spatial
arrangement, in which the model city of 1 million inhabitants is divided equally into
two halves. For the analyses reported here, the infective diffusion and cross-infection
models give qualitatively similar results. We adopt the latter model in subsequent
simulations, since it gives a simpler transition to the two extremes of uncoupled and
completely coupled systems. In particular, the net infection rate per susceptible in
area j (j=1, 2) can be expressed as

N =0 () +c L(n) (3)

(k#j, k=1, 2), so that 0<c<1 defines a range from completely uncoupled to
completely coupled systems in terms of infection. The average infection coefficient
by was adjusted (to by.=by/(1 +¢)) to give the same net equilibrium infection rate
for each area as for the homogeneously mixed city as a whole.

2.3. Analyses
The following section characterizes the simulated time series in terms of simple
autocorrelations and univariate spectra, as well as squared coherency spectra between
different areas in the simulated city. A simple non-linear graphical analysis is also
performed exactly along the lines set out by Olsen et a/. (1988): the simulated time
series of monthly cases is embedded in three dimensions with an embedding lag of
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3 months, and a return map is calculated from a vertical Poincaré section through
the origin. A relatively conservative fade-out criterion of 1 month without cases (cf.
the figure of 3 weeks adopted by Bartlett (1957)) was applied to the simuiations.

3. RESULTS

3.1. Homogeneous Mixing

Fig. | displays a time series analysis for the simplest case in which the two city
subdivisions mix homogeneously with each other (i.e. c=1 in equation (3)). The
correlogram and spectrum of total cases (Figs 1(b) and 1(c) respectively) indicate strong
periodicities at frequencies of around 0.32 and (to a lesser extent) I cycle per year,
with a harmonic of the former at 0.6 per year. For comparison, Fig. 1(c) also plots
the spectrum from a spatially undivided simulation—as expected, the two simulations
produce very similar, spectra. Measles incidence for the two subareas of the
homogeneously mixing city are very similar; the squared coherency spectrum between
the two areas (Fig. 1(d)) illustrates a very close correlation except at high frequencies.

Olsen et al. (1988) also find significant spectral peaks at 0.31 and 1 cycle per year
in their analysis of 30 vears of simulated data, along with a further peak at 0.34 per
year which is absent from Fig. 1(c). As illustrated by the time plot (Fig. 1{a)), the
simulated series alternates periods of large epidemics with a period of around 3 years,
interspersed with more irregular eras of biennial cycles. The biennial periodicity may
be due to the duration of these latter epochs in the analysed series, or to differences
in the simulation method.

3.1.1. Fade-out of infection

Fig. 1(a) marks points in the simulated time series where fade-out (as defined earlier)
occurs—essentially, there is a high probability of fade-out (as defined by Bartlett
(1957)) after each major epidemic. Table 2 summarizes the incidence of fade-out as the
proportion of months in which cases are absent. Around 5% of the time, notifications
are absent from the simulated city. Compared with the available empirical evidence
from the UK, the USA and Pacific islands (Cliff and Haggett, 1988), this is a very high
figure for such a large city and is not consistent with the previously derived threshold of
250000-500000 (Bartlett, 1957; Black, 1966; Cliff and Haggett, 1988). The discrepancy
is confirmed by the observed data for Copenhagen, where no months with zero cases
were observed in the period 1928-68 (Table 3; L. F. Olsen, personal communication).

TABLE 2
Incidence of fade-out in measles time series for Copenhagen:
proportion of months without measles cases in the
simulations described in the main text

Simulation Proportional fade-out
No spatial subdivision 0.0588
2 areas, c=1 0.0508
2 areas, c=0.1 0.035
2 areas, ¢=0.01 0.0354

2 areas, c=0 0.027
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Fig. 1. (a) Time plot of part of the simulated monthly measles time series described in the text: the
simulation assumnes two spatial areas with a homogeneous infection rate (c=1in equation (3); the figure
shows total monthly notifications and notifications for one subarea (the other is very similar); vertical
bars denote months with no cases); (b) autocorrelogram for the equivalent full series of 2400 monthly
points; {c) spectrum of total cases (- » €quivalent spectrum from a simulation with no spatial
subdivision); (d) squared coherency spectrum between individual area time series (the spectra were
calculated by smoothing the periodogram with a 10-point average; other degrees of smoothing produce
similar qualitative results); the data were square root transformed and mean corrected before analysis

(Olsen et al., 1988)
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TABLE 3

Incidence of fade-out in measles time series for
Copenhagen: observed lower tail frequencies of
monthly measles incidence jfor the period [928-68

Cases per month Proportional frequency
0 0
l 0
2 0.002
3 0.002
4 0
3 0.008
& 0.004
7 0.008
8 0.004
9 0.006
10 0.006

3.1.2. Effects of spatial heterogeneity

Table 2 also shows the effect of reducing the degree of coupling (lowering ¢ in
equation (3)) on the proportional fade-out of infection. Overall, the transition from
the extreme cases of a single population group to a sum of two completely uncoupled
areas (¢ =0) produces a reduction of about 100% in the degree of fade-out. However,
even in the uncoupled case, there is still a considerable degree of fade-out. Fig. 2, which
presents a spectral analysis for the various spatially heterogeneous cases, sheds light on
these results. As the degree of coupling declines, the correlation between subareas
(shown by the coherency spectra in Figs 2(b), 2(d) and 2(f)) is gradualily reduced,
except at the common driving frequency of 1 per year in 4. The spectra for total cases
(Figs 2(a), 2(c) and 2(e)) also indicate this strong annual periodicity, as well as the lower
frequency major epidemics described above. The lower frequency peak is also apparent,
to a reduced extent, in the uncoupled (¢ =0) simulation. This occurs because the strong
common driving frequency in b often produces periods of synchronous major
epidemics. The associated synchronous minima in the infective time series generate
the significant degree of fade-out in the uncoupled system shown in Table 2.

In summary, introducing a very simple degree of spatial heterogeneity does not
greatly reduce the propensity for large amplitude variations in the infection coefficient
to induce fade-out at this population level (Table 2). Preliminary experiments with
larger spatial grids also qualitatively bear out this result, which echoes the findings
of Bartlett (1957). These results are also very sensitive to the assumed immigration
rate of infectives. For example, doubling the immigration rate eliminates fade-out
but produces time series dominated by annual fluctuations, which do not correspond
with the empirical data (Olsen et al., 1988).

3.1.3. Non-linear behaviour

Fig. 3 presents a simple graphical analysis of the non-linear properties of the
homogeneously coupled (¢ = 1) and uncoupled (¢ =0) simulations. It shows Poincaré
sections and return maps estirnated from the time series of total cases exactly as
prescribed by Schaffer and Kot (1985a, b). As expected, the homogeneous case produces
a humped map which is qualitatively very similar to that derived by Olsen et a/. (1988),
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Fig. 3. Poincaré sections and return maps {calculated as described by Schaffer and Kot {1985a, b))
for total case time series from measles simulations with ¢=1 ({(a) Poincaré section; (b) return map)
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and which they adduce as evidence for low dimensional chaos. Although the section
and map of the uncoupled series are more variable, it again produces an approximately
one-humped map. It would be interesting to extend this simple analysis to examine
how the degree of coupling affects other quantitative measures of stability, dimension
and predictability.

4. DISCUSSION

The introduction of ideas from non-linear dynamics into epidemiology has proved
very stimulating. In particular, the idea of chaotic dynamics raises the possibility of new
interpretations for the irregularities which are apparent in many notification time series.
On a more applied epidemiological front, questions about the predictability of epidemics
(Sugihara and May, 1990) may also present fruitful areas for future research. However,
as pointed out by Bartlett (1990) and Dietz and Schenzle (1990), theoretical analyses >
along these lines must be based on models of appropriate biological complexity. The !
results reported here underline the difficulties of using a strongly sinusoidally forced
SEIR model in this context. In fact it is likely that the minimum appropriate degree of
complexity should involve a combination of age structure and more epidemiologically
realistic seasonality, as set out for example by Schenzle (1985). For instance, Olsen
and co-workers (personal communication) have recently carried out further Monte
Carlo simulations of measles dynamics in Copenhagen based on a {non-age-structured)
SEIR model with a more realistic seasonal forcing function (Kot et ., 1988). Although
their results indicate a lower degree of fade-out (around 1% of months compared
with over 3% for the sine wave forcing function), this still does not account for the
observed persisience of infection (Tabie 3). Work currently in progress indicates that
the interaction of seasonality and age structure may account for this discrepancy
(Bolker and Grenfell, 1991).

In an interesting discussion on their paper, Olsen er al. (1988) underline the
importance of spatial heterogeneity, and in particular partial coupling between cities,
in the perpetuation of childhood diseases. Although the simulation with no coupling
described here suggests that such factors may not entirely explain persistence in highly
seasonally forced systems, the question of coupling is important. In particular, more N
work is needed to examine the impact of seasonality on the balance between fade-
out and coupling in larger spatial grids with smaller individual population sizes
(Bartlett, 1957, 1960). These questions can also be examined in terms of the available
empirical data. For example, although the measles incidence pattern for England and
Wales in the pre-vaccination period (1950-66) is very regular (Fine and Clarkson,
1982a; Anderson et al., 1984), there are significant heterogeneities between cities

TABLE 4
Correlation matrix of weekly returns Sfor measles in five English cities: 1950-661

London Liverpool Manchester Birmingham
Liverpool 0.142
Manchester 0.588 0.304
Birmingham 0.750 0.212 0.405
Sheffield 0.703 0.214 0.467 0.809

tData from Registrar General’s weekly reports.




1992] MEASLES DYNAMICS AND CHAOQS 397

300

800 —

600 —

Weekly Cases

68

Year

Fig. 4. Weekly measles notifications for Liverpool ( } for 1950-66

(Bartlett, 1957; Cliff and Haggett, 1988). Table 4 shows a correlation matrix for the
weekly reports from London, Birmingham, Liverpool, Manchester and Sheffield over
this period. Although the coupling is fairly high overall, Liverpool has a relatively
fow correlation, even with its near neighbour Manchester. Fig. 4 shows a time plot
for Manchester and Liverpool, which appear to be significantly out of phase for the
first half of the series. Whether this effect (which is much more apparent in the post-
vaccination series; Bolker and Grenfell (1991)) is due to epidemiological or other factors
is not immediately clear. It illustrates that the population dynamics of childhood
diseases still present unanswered questions which the new non-linear methods may
provide very useful tools for examining.
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