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SUMMARY

Measles epidemiology offers a useful perspective on the construction of models to
describe the dynamics of ecological systems. Simple models of measles transmission can
generate deterministic chaos by various mechanisms (Schwartz, 1985; Aron & Schwirtz,
1984: Rand & Wilson, 1991). However, incorporating more biological realism into the
model, in the form of age-structure and realism in the seasonal forcing function {Schenzle,
1984), can suppress complex dynamics. Adding stochastic terms to the models restores
complex dynamics, but raises new questions about demographic scale and population

structure in these models.

[. INTRODUCTION
Measles is among the best documented of human diseases in terms of
epidemiology and population dynamics (Black, 1984; Anderson & May, 1991). The

public health importance of measies has led to the collection of relatively long notification

time series for measles in many developed countries (Fig. 1) (Anderson et al. 1984). The

comparative simplicity of infection and immunity (Black, 1984} in measles also allows the
construction of plausible epidemiological models. This combination of data and conceptual
framework has generated a large quantitative literature examining the dynamics of the
disease (Schaffer & Kot, 1985; Drepper, 1988; Olsen er al. 1988; Olsen & Schaffer,
1990). This work has focused mainly on describing the persistence of infection
(particularly under the impact of mass vaccination) (Anderson & May, 1983; Anderson &
May, 1985a; Tudor, 1985; Anderson & May, 1982; Anderson & May, 1985b) and
accounting for the striking pattern of recurrent epidemics observed in developed countries

(Soper, 1929; Hamer, 1906; Bartett, 1957; London & Yorke, 1973; Anderson er al. 1984;



Fine & Clarkson, 1982) (Fig. 1). Both deterministic (Anderson & May, 1983; Olsen &
Schaffer, 1990; Schenzle, 1984; Aron & Schwartz, 1984) and stochastic (Bartlett, 1960:
Griffiths, 1973; Bartett, 1957) formulations of measles models have contributed to this
body of work. -

The last decade has seen considerable development of epidemiological models for
measles, to allow for various heterogeneites in transmission (spatial, demographic,
genetic, etc. (Anderson & May, 1984; Murray & CIliff, 1975; Caims, 1989)). In particuiar,
models incorporating seasonality (Fine & Clarkson, 1982: London & Yorke, 1973; Olsen
& Schaffer, 1990: Aron & Schwartz, 1984) and age structure (Anderson & May, 1985a;
Dietz & Schenzle, 1985a; Schenzle, 1984; Tudor, 1985) generate important predictions
both about the likely performance of vaccination strategies (Anderson & May, 19835a;
Anderson & May, 1983: Cairns, 1989; Greenhalgh, 1988; Yorke er ai. 1979) and the
observed dynamics of infection (Olsen & Schaffer, 1990; Schenzle, 1984: Rand & Wilson,
1991).

Recently, much attention has also been focused on the possibility that measles
dynamics in developed countries may exhibit low-dimensional chaos (Schaffer & Kot,
1985; Olsen er al. 1988; Olsen & Schaffer, 1990; Sugihara er al. 1990; Rand & Wilson,
1991; Grenfell, 1992a). The search for chaos is based on analyses of observed measles
time series and data generated from a simple epidemiological model (the forced SEIR
model) (Schwartz, 1985: Aron & Schwartz, 1984). Here, we show that adding more
biological realiérn (in terms of age structure (Dietz & Schenzle, 1985b: Schenzle, 1984))
to the deterministic model reduces its propensity for chaos. Further analyses of stochastic
analogues of the model also reveal a potentially intricate relationship between regularity

and spatial scale in measles dynamics.
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1. EPIDEMIOLOGICAL MODELS

SEIR model

Theoretical analyses have built on a simple compartmental framework, the well
known SEIR (Susceptible/Exposed/Infectious/Recovered) model (Hamer, 1906; Soper,
1929; Kermack & McKendrick, 1927; Anderson & May, 1991; Dietz & Schenzle, 1985b).

It is expressed as a set of three non-linear ordinary differential equations

ds
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S, E, I and R respectively represent the density of Susceptible, Exposed, Infectious and
Recovered individuals, in a constant total population of size N=S+E+I+R. Average life

expectancy, disease incubation, and infectious periods are 1/, 1/0, and 1/y respectively,

-while the infection rate of susceptibles by infectious individuals is controlled by the

parameter . Recently, this model has been refined to allow for various heterogenetties in
transmission {B), particularly with respect to host age (Anderson & May, 1985a; Dietz &
Schenzle, 1985b; Dietz, 1976; Schenzle, 1984; Tudor, 1985), seasonality in transmission
(due mainly to the aggregation of children in schools) (Aron & Schwartz, 1984; Schaffer
& Kot, 1985; Olsen er al. 1988; London & Yorke, 1973; Dietz, 1976; Schenzle, 1984),
distribution of latent and infectious periods (Grossman, 1980), and spatial and genetic
structure (Murray & Cliff, 1975; May & Anderson, 1984). The inclusion of seasonality
and age structure has been particularly successful in modelling the regular biennial
oscillatdon in measles cases in England and Wales before vaccination (Schenzle, 1984)
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(Fig. la, 2e). However, some data sets show more irregular patterns, with some evidence
of three-year cycles (Fig le.df.

These irregularities have also drawn the attention of ecologists and dynamicists
(Schaffer & Kot, 1985; Olsen et al. 1988; Olsen & Schaffer, 1990: Sugihara & May;
1990; Rand & Wilson, 1991), who have brought a new dimension to the field by seeking
chaos in observed measles time series and in data generated from models. The latter
analysis has been based on the simple SEIR model (equations (1)), with the addition of a

sinusoidal forcing term,

BO=by(1+bcos@nr)) | ' (2)

This formulation undoubtedly generates chaotic dynamics for sufficiendy large degrees of
seasonal forcing, when seasonal amplitude (b,) = 0.27 (as illustrated by Fig. 2a,c)
(Schaffer & Kot, 1985: Olsen er al. 1988; Olsen & Schaffer, 1990; Aron & Schwartz,
1984). However, there are biological objections to the large degree of seasonal forcing
necessary to generate chaos (Pool, 1989) and the consequently small numbers of cases
generated during epidemic troughs (Grenfell, 1992a) (for example 10 of population size
in Fig. 2a). The inclusion of more realistic seasonal patterns (Kot er al, 1988; London &
Yorke, 1973) and chaotic behaviour generated by noise (Rand & Wilson, 1991) mitigate
these problems somewhat but do not eliminate them—stochastic analogues of the forced
SEIR model show fadeouts of infection more than is observed in real datasets (Black,

1966; Bartlett, 1957; Bartlett, 1960; Grenfell, 1992a).
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Realistic age-structured model (RAS)

A more realistic age-structured (RAS) model from the epidemiological literature
(Schenzle, 1984) addresses some of the shortcomings of the SEIR model. Essentially, the
model allows for the observed lower contact (and therefore infection) rate among pre-
school children compared to primary school children during school terms, and recognizes
the importance of school children and the pattern of school calendars in measles
epidemiology (Schenzle, 1984; Fine & Clarkson, 1982; Anderson & May, 1985a). The
RAS model is (to our knowledge) the only model in the literature that incorporates both
age-structure and seasonal structure. The RAS model preserves the basic compartment
structure of the SEIR model, and the simplified biology of the measles-host interaction
(including the constant latency and recovery rates ¢ and ), but adds realistic structure to
the spread of infection between hosts.

The RAS model divides the population into 21 age cohorts representing people
aged 0-1, 1-2, ..., and 21 and older. Newborn children flow continuously into cohort 1,
but the members of each cohort advance discontinuously to the next cohort at the
beginning of the model year, which corresponds to the beginning of the school year. The
per capita mortality rate p is zero in the first 20 cohorts, and constant in the last cohort.
(The birth rate B and death rate determine the (constant) population size: N=B/(20+(1/n))).
The cohorts fall in turn into four age classes, representing pre-school children (cohorts 1-
5), primary school children (6-10), adolescents (11-20) and adults (21).

Figure 2a shows the pattern of cross-contact among different age classes during the
school term; primary-school children meet (and infect) each other at a very high rate,
primary-school children meet primary-school chiidren at a lower but still significant rate,

and adolescents and adults meet at lower rates. The symmetry of this "who acquires



infection from whom" (WAIFW) matrix allows us to calculate the equilibriur: contact rate
parameters from age-structured case reports or serological data (Anderson & May, 1985a).
(These parameters served as a starting point for finding the set of parameters that best fit
the average biennium derived from the England and Wales dataset.) -
Qutside school terms, when primary-school children are not aggregated in schools,
all pre-school and primary-school children mix at the same relatively low rate. The
specific pattern of the English school calendar acts as the seasonal input, faithfully
reproducing the observed changes in contact rate during school holidays. Thus the RAS

model carefully includes the most important heterogeneities neglected by the SEIR model.

[II. MODEL DYNAMICS

Deterministic models

The dynamic behaviour of the SEIR and RAS models is qualitatively different (Fig.
2). In contrast to the transition to chaos of the SEIR model with mncreasing seasonality,
the RAS model shows a short and simple bifurcation sequence ending in a collapse to a
lsimplc annual cycle. The key to this difference is apparent in comparing the minimum
number of infectives generated by the two models (contrast the bifurcation diagrams in
Fig. 2a, SEIR, and Fig. 24, RAS). Essentially, large-amplitude chaos in the forced SEIR
model is associated with the divergence of nearby states in the deep troughs between
epidemics (Drepper, 1988) - the RAS model never allows the number of infectives to fall
low enough for this large-amplitude chaos to manifest itself. (Preliminary analyses of
deterministic models with delays rather than constant recovery rates (Grossman, 1980)
suggest that these models exhibit qualitatively similar dynamics.)

The absence of deep troughs (and therefore chaos) in the RAS model arises from
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the more realistic assumptions that it makes about hctcgrogencities in transmission (Fig.
3a). Specifically, the relatively low (and constant) contact rate between pre- and primary-
school children protects the pre-school group from the violent epidemics experienced by
children when they go to school. This protection allows them to act as a reservoir of
infectives in the troughs between epidemics, as long as the pre-school contact rate is
sufficiently high (for (unrealistically) low pre-school contact rates, chaos emerges). In
consequence, the relative proportion of pre-school cases rises during interepidemic
troughs, compared to the constant proportion to be expected from the homogeneous SEIR
model (Fig. 3b). The observed data for England and Wales also show a strong biennial
pattern which agrees qualitatively with the RAS model (Fig. 3b). In more detail, the RAS
model predicts a greater amplitude for the pre-school pattern than is observed, suggesting
further room for biological refinement in the model (in terms of contact structure,
temporal variation, etc.). (Note, however that the fit of the RAS model to total reported

cases is nevertheless very close (Fig. 2e).)

Stochastic models

The preceding results are based on deterministic models. Recently, however, Rand
and Wilson (1991) have pointed out the important result that interactions between
environmental or demographic noise and the nonlinearity of the SEIR model can sustain
transient chaotic behaviour. The addition of moderate amounts of environmental noise to
the RAS model does not qualitarively affect its dynamics (Fig. 4a); remnants of the
deterministic bifurcation structure (Fig. 1d) are still visible. (The dctailed global dynamics
of the RAS model and their interactions with stochasticity warrant more study, but here

we concentrate on the generic aspects and biological implications of the dynamics.) The

T



irpact of demographic noise (which has an important place in the study of measles
(Bartlett, 1957; Bartlett, 1960)) can generate more complex dynamics, as illustrated by
Monte Carlo simuiations (Fig. 4b,c). The Monte Carlo method (Bardett, 1960; Bartlett,
1961; Murray & CIliff, 1975; Anderson & May, 1986; Anderson & May, 1991: Olsen et
al. 1988) takes an analogue of the equations governing the deterministic dynamics and
assumes that each process (birth, infection, etc.) occurs at a constant probability over time
and thus can be modelled by choosing deviates from an exponential distribution with
appropriate mean.

For large (country-wide) populations (possibly corresponding to England and
Wales, which may have represented a single epidemiologic unit before the start of mass
vaccination (Fine & Clarkson, 1982)), addition of demographic noise generates the
expected result of noise around the biennial pattern, but, again, no qualitative effect on the
dynamics (Fig. 45).

The sitation for smaller population sizes (corresponding to a city of one million)

1s more complex (Fig. 4¢). The regular biennial epidemics of the deterministic RAS
model now break down into domains of irregular one- and two-year cycles interspersed
with large-amplitude three-year oscillations. These resuits can also qualitatively be
generated by the simple SEIR model (Schaffer er ai. 1991). They show that significant
amounts of demographic noise (operating at smaller population sizes and therefore spatial
scales) can generate complex behaviour in the RAS model and in particular alternating
periods of two-year and longer term cycles. The comesponding spectra for these periods
(Fig. 4c, insets) show peaks at biennial and triennial frequencies, which corresponds with
some of the observed data (Fig. 1f). The dynamic explanation for these different domains

remains unclear. They may represent the operation of a chaotic repellor (Rand & Wilson,



1991) or some other dynamic object (Schwartz, 1985; Schaffer er al. 1991)—we are
currently exploring these possibilities by examining the pattern of largest Lyapunov
exponents (which reflect chaos and other sources of divergence (Rand & Wilson, 1991)) in
the different domains. A further complication is that the three-year domain shows a’high
incidence of fadeout of infection, indicating that explicit spatial structure in the models
may be necessary to characterize this behaviour properly.

Spatial structure may have profound effects on the dynamics of the models,
particularly in the dynamically important epidemic troughs; small differences in epidemic
timing between different areas could resolve the current difficulties with unrealistic levels
of fadeout in seasonally forced models. In order to explore these problems, we are
examining both data (from major cities in England and Wales) and spatially structured
models. As yet, however, no model with both complicated dynamics and a realistic level

of fadeout has come to light.

IV. CONCLUSION

Overall, these results illustrate the general point that introducing extra biological
complexity into deterministic ecological models can simplify rather than complicate their
behaviour, particularly if it reduces the propensity for extreme population fluctuations
(Grcnfél_l, 1992b). In terms of the dynamics of measles, it appears that the RAS model
may rcpfcscnt the minimum amount of biological complexity required to explore the
nonlinear dynaxﬁics of measles. The deterministic RAS model generates robust biennial
cycles over a wide range of parameters, matching the pattern observed in England and
Wales, but cannot generate the more complex longer-term patterns observed in other cities.

With the inroduction of demographic noise the RAS model does prove capable of

10



generating irregular, longer-term patterns. However, deciding whether these patterns
represent the real mechanism underlying longer term cycles or are artifacts of fadeout wil
require models incorporating spadal structure. These complexities pose an interesting

challenge to ecologists, nonlinear dynamicists, and epidemiologists alike.
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FIGURE CAPTIONS

1. Case reporting data and power spectra for various regions. (a) Weekly case reports,
England and Wales, 1948-1966; (b) weekly case reports, Birmingham, 1948-1966 (both
from the Registrar General's Weekly Reports); (¢) monthly case reports, New York City,
1928-1964 (London & Yorke, 1973), (d) monthly case reports, Copenhagen, 1928-1968
(L.F. Olsen, pers. comm.). Spectra are smoothed using a 3-point running mean, and
plotted as power against frequency (year'). The dotted line indicates 0.5 year', the
frequency of biennial cycles. (e} England and Wales, Birmingham (logged) power spectra,
(H) New York City, Copenhagen (logged) power spectra. Note that the latter two spectra
show evidence of components at long-term frequencies not equal to the biennial frequency

(Olsen & Schaffer, 1990).

2. Bifurcation diagrams (a,d) and time series (b,c,e) of sinusoidally-forced SEIR and

realistic age-structured (RAS) models. Bifurcation diagrams show log;i(infectives) in a

population of 50 million, sampled annually at the beginning of the epidemiologic year

(September, near the minimum number of infectives) for 100 years after a 200-year
transient, for given values of seasonal forcing amplitude. (A single point thus represents
an annual cycle, two points a biennial cycle, and so on.) (a) SEIR bifurcation diagram
(the model is formulated as B = ¢, + ¢,(1+cos(2rt)) rather than the more standard form in
order to match the RAS bifurcation diagram more closely), log,s(infectives) vs. c,.
(Parameters N=5 x 107, p=0.02, ¥=73.0, 0=45.6, ¢, = 1.5 x 107, ¢, = 0 t0 9.0 x 10?, all
units year' except contact rate (year' infective'’)) (b) SEIR time series for the biennial
regime, ¢, = 8.5 x 10°® (¢) SEIR time series for the chaotic regime, ¢, = 2.0 x 107 (d)

Bifurcation diagram for the RAS model. This model is an age-structured extension of the

12



forced SEIR model, based on discrete age cohorts, as discussed in the text. The contact
structure between age cohorts is shown in Figure 3a. Parameters are as given by Schenzle
(1984): N=5 x 107, p=0.018 person year', B=666666 year, y=73.0 year!, 6=45.6 year'!.
Contact parameters are the differences in rates between groups; b, = adult rate, b, ="~
adolescent-adult, b, = pre-school-adolescent, b, = primary (during term)-pre-school.
Contact rates are adjusted to give best least-squares fit to the England and Wales data
(Fig. 2e): b;=8.76¢-6, b,=0 to Se-4, b,=2.74e-6, b,=4.38e-6 (year' infective)). Seasonal
amplitude is b,, the additional school-term contact rate among primary-school children.
(e) RAS biennial time series; weekly case reports for contact rate parameters (b,=8.76e-6,
b,=1.25¢-4) giving best least-squares fit 1o case reporting data for England and Wales.
The means (points) and standard errors (bars) for the (corrected) (Fine & Clarkson, 1982)
weekly case reports from England and Wales, 1950-1964, are superimposed on the model

output (line).

3. RAS model, age structure. {a) The "who acquires infection from whom" (WAIFW)
matrix for the RAS model (Schenzle, 1984). Heights of bars represent relative contact
rate for mixing between different age classes (pre-school (0-6 years), primary school (6-10
years), adolescent (10-20 years), adult (20 and older)). Note that the high within-primary
school contact rate is only effective during school terms. During holidays within-primary
school contact is at the same rate as the surrounding pre-school contact rates, as discussed
in the text. (b) Fractions of total reported cases among children under 5 years in England
and Wales, 1950-1964 (observed data from the Registrar General’s Quarterly Summaries).
The lines show the observed fractions, the fractions derived from RAS model simulations,

and the (constant) fraction predicted from a homogeneous (non-age-structured) model.
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Inset shows the normalized power spectrum (Chatfietd, 1975) of the pre-school fraction
for the data and the RAS model; (*) indicates a significant annual cycle (p<0.001 from the
autocorrelation function) which cannot be generated by the homogeneous model. The
spectra agree well, although the amplitude of the modelled time-series is larger than ‘that

observed, which suggests further room for biological refinement in the model.

4. (a) Bifurcation diagram for the RAS model (as described in Fig. 2) with 3% Gaussian
noise. (The contact rate for each one-year age cohort is multiplied each week by a
number picked from a normal distribution with mean 1.0 and variance 0.03; this method
and parameters were picked for comparison with Rand and Wilson’s results (1991)
showing that 3% Gaussian noise added to the SEIR model excites chaotic transients with
much larger amplitudes.) Parameters as in Fig. 2d. (b) Number of infectives over time,
RAS stochastic (Monte Carlo) model for a large (country-wide) population: N=5x10". The
pattern is a noisy version of the biennial cycle seen in Fig. 2d. (Parameters as above.) (c)
Time series of infectives for the RAS Monte Carlo model for a city of 1 million people:
N=10°. Parameters as above (except contact and birth rates scaled to new populaton
size). Insets are power spectra of different dynamical domains showing 3-year and
mixtures of 1- and 2-year cycles (the dotted line represents the biennial frequency).

Spectral smoothing, etc., as in Fig, 1.
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