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Abstract:

Using for each genotype an SIR-type model of disease transmission dynamics, we describe
natural selection in a continuously breeding diploid host whose disease susceptibility and
resistance are carried at one locus with two alleles. The system is transformed into variables
that for each disease class describe the number of individuals, the gene frequency, and
the deviation from Hardy-Weinberg proportions as measured by Wright’s fixation index.
An assumption of small variation in disease response among genotypes {slow selection)
separates the system to first order into three blocks. One block describes the population
wide disease dynamics, one considers the fixation index in each class, and the third block
provides the change in gene frequencies. The first two blocks settle to equlibrium at
a rate determined by the population turn-over time while the last block after a while is
dominated by a slowly changing variable, the average gene frequency. The dynamics of the
gene frequency take the usual form for a continuous time slow selection model, and this
provides explicit, epidemiologically justified expressions for the genotypic fitnesses. We
apply the method to other disease transmission patterns (SET and SIS) and discuss how
suitable time averages extend our results to diseases with temporally varying incidence.
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1. INTRODUCTION

Infectious diseases cause mortality, and variation among individuals in susceptibility
and sensitivity therefore is subject to natural selection. This phenoinenon was investigated
by Jayakar (1970), who incorporated the qualitative aspects of the epidemiology into the
differential fitness of the genotypes. Gillespie (1975) extended this and developed models
of the contribution to genotypic fitnesses by the disease, in that an epidemic is assumed
to run through the population each generation. This approach to a more epidemiological
fitness formulation was developed further by Lewis (1981), Anderson and May (1982),
Longini (1983), and May and Anderson (1983). The mortality of the different genotypes
is assumed to be a function of the intensity of the epidemic, and epidemiological equations
are used to determine the proportion of hosts that are infected. The host is assumed
to have discrete generations with a generation time that is considerably longer than the
period of infection. Others have relaxed these assumptions and treated both genetics and
disease as continuous processes allowing for the study of endemic diseases (I(emper, 1982).

These studies all assumed that factors other than the disease ultimately regulate the
population size, and the link between the evolutionary and the epidemiological parameters
is not transparent. Following Beck et al. (1984), we will take another approach and consider
explicit equations for the dynamics of each genotype in the presence of the disease. This
allows description of disease-induced density dependent selection in an epidemiologically
justified way. Some simplification of the model is needed to further analysis, and we
consider only genetic variation at loci with a small effect on susceptibility and sensitivity
in the host. That is, we consider the case of slow selection at one locus. Also we assume
two alleles and reproduction by random mating, but the approach and the results are
readily extended to multiple alleles.

A disease model with three epidemic classes and three genotypes in the host is de-
scribed by 3 x 3 = 9 coupled differential equations. If the genotypes are equal with respect
to the disease, the neutral case, then a manifold of equilibria exists characterized by the
epidemiological equilibrium and the Hardy-Weinberg manifold of equilibria characteristic
of no selection at one locus. For small fitness differences among the genotypes, the popu-
lation is expected to move slowly along this manifold. This is the foundation of the slow
selection approximation of genetic evolution.

In their analysis of the case of slow selection Beck et al. (1984) applied a rather
complicated singular perturbation method involving a variable projection directly onto
the slow manifold. The main result of this paper is a major simplification of this method,
in that we apply a transformation of the model equations that for the neutral case decouple
the dynamics in three blocks, one describing the disease dynamics, one the evolution of the
genc frequency, and one block describing the deviation from Hardy-Weinberg proportions.
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After the decoupling Beck’s projection method is still needed, but the situation is now
considerably less complex, because the singular perturbation needs to be performed only
within one block of equations.

In the first section we describe the transformation for a population without disease
and show how the selection process essentially is limited to a slow change in gene frequency.
Continuous models with explicit description of the dynamics of each genotype has previ-
ously been studied {e.g. Nagylaki and Crow, 1974; Hoppensteadt, 1975; Nagylaki, 1977
Freedman and Waltman, 1978; Hunt 1980, 1982) and we compare our results to these.
We then turn to the other aspect of the problem, a population with no genetic structure
exposed to a contagious disease that is sometimes deathly. Epidemic models with varying
population size has recently been studied by several authors, and we summarize only the
information that is relevant for our model (Ander‘son and May, 1979; Getz and Picker-
ing, 1983; Andreasen, 1989; Busenberg and van den Driessche, 1990; Pugliese, 1990a.b:
Busenberg and Hadeler, 1990).

After these preliminaries we can state in section 4 our model that combines the epi-
demiology with the genetic structure of the host and demonstrate how our transformation
simplifies the system. The change in gene frequency can be extracted from the model
in a slightly complicated way outlined in section 5. The equation for the change in gene
frequency induce an expression for the approximate fitnesses for the genotypes in terms of
their effect on the disease parameters of the model. This expression is discussed in section
6. and in section 7 we show how our method can be applied to other epidemic situations,
and we suggest extensions of the results to diseases that exhibit sustained oscillations.
Finally in section 8 the applicability of the approximations is illustrated by numerical
examples.

2. CONTINUOUS GENETICS WITH WEAK SELECTION

Our genetic model describes one autosomal locus with two alleles 4 and a in a dipioid
continuously breeding host population. For the sake of simplicity, we assume that the two
sexes behave identically with respect to the processes involved. The genetic structure of
the population is determined by the density (or number) of each of the three genotypes
A4, Aq, and aa, and the densities are denoted z,, z2 and z3 respectively. Assuming
random mating we find that the change in the genotypic densities is given by

dz =

Ftl_ = pzNBl(.Il,.’B2,$3) - Ml($1r3:21$3)$1

dz =

—df- =2qu.B-2($1,$2,-'E3)"M2(31332:$3)32 (1)
dz =

-—dt—3 = q2NB3(I1,172,$3) - M3($1,$2,$3)x3,
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where N = =z + x, + z3 is the total population size while p = (2z; + z5)/(2N) and
g = (223 + 22)/(2N) are the frequencies of alleles of type A and a among the alleles in the
population. The average rate of birth of the three genotypes are given by '

_ 1
Bi=s (B,, f2+ (B2 + Ba)fifo + ;}ang),

B, = ﬁ (%(312 + Ba1)f1fo + 5(Baz + Bas)fofs + 5 Boa ff + (Bus + Bs1)f1f3), (2)

_ 1
B, = q_2(333f32 + 2(Bs2 + Baa}fafs + %Bzzfg)’

where f; = z;/N,i = 1,2, 3, are the frequencies of the three genotypes. We assume that the
genotype specific death rates M; and the pair specific birth rates B;; are density dependent
and frequency dependent, i. e. that B;; and M; may depend both on the total density N’
and on the frequencies of the three genotypes. In most of our arguments, however, we
will assume an additive specification of the effects of the two sexes on the birth rate.
This is avoiding the possibility of complicated dynamics due to fertility selection, and it
1s equivalent to assuming that only one sex, usually the female, influence the birth rate or
that both sexes have equal influence on the birth rate, i. e. we will assume B;; = B; + B;
(Nagylaki and Crow, 1974; Feldman et al., 1983).

The model (1) disregards the age structure of the population. Newborn individuals,
e.g., reach instant sexual maturity and are counted among reproducing individuals. This
1s not a particularly reasonable assumption, but it provides a good approximation of the
evolutionary process in case of weak selection where the genotype-specific birth and death
rates are almost identical. The demographic process then is expected to take place on a
time scale faster than the time scale of changes in the gene frequency p. The population
dynamics s dominated by the characteristics of the average individual, and fast conver-
gence to equilibrium is expected. Therefore, details of the demographic process is less
critical as long as the dynamic characteristics of this equilibrium may be described by the
simplified model expressed in (1).

We assume that the effects of the alleles are weak in the sense that the genotype- |
specific birth and death rates are almost identical. The birth and death rates of the
genotypes therefore may be written as small deviations from population birth and death
rates, in that

B,‘j = b(N) + Eb,'j(:tl, :1’:2,.’2:3)
M,' = ;.L(N) + E;.L,'(:Bl,a:g,m3)
with ¢ « 1. The birth and death rates are density dependent, but the frequency de-
pendence s limited to the genotypic deviations, and it is therefore weak. The model is
hiologically meaningful if we assume that p(co) > 5(0) > p(0) and that g(N) is an in-
creasing and b(N) is a decreasing function of the population size. With the form (3) of

(3)
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the birth and death rates, the model (1) becomes

d -

E?’ =P NUN) — u(N)ey + i1 (21, 22, 73)

d -

':Tz = 2pqNb(N) — (N )z + 2 (21, 72, 23) (4)

: ~
G = VKN = (N2 + ety(21,2,2,)

where 3 _
W1{z1, 22,23) = P2N51($1,$2,$3) = u{zy,23,23)1,
Yo(zy,22,23) = 2qu52(1:1,3:2,sc3) — ua(z1,22,23) 29 (3)

&3(2:1’3:212:3) = q2N33(1‘11$23m3) - #3($11$2r$3)$3

are describing the selection in the population. The averages, b;, are given by equations

The two time scales of the model, the demographic and the evolutionary, will hecome
apparent by a change in variables (Christiansen and Fenchel, 1977). We describe the states
of the population by the total size N = Z1 + 23 + 23, by the frequency p of alleles 4. and
by Wright's fixation index (Wright, 1969; Nei, 1977),

_ drizy — 22
N (25.,"1 +32)(2x3 + .’L‘z)

for (2xy +z2)(2z,4 +z2) #0and F = when 221419 =0 or 2z3 +72 = 0. The quantity F
is a density and frequency independent standard measure of how far the population is from
the Hardy-Weinberg proportions. When F — 0, the genotypic frequencies are in Ha rey-
Weinberg proportions, i.e., f; = p?, f2 = 2pq and f; = g2, the frequencies characteristic of
the population of newborns. A positive F indicates a higher number of homozygotes than
expected with random mating and a negative F' shows an excess of heterozygotes. Simple
algebra shows that the densities of the genotypes can be recovered from (¥, p, F) by the
formulas

z1 = (p* + pgF)N

z2 = 2pq(1 - F)N (6)

z3 = (¢* + pgF)N

where ¢ = 1 — p is the frequency of a.

In principle the rate of change of N, p, and F can be computed in a strait forward
manner using the chain rule. However, the computations get quite involved and it is
practical to utilize the transformation properties derived in Appendix A. Using these we
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2 (V)= W) et NG
d .
EI-:- = gty (8)
dd—‘l: = —b(N)F + e¢F (9)

where the weak selection terms ¢ are to be discussed later.

The transformed model (7)—(9) immediately shows that the population dynamics (7)
is cssentially (to the first order) independent of the genetic structure and takes place on
a time scale that is fast compared to the change in gene frequency p. Furthermore the
deviation from Hardy-Weinberg proportions decreases at a rate that is comparable to the
population birth rate b(N) (Nagylaki and Crow, 1974; Christiansen and Fenchel, 1977)
which is a measure of the population turn-over time. QOur assumptions on b and u secure

that the population equation

dN
S = (o(N) = ()N

has a stable equilibrium N*, and that Hardy-Weinberg proportions, F' = 0, are stable to
the first order. The weak selection will not significantly change the equilibrium values of N
aud F. and the dynamics of p can be computed by evaluating Yp at (N,p, F) = (N",p,0).

Using the transformation (6) we can now compute o(N, p, F) from our knowledge of

11, 22.23) (Appendix B):

¥p(N*,p,0) = $p(p" N, 2pgN",¢" N*)
= pg((fs — F2)p — (Fs = F2)q)
where 7, = b;(p? N*,2pgN*,¢* N*) — ui(p?N*,2pgN*, ¢ N*). Thus the dynamics of p are
10 the first order given by |

% = ep(1 _ p){((F1 + F3 — 272)p — (F3 — 72)).

This equation simplifies considerably if we assume that the two sexes in a mating contribute
additively to the birth rate. This is equivalent to assuming b;; = b; + b; for all + and
7 = 1.2.3, and we get

% = ep(1 — p)({ry + 13 — 2r2)p — (r3 — r2)); (10)

where 7 = bi{p?N*,2pgN™,¢*N*) — pi(p*N*,2pgN* ,¢* N*) is the net reproductive rate

of genotype 1.



Equation (10) is the usual equation for slow selection in a random mating population
where the change in gene frequency of allele A is proportional to the excess Maithu-
sian parameter for individuals carrying allele A (Norton, 1928; Fisher, 1930; Crow and
[Kimura, 1970; Nagylaki and Crow, 1974; Nagylaki, 1977):

% = ep(pry +qra —7),

where 7 = p?r; + 2pqr; + ¢’r; is the mean Malthusian parameter and pry + gr» is the
average Malthusian parameter for allele A. The equation may also be expressed in terms
of the difference between the average Malthusian parameter of allele A and the average
Malthusian parameter of allele a in the population:

d .

d—f = epq((pr1 + gr2) — (pr2 + qr3)).

The three Ways of writing equation (10) are entirely equivalent, and for this kind of equation

we will use the short form

dp
== epq(rilp), (11)

where (ri|p) = pri + (¢ — p)ra — qr3 is the difference between the mean r of allele 4 and
the mean r of allele a in a population with gene frequencies p and ¢ =1 — p.

Equation {10) gives the well known condition for the existence of a polymorphic equi-
librium, namely that the heterozygote must have a higher net reproductive rate than eicher
of the homozygotes or a lower net reproductive rate than either homozygote. Equation
{10) has three equilibria, two fixation equilibria at p = 0, 1, and an equilibrium at p = p*

with
* r3 =T

P= ri+rz—2r;
The equilibrium p~ is stable and biologically meaningful (i.e. 0 < p* < 1) if and only if
ry < rpand ry < rg. If ry < rp,r3, then p* determines an unstable equilibrium dividing

the set of gene frequencies that lead to fixation of either of one or the other allele.

The result (10) is similar to the result of Nagylaki and Crow (1974) and Nagylaki
(1977) who used a linear measure (corresponding to Fpg)} of the deviation from Hardy-
Weinberg proportions. Hoppensteadt (1975) analyzed a model like (4) by transforming to
genotype frequencies and applying a version of matched asymptotic expansions with mul-
tiple time scales. Using similar methods Aronson and Weinberger (1975) and Hunt {1980,
1982) analyzed spatial diffusion of genes and slow selection, slow population growth. The
condition for polymorphism is well known (Norton, 1928; Fisher, 1930).

The analysis in this section shows that the transformation to (N, p, F') explicitly ex-
press how the dynamics splits in two time scales, and this method facilitates the com-
bination of epidemiology and host genetics. The method has been developed under the
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assumption of two alleles, but it generalizes immediately to multiple alleles as the proper-
ties of Wright’s fixation index is shared by similar indices for multiple alleles (Nei, 1977).

3. DISEASE DYNAMICS

Consider a disease with no latent period, and assume that individuals once recovered,
acquire permanent immunity. Transmission is purely horizontal and no vertical transmis-
sion takes place. Infection may alter mortality, but does not reduce fertility. In section 7 we
will return to a discussion of some of these assumptions and consider modifications of the
discase etiology. The population is divided into three epidemic classes, with 5 susceptibles,
I infectious, and R recovered individuals, and the total population sizeis N = 5+ 1+ R.
The population is well mixed so the rate at which susceptibles get infected, the force of
infection A, is proportional to I, in that A = BI. The rate of recovery of infected indi-
viduals is ». The birth rate in the population is b, the death rate of individuals without
the disease is u, and the infected individuals has an excess mortality given by a. This
produces the well known host regulation model (Anderson and May, 1979)

ds

'-(-i-t-— = bN —pS'—ﬁSI

drI

E:ﬁS]—(u-{-p-}-a)f (12)
dR

The population birth-rate b depends in general on the density and composition of the
population. However, in describing the dependence on the disease state we will restrict
attention to an additive specification of the birth rate of a pair of individuals similar to the
assumptions made in the genetic model, and we will assume that mating is random with
respect to disease class (i. e. bss = bs, bg; = (bs + b7)/2 ...). Therefore, the population
birth rate can be specified as

b(S,I,R) = % .(bg(N)% + b,-(N)% + bR(N)%)
The excess mortality of infected individuals make the host population-size dependent on
the level of the disease, and the model allows for density dependence in both mortality
¢ and disease transmission J. We will assume that the disease cannot increase fertility
bg(N) > by(N),bp(N) and that the birth rates bg(N) are decreasing functions of N while
the mortality u(N) is an increasing function with e > bs(0) > u(0). The contact rate
B(N)N is assumed to be non-decreasing.

Using the methods of Pughese (1990a), Andreasen (1989), and Busenberg and van
den Driessche {1990) one can show that the dynamical behavior of (12) is characterized
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by the reproduction number
B(N)N

M tria (13)

R(N) =

The disease free equilibrium § = N determined by bs(N) = u(N) is asymptotically stable
if 7?.(1\7’) < 1. When R(N) > 1 the disease will persist and there exists a stable endemic
equilibrium with some population density N* < N. The decrease in population size due to
the pressure of the disease is an expression of the ability of the disease to slow the growth

of the host population.

Although model (12} is formally similar to the well known SIR-models with fixed
population size (Hethcote, 1974; Dietz, 1975) it is founded on very different the biological
assumptions. The host regulation model (12) describes the interaction between population
size and disease transmission, and the density dependence of the disease transmission is cle-
cisive for the resulting dynamics of the model (Getz and Pickering, 1983; Andreasen. 1989).
In addition, the mathematical properties of model (12) deviate from those of the SIR-
models. For instance, the introduction of a latent period in the host regulation model
may lead to sustained oscillations (Anderson et al., 1981; Swart, 1989; Pugliese, 1990h),
a behavior unknown in models with fixed population size. The assumption of an additive
structure in the birth rate seems to be necessary to maintain the simple dynamics. If the
fertility contribution of a disease-free individual is lowered when mating a diseased indi-
vidual then quite complicated dynamics may result (Diekmann and Kretzschmar 1991).

4. WEAK DISEASE INDUCED SELECTION

The combination of the models from the two previous sections provides an epidemi-
ologically justified model that describes the population dynamics at the genotype level.
We assume that the population mates at random, not only with respect to genotype, but
also with respect to disease class. To maintain the simplifications obtained by this as-
sumption we also assume that additivity of the genotypic influence on'the birth rate and
for simplicity we formulate the equations assuming equal birth rate in the disease classes.
Further, we assume that infectivity is independent of genotype. Since the infectivity enters
only through the magnitude of the force of infection A, genetically determined variation
in infectivity will not lead to a differential change in survival as long as all genotypes mix
homogeneously during disease transmission.

The subscripted parameters will indicate the small genotypic variation in parameters
as in equation (3), and parameters without subscript describe the main population dynam-
ics as in equation (12). The variables are subscripted according to genotypic class, and a
variable without a subscript denotes summation over all genotypes. The dynamics of the
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combined model is then given by

l —

_ft_. = pEN (b4 eby) = (+em) 51— (B+eB)SiT

dS T

d_: = ._.qu(b + Ebz) - (# + 5#2)52 - (ﬁ + 5ﬁ2)521

dS T

d_: = @ N{(b+ebs) — (u+epa)Ss — (B +€B3)S5s1

% =(B+¢eh)SiI—(p+ em )i = (v+en)h - (a+eer)hr

dl.

'Zitz = (B+eB2)Sal — (n+ep)— (v+eve)h— (a+eam)l (14)
; .

%f = (B+¢Bs)SsI = (u+eps)ls = (v +eve) s = (e +e0s) s

d—':;—l- = (I/ +EV1)I1 - (‘U+5,U1)R1

dR

—# = (1/+5v2)I2 — (,u +6#2)R2

dR

"Et—s = (v+evs)Is - (1 +epus)Rs

where the average rate of birth of the three genotypes is calculated assuming equal birth
rates for all disease classes, i. e. b; is given by equations like (2) with fi = (Si+Ii+ Ri)/N.

The coordinate transformation into (N, p, F')-space is applied for each disease class, so
we transform the equations into (@, pg, Fg)-space, @ = S, I, R. For notational convenience
jet p = (psS + pil + prR)/N denote the gene frequency in the total population. The
transformation properties from Appendix A allows equation (14) to be substituted by the

equations

d

—5— =bN — uS— pSI+eys

dI

TE:BSI—(V-Jr,u-i-a)I-FEd)I (13)
dR

Et— =yl — ,UR‘+ 5‘¢‘R

dps 1 R
i E(PI - ps)+ bE(PR — Ps) -+ EVps

d

T = 5(ps = pr)+ e¥pi (16)
dpR _ I
— = vRPr —PR) T+ Elpr



dFs N [(5—ps)? 5
,_Ezb_<w(1_ps)_ﬂ_ps)+e¢ps
Psqs

dt S Psqs

dF - 2

S ss (M(1~F1)—PSQS(FI~FS)) tevrr (17)
prqr prgr

dFg vl ((P' - pr)? prqr 3
—— = (PR _poy Fpr~F)| 4+¢
7 R ( R) (Fr 1)) YFR

where the second order terms 1 are discussed later.

To the first order, the dynamics of (15)—(17) splits up in a) an SIR-dynamics which
is independent of the genetic structure b) a gene frequency dynamics which depends only
on 5IR and on the gene frequencies and c) the dynamics of the deviation from Hardy-
Weinberg proportions.

The dynamics of the SIR-model was discussed in the previous section, and we will
assuine that the parameters are chosen so the system (15) settles at a locally stable endemic
equilibrium (S*, I*,R*) for e = 0.

The second part of the transformed equations, (16), contains a one-dimensional sin-
gularity ps = p; = pg = p for £ = 0. This manifold is stable, ie., (ps,pr,pr) — (p,p.p)
for t — o0. To see this, consider the variables £; = ps — p; and {2 = ps — pr, and ohserve
that,

d I R
—;r_l = ‘“(b§ +B85) - b—S"fz
(18)
& _ I I I R
el (“5§ + VE)EI (VR + 55)52-

This system has a unique fixed point at (£1,&;) = (0,0). Since equations (18) are of the
form dé/dt = (A + B( t))€ where the eigenvalues of A have negative real part and B(t) — 0
for t - o0, we have §1(t),&2(t) — 0 for t — oo (Coddington and Levinson, 1955, p316).

The right hand sides of the equations (17) for the deviation from Hardy-Weinberg
proportions are discontinuous at PQ =0 and pg = 1 corresponding to fixation of one allele
in a disease class, Q = 5,7 ,R. However, if we define dFg/dt as zero when p=10or 1,
then the equations extends naturally to describe the dynamics of the Fs, Fr and Fp in
the closed interval [0, 1]. To see this we need to analyze the behavior of Fg when initially
one of the corresponding gene frequencies is zero, i. e., for p@(0)=0or 1.

Assume that the allele A initially is present only among diseased or recovered indi-
viduals, i. e. ps(0) = 0. Then the class of susceptibles consists of aa individuals and the
genotypic composition is gradually changed by the birth of individuals with allele A in the
frequency 5 # 0. For ¢ = 0 we get from equation (14) that

ps(t) = Bl-)? for t — 0.

10
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The genotypic frequencies among newborns are in Hardy-Weinberg proportions with gene
frequency p and the initial population is in Hardy-Weinberg proportions with gene fre-

quency 0. Then from equation (6) we get

25GbNt

~ 3(pbNT) + O(t),

Fs(t)=1
so Fg(t) — p for t — 0, and the mixture of the populations produce a deviation from
the Hardy-Weinberg proportions due to the Wahlund effect (Christiansen, 1988). Thus,

equation (17) approximately reads as

dFs _  2pGbN
i .S

as long as pg is small. For p;(0) = 0 we get in a similar way that

2psqs(l — Fs)BSIt
2(psfBSIt) ’

so Fi(t) — ps + qsFs for t — 0. Therefore, equation (17) becomes dFy/dt ~ —2psgs{1 —
F5)BS as long as p; is small. Finally, for pr(0) = 0 we get that Fg(t) — pr + q1Fs for
t — 0 and equation (17) is dFr/dt = —2p;q;(1 — Fr)vI/R as long as pgr is small. The
equations {17) are therefore bounded and well behaved for p in the open interval (0,1).
Then for any initial composition of the population we have that (Fs, Fr, Fg) — (0,0,0)
for 1 — o since the quadratic terms in (§ — pg) go to zero.

pr(t) =~ psfSt and Fr(t)=~1-

We conclude that equations (15)-(17) for € = 0 contains a 1-dimensional stable man-
ifold of fixed points

wO(p)T = (S-,IaRapSspfspRaFS7FIaFB) = (5"‘,1",R’,p,p,p,0,0,0)’ (19)

where T denotes the transposed. The interaction between the epidemiologically deter-
mined host regulation and other population processes is therefore independent of the gene
frequency on the fast time scale. Furthermore the population will attain Hardy-Weinberg
proportions and identical gene frequencies p in all disease classes on this time scale. The
change in gene frequency p occurs on the slow time scale determined by the second order
terms which is the subject of the next section.

5. THE CHANGE IN GENE FREQUENCY

The dynamics of the gene frequency p is investigated by applying the singular pertur-
bation method of Beck et al. (1984) to the system of equations (15)~{17). These equations
may be written in the form

dy

& = Gly) + c¥() (20)
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where y, G, and U are nine-dimensional vectors. The equation G(y) = 0 has a one
parameter family of solutions y = w, (p) given by equation (19), and this solution is stable
for € = 9 so G'(wy(p)) has eight eigenvalues with negative real part bounded away from 0
and one zero eigenvalue.

For ¢ # 0 we search for solutions to the equation dy/dt = G(y) +eW¥(y) close to the
stable manifold (19). These solutions will have the form

¥(t) = yo(t) +ey1(t,€) = wo(p(t)) + ey (2, ), (21)
in that y is on the stable manifold. In equation (20) this expansion produces the form

4(0)F +2 2 = (o) + <6 (s + £ Umn(p) + O

We separate the dynamics of p and y; by pro jecting onto a left-hand zero elgenvector
w{p) of G'(=(p)) and onto its orthogonal complement w(p)+. The ordinary inner product is
denoted by [-|-] and the projection onto w(p)+ by P which is given by Pu = u~[w|ujw/fw]?.
where |w|? = [wlw]. The change parallel to w(p) is given by

) + ool 2] = eful(mn(o))] + 0(:2) (22

and the change orthogonal to w(p) is given by

! d 8 I
Pwo(p)E?p + Epgyf = ePG'(wy(p))y1 + ePU(my(p)) + O(=2).

- Many expansions like (21) exists, and we choose to consider only an expansion where
[w(p)|dy1 /0t = 0 because a zero eigenvector of G'(@(p)) is tangent to the stable manifold
@o- Thus, in the expansions ( 21) the variable y; express the direction and relative magni-
tude of the deviation of y from t7p. This requirement allows a decoupling of the dynamics
of p from the dynamics of y. Rearrangement of (22) provides the final expression for dp/dt
as '

dp _ _ [w]¥(m0)]

=g 20 23
dt = Tolwl] (23)

except for terms of the order 2 or smaller.

To find the normalized zero eigenvector w/[wlw)] observe that G'(@p(p)) is a hlock
diagonal matrix. The upper left block and the lower right block correspond to the STR and
the F dynamics, respectively. These two blocks are both invertible, so the zero eigenvector
w will vanish on these coordinates. For the remainder of this section we therefore tay
vestrict our abtention to the three coordinates describing the gene frequency. The center
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thiree by three block of G'(we(p)) is independent of p, and from equations (16) it is given

—bIER  pL 0%
G;(wo(p))=( BS —ﬂS 0)

L
0 UR —vE

by

where all quantities are evaluated at the endemic equilibrium. The mean residence time
in a disease class of an individual that enters the class at the endemic equilibrium are
65 = S/(BN) = (u+ A1), 6 = (BS)™' = (u+v + @)™, and b = R/(vI) = ™! (see
equation (12)), so we may write ‘

' _I_E_ s L s1R

, _T}r S N
Gmoe) = | & et 0 ). (24)

0 §pt =63
The zero eigenvector w of this block is therefore independent of the gene frequency p, and

we get

wp = (wy,wz,w3) = (6s(S+I+ R),6:(I+ R),6rR). (25)
Since =4(p) is (1,1,1) on the three p dimensions, we have [w|wy] = w; + w2 + w3 =.Jjwl,
where || ]| denotes the 1-norm of the vector, i.e. [fw| = |wy|+ |wz|+|w3|. The components

of the zero eigenvector w is the total time the individuals in the population spend in the
three disease classes. Thus, the components of the normalized zero eigenvector w/{w|wg] =
w /|lw]| express the fraction of their life time individuals spend in the three disease classes.

The second order terms of equations (16) can be computed as described in Appendix
B. and by the assumption of additive contributions of the sexes to the birth rate we get

d)ps = p‘?<b|’N/S - Ii.i - BtIlp>
Ypi = pa(BiS — (pi + vi + ai)lp) (26)
"ybpr = pg(ytI/R - P’ilp)

where all quantities are evaluated -at the endemic equilibrium and as before we use
(kilp) = pky + (g — p)ka — gk3 = (pky + gk2) — (pk2 + gks) {27)

for the difference between the average k’s of allele A and allele a. Inserting ¥(wq) from
equations (26) into equation (23) provide the equation for the slow dynamics along wg as

dp N w wy [
= SPq(S o IH( ilpy — (milp) — (“w” 3 Tw ”) {Bi5|p)

- W%l(ailp) + (TI%I-I % - ﬁjﬂ) (V:‘lp))-
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This equation provides a good approximate description of the dynamics of the gene fre-
quency. A result by Hoppensteadt (1966, 1971) shows that if (28) has an equilibrium,
stable at an exponential rate, then there exists a ¢, such that the solution p:(t) to (28)
will converge to the solution obtained from the system (14) uniformly in ¢ on all closed
subintervals of the interval [to; 00). Otherwise, if equation (28) has a stable equilithrium
the solution to (28) will converge uniformly in ¢ on intervals [to; T/e).

6. APPROXIMATE GENOTYPIC FITNESSES

The form of equation (28) invites an immediate parallel to the classical population
genetic equation (11), in that it may be written as

dp
= = <pa(silp),

where {s;|p) = (ps; + gsy) - (ps2 + ¢s3) and

g Wiy (T we ) wy ws L wn 5
ST gt ( );3,5 Illa’+(lfwllR uwn> - 2)

ol S~ Jwlf |w

Thus, we can define Malthusian parameters for the three genotypes by r +2s,. r+ £39 and
r -+ £s3 of genotype 4.4, 4a and aa, and recover equation (28) as a version of equation
(11). In this sense, equation (28) provides a definition of fitness induced by variation in
reaction to an epidemic disease described by an SIR-model.

In the fitness parameters, sy, the genetically determined variation in disease charac-
teristics is weighted by a factor which measure the relative contribution to reproduction
of the disease class in which the characteristic is acting. The contribution of the geno-
typic variation in the parameters is determined by weights w which are closely linked to
the fraction of the host life span during which the host is subjected to the action of the
parameter, e. g. the importance of a higher recovery rate v depends on the expected time
spend in [ and R while the importance of the morbidity rate o depends only on the time

spend in the infectious class.

The fitness contributions of the death rate parameters ti and o; are always nega-
tive, and the fitness contribution of the birth rate parameters b; is positive. The fitness
contributions of variations B; in the infection rate coefficient and of variations v; in the
recovery parameters may be evaluated assuming equilibrium in the fast disease dynamics.
At steady state of the disease we get from equations (12) that [ = Rufv, BS=u+v+a
and (b — u)N = al. Using these relations we get

I 1 b—
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which is positive when a > 0 because then b > p from our assumptions. Thus, the
ftness contributions of variations in 8 are negative. When a = 0 we get the equilibrium
population size determined from the equation b(N) = u(N), and variation in the infection
rate coefficient B as exr=cted is neutral to the first order. The fitness contribution of
variations v; in the recovery parameters are positive when a > 0, because we have
w;sé—th-_-:—ﬂ%. (31)
Again, if @ = 0 variations in the recovery parameter is neutral to the first order. The
qualitative influence of genotypic variation in the genotypic parameters b;, p;, «;, v; and
3; therefore is fixed in the SIR host regulation model (12), in that b; and »; provide a
positive contribution to fitness and g, a; and §; have a negative contribution to s;. The
relative importance of the genotypic parameters, however, depends on the quantitative
characteristics of the disease.

The different weights of variations in the basic birth and death rates may be a bit
surprising. However, for a = 0 we have w; /{jw|| = S/N so the ordinary Malthusian fitness
parameter b; — u; is recovered. With the disease present and o > 0 the morta,ht3 rate
varies through the life of an individual, so the birth rate b and the death rate y are no
longer the sole determinants of the population growth rate.

The genotypic fitness definition in equation (29) is in terms of a linear combination of
the contribution to fitness of the variation in the epidemiological and demographic parame-
ters as one would expect since we have only retained first order effects. The change in mean
fitness also is well characterized as long as the SIR-model that governs the fast dynamics
of the model is unchanged, i. e., as long as the coefficients in definition (29) remain fixed.
The mean fitness always increases except in a population in genetic equilibrium (Fisher,
1930: Nimura, 1958). The condition for polymorphism is equivalent to the condition that
the net growth rate of the heterozygotes exceeds that of both homozygotes, s;, s3 < 2.

The relations (30) and (31) may be used to simplify equation (29), and by measuring
s; in units of the Malthusian parameter b — u we get

L S b, v N zr;_(l+&)&
b=y b—pplwl b b—pu bplw] 8 ptvta ulfwi\ v v)a)

(32)

where

vip+v+a)

Thus. relative measures of the genotypic variation in the disease parameters seems as
natural as the linear measures that we used in the formulation of model {14).

15



6.1. Disease of short duration

Also when the disease duration is short and the added mortality is low, a small, we get
#/b~ 1 and ullw| = N so
S b S8y oq

als in the population. Thus, we expect relative variations In o and v to outweigh variations
in 3. Since the reproduction number, R'in (13), is typically in the range 4-20 for viral
childhood diseases (Anderson, 1982), we expect S/N to be in the range 0.05-0.23, so the

of the individuals in the population. The infection rate coefficient 3 determines the rate
of entrance into a period of increased mortality, and small variations in this parameter are
not very important if almost all individuals enter this state early in life.

6.2. Disease effects on the birth rates

Differences between the three disease classes in birth rates complicates equations ( 16)
and (17). The change in genotypic frequencies between the disease classes may result
in deviations from Hardy-Weinberg proportions among newborns in the S-class. This
deviation, however, is of order €, so the convergence of F' to zero is maintained when
¢ = 0. Therefore, we only need to examine equations (16), where only the first equation
changes and becomes

d I R
—C%S- = b]§(p[ -—pg) + bRE(pR ‘-PS) -+ %‘(bl - bR)E'I%(pR - pf)

+ 3{bs = b1)L(pr - ps) + 3(bs ~br) R (pp — Ps) + €y,
The derivative Gp{wo(p)) now becomes

g1 g2 g3
3S —-38 0
0 v —vf
where I R .
1= =brg~brz = 3(bs ~br) £ — L(bs — bR) %
I
g2=br5 +3(bs —br) — L(br — bg) L&

R
g3 = bR:S," +3(bs ~ br) & + 3(br — bg){&
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and the fitness weights (w;,ws,w;) are determined as the left zero eigenvector of this
matrix. To obtain equation (28) for the slow change in the population gene frequency we
need to modify the first equation in (26) to

I R
Pps = pglbsi + brig +brig — pi — BiIlp).

S S
Thus, the approximate fitness (29) becomes
wn I R
i=—= | bsi +brig + bRrig
G S

un I wag ) w2 wy [ Uy
T R ﬂ,-S-———a,--Jr( = - )y,-.
# (uwn S 7 Twll o]l ol B ™ Jlwl]

This equation is exactly of the form (29) if we define the birth-rate deviation b; associated
with genotype 1 as the weighted average b; = (Sbsi + Tbri + Rb gi)/N in the population at
equilibrium. The change due to the heterogeneity in the birth rates is therefore reflected
entirely in the weights w.

7. ExAMPLES OF OTHER DISEASES

The method can be applied to most other diseases described by SIR-type models.
Here we consider two examples: a deathly disease with a latent period, and a disease
which does not, confer immunity to recovered individuals. We again assume that mortality
(N} increases and birth rate b(N) decreases with population size, and that the contact
rate (N )N is not decreasing.

7.1. Disease with a latent period

Most contagious diseases do not cause the infected host to become infectious imme-
diatelv after contracting the disease. To describe this we introduce a latent class H of
individuals who are infected but not yet infectious and we denote by 1 the rate at which
these individuals become infectious. For the sake of simplicity we assume that the disease
1s alwayvs deathly so that the dynamics becomes

dS

dH

—&E- = ,BSI— (T]+ #)H (34)
dI

a—t' =nH—(p+a)I.

The disease free equilibrium N of model (34) is unstable when the reproduction number
R(N),
BN 1

RIN) = 2y v a 7+ e’
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exceed unity, where N is determined by 6(N) = u( V).

The genetic response to the disease is modeled as in section 4. We write explicit
expressions for the dynamics of each genotype and use the same methods as in the previous
sections to obtain the equations for the change in gene frequency in each class

d H I

& =85 = ps) + bx(pr ~ ps) + <y,

d -
“__gf = B5(ps — pu) + ctpn (35)
dp H

-d—tR =17 (PH = p1) + vy

and for the change in deviation from Hardy-Weinberg proportions in each class

dFs N ((5—ps)? 5
—= =p (_____(p Ps) (1~ Fs) - 2L Fs) +evrs
Psgs

dt S Psqs
dFy ST {(ps —py)* Psqs )
——— =0 | (1 - Fy) - (Y - F + 36
% ﬁH ( e ( H) quH( q — Fs) ebry (36)
dFy nH ((PH — pr)? PHH )
ST (RHEZP) g gy Fr—Fy)) +¢
I Vi Py ( T) orar (Fr — Fy) YEr

The model (34) of host regulation with a latent period can exhibit sustained oscil-
lations (Anderson et al., 1981; Swart, 1989; Pugliese, 1990b) which was not possible in
model (12). Provided that such oscillations do not occur and that disease transmission is
sufficiently strong to allow an endemic disease equilibrium, it is seen that model (34)-(36)
for ¢ = 0 has a one dimensional stable singularity

wo(p) = (S, H",I", p, p,p,0,0,0),
and we find the change in gene frequency along this manifold governed by

P g T oy (W we SN
w wy H w 7
- (m Tl —f) (milp} — m(ailp)),

where (wy, w2, w3) = (6sNV,85(I + H),8;I) measure the expected residence time in the
various disease classes, 65 = S/(bN) = (u+ BI)7Y, 6y = H/(BSI) = (s + 1)1, and
ér = I/(nH) = (p + a)~! (see equation (34)), and all quantities are evaluated at the
endemic equilibrium. Thus, in this case the properties of models (15)-(17) and (34)—{36)
are very similar.
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If model (34) settles to a periodic solution, we still can perform the projection onto
tlie left hand eigenvector w for each time t. (Our expression for w will not hold, however,
since we utilized the equilibrium conditions to simplify w.) The resulting equation for p

now takes the form

% — eq(t,) + O, (39)

where g is periodic in ¢t with a period T determined by the disease dynamics. Provided
that the change in p does not change significantly the dynamics of the disease one can use
a standard averaging argument to see that p is well approximated by

; o r [ ateea
|

on the time interval [to;e™"] (Sanders and Verhuls-t, 1985; Murdock, 1991).

We do not know if model (34) can exhibit more complicated dynamics, but if aperiodic
oscillations oceur, we suggest the following averaging procedure. Let ¥ be the stationary
density of the population states for € = 0, i e., 9(S,H,I)dSdH dI is the probability that
(S=(1). H*(t).I*(t)) is in a small neighborhood of (5, H,I). We conjecture that p may be

found by
dp _ N wy g
- </ (_’f.’_l_ _ W E.) ﬁ;IﬂdeHdI\p>
Tl ~ Tl "

([ (55t 7 woos e aip)

- —< -‘i’ia.-ﬂdeHdID,

lwll
where {wy, ws, ws) = (B(N)S?E,bE(E + I, bJ2S/n) for any state of the disease model.

The reason for this decoupling of the variation in the disease states and the change in
gene frequency is that as € — 0 the population will pass through an ever increasing number
of population states before any appreciable change in gene frequency occurs. Thus, the
conjecture follows from the law of large numbers (Christiansen, 1984), and we expect
equation {39) to be an excellent approximation if model (34) exhibit a steady state of
sustained oscillations with a short period.

~ 9 Disease without immunity of recovered individuals

Consider a disease where individuals who recover from infection do not attan im-
munity and become susceptible immediately upon recovering. The disease dynamics then
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takes the form

—dS =N +vl—-puS—j35T
dI '
s =35I —~(a+v + p)l.

Using the methods of Pugliese (1990a} one can show that {40) has a stable endemic equi-
librium exactly when the reproduction number R(N),

_ BN
RIN) = p(NY+v+a’

exceed unity at the disease free equilibrium N where N is determined by ( Ny = u(NV).

In case a stable endemic equilibrium exists, the computations are quite similar to the
ones in the previous section and we obtain

B _ (Y gy iy (LD w2
e —cpq(-gﬂw—lu(bzip) -. {:p) <|le| 5 ”w“>(ﬁ:51p)

w wy I Wao

- e+ (7 - %) (,,,.|p>),

where w = (35,(b+v)I/S). Note that variations in the two “transfer” parameters 35 and
v carry exactly the same weight in the change of the gene frequency. The interpretation
of the elements of the zero eigenvector w in terms of conditional waiting times, §s =
S/N + vI) = (p+ BI)7! and &; = 1/(8S) = (p + v + a)~! (see equation (40)), is
meaningless here, because these waiting times do not reflect the time spent in the two
disease classes and weighing with the number of occurrences does not help.

8. NUMERICAL SOLUTIONS

To investigate the performance of the approxmations, we compare numerically the
values of p found from the solutions of the exact system to those obtained from the approxi-
mations in three different cases: i) The simple SIR-model (14) with no density dependence
in B and g; 11) the same SIR-model with seasonal variation in the transmission coefficient 3;
and 1i) the SEI-model (34) in a situation where the model exhibits sustained oscillations.

As it is conventional in quasi steady state approximations, we in all cases assume
that the gene frequency has not changed significantly during the initial transience where
the system reaches equilibrium in the fast processes. Therefore we use the same initial
conditions for the exact model and for the approximation. To reduce the effect of the
transient, the initial conditions are chosen close to the endemic (disease) equilibrium. but
far {rom the genetic equilibnium. In our examples the demographic time scale, 4! or p71,
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Figure 1. The true and approximate dynamics of p in the variable population size
SIR-model (14) for two sets of initial conditions. The parameter values are b=2, u=139,
v = 500, o = 400, 8 = 6 and € = 0.2. The genotypic perturbations of the parameters are
¢y = 1.1y = 500, and a3 = 400 while the remaining perturbations are zero. The true
value py (solid line) is computed from the solution to (14) as pr = (psS + prI + prR)/N
and the approximation p, (broken line) is determined from (28).
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Fignwe 2. The error po — P at equilibrium as 2 function of the size of the perturbation

- All other parameter values are as in Figure 1.
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is on the order of 1 while the genetic time scale £~! (b/c) is 3 — 10 times larger. All
numerical solutions are obtained using a 4th order Runge-Kutta algorithm with variable
step size.

In the SIR-model #ith constant transmission coefficien*, both disease incidence and
gene frequency settles at an asymptotically stable equilibrium. For genotypic variations
in the parameters of the order ¢ times the parameter value, we find that at equilibrium
the relative error of the approximate solution is of the order ¢ and that the solution to
the approximate equation for p follows the value obtained from the solution of the exact
equation (14) with an error less than & (Fig. 1 and 2). These results appear to hold for
¢ as large as 0.25 and in situations with ultimate polymorphism (p = p*) as well as in
situations with fixation of the a or A gene (p=0or1).

As expected the deviation from Hardy-Weinberg proportions, F converge to an equi-
librium of e-magnitude on the fast time scale. Figure 3 shows the deviation F; in the
infectious class, the class under the strongest selection. In the figure ¢ = 0.2 while 7}
is considerably smaller, Ff =~ -0.05. This appears to be a general pattern: in all our
numerical investigations, we find that F deviates much less from 0 than promised by the
analysis. This is expected, however, because the deviation from Hardy-Weinberg propor-
tions depends principaily on the dominance in fitness and to a lesser extent on the absolute
magnitude of the fitness differences.

The parameter values in an SIR-model often vary by two to four orders of magnitude,
For example the period of infectiousness v~! and the host life span x~! differ by several
orders of magnitude for childhood diseases. Such a difference means that there may he a
large difference in the numerical size of the parameter perturbations. Thus in Figure 1 for
¢ = 20%, the genotypic perturbation to p=151s uje =1 x & = 0.2 while the genotypic
perturbation to a = 400 is aze = 400e = 80.0. Apparently the approximation works well
in spite of this variation in the numerical size of the perturbations. This is probably due
to the fact that the large parameters v and o appear only in products with I ;. After a
short transient phase we have I/R = vl = O(uf(a + v)) € 1 so the magnitude of
the perturbations on (a + v)I is comparable to that of uR.

If the disease is truly epidemic, i.e. if the incidence varies over time, we conjecture
that one must average over the stationary distribution as indicated in equation (39). To
illustrate this situation we first introduce into the SIR-model (14) a seasonal variation in
the transmission coefficient, 3

Bi(t) = (B + eBi)(1 — ccoswt). (42)

Dietz (1976) studied the parametric resonance arising in the SIR-model with fixed popu-
lation size and seasonal transmission. A similar resonance occurs in (14) when the period of
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Figure 3. Deviations from Hardy-Weinberg proportions in the infectious class F
determined from the full model (14) for two sets of initial conditions. Our approximation

assumes that F; = 0; notice the short time scale compared to Figure 1. All parameter

values are as in Figure 1.

the forcing function T = 27 /w coincides with the intrinsic period of the damped oscillation

(Fig. 4).

The approximation to the change in gene frequency over time is obtained by averaging

(28) over a full period T,

TN g
= —~p1( i S(t) (&)l dt {bi|p) — (u:lp)

e wy(t) I{t) wo(t) _
(T/o <nw(t>u GOMAL (t)1|)5'(”5(”d”p’ (43)

1T ) (wg(t ) I(t) | wa(d) ) | )
T —[) “w(t)!l T/ lw(t)]} R(t) Hw(t)” dt (vilp) ),
where the weights w are determined as

wor(t) = (S(t) S(t) + I(t) R(t)?)
=377 78Sk " vI()
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since this is a left hand eigenvector of Go(¢) for all t. To find the integrand we solve
numerically the SIR-model without genetics, equation ( 15) with (42), and integrate by
surnming over 400 points evenly spaced over one period.

Apparently the stability of the forced oscillation is so weak that the genetic variation
in parameter values affects greatly both the amplitude of the oscillation and its baseline.
Thus our assumptions that justify averaging out the fast time dynamics are not satisfied
since the fast time dynamics change significantly with the siow time variable. However, in
practice the method works remarkably well, Figure 5.

The results are robust to changes in the details of the averaging procedure. Our
simplified weights (25)

S(t) + I{t) + R(t) I(t) + R(t) R(t)
BOIt)+u " utatv’ p

)

wrr(t) = (

work just as well as w;. Replacing the solution to S, I , and R obtained from (34) with the
values obtained from solving the full &-dimensional system has little effect. Insensitivity
to the details of the averaging is known from Lotka-Volterra type models. Utilizing the
special structure of Volterra systems Coste et al. (1978) showed that the time average of
a variable goes to its equilibrium value as the averaging period goes to infinity.

Finally we investigate the situation where the disease induces autonomous oscillations
in the disease incidence. Pugliese (1990b) shows that for density dependent disease trans-
mission and mortality the SEI-model (34) may undergo a Hopf-bifurcation producing a
stable limit cycle. We assume

B(N) =BN"*,
Bi(N)=BN"* fori=1,2,3, (44)
#N) = w1+ N/K),

and u; constant for 7 = 1.2,3. A bifurcation analysis similar to that of Pugliese (1990h)
shows that sustained oscillations occur only when the disease parameters 7 and « are much
greater than the demographic parameters b and p- In all cases the rate of approach to
the limit cycle is slow. Thus the separation of time scales between disease and genetics
does not hold, and both amplitude and period of the disease dynamics are affected by the
genetic structure of the population (Fig. 6).

Figure 7 shows the gene frequency p(t) obtained from the full model specifying the
dynamics of each genotype in each disease class and the approximation to p(t) obtained
by using equation (39) with w(¢) = (B(N)S*E,bE(E + I1),6I*S/n). The approximation
seems to work quite well, but we have no theoretical justification for this.
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Figure 4. Forced oscillations in the variable population size SIR-model (14) with sea-
sonally varving transmission coefficient (solid line). The broken lines show the oscillations
in populations consisting entirely of one genotype. The parameter values are b = 2, p =1,
v = 3, and a = 5. The transmission coefficient is f(t) = (8 + €f:)(1 — ccos wt) where
4 = 100, ¢ = 0.5, and w = 7. Resonance occurs at wy = 7.08. With ¢ = 0.2, the pertur-

bations are p; = 1, v3 = —2, and a3 = 4 while all other perturbations are 0. Notice the
large effect of the small genetic variation on disease incidence.
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1
Figure 5. Exact (solid line) and approximate value of p(t) for the SIR-model (14) with
time dependent transmission and parameter values as in Figure 4. The meaning of the
approximations I (short dashes) and II (long dashes) is discussed in the text.
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Figure 6.  Sustained autonomous oscillations in the SEI-model (34) with density de-
pendent transmission and mortality given by (44). The parameters are b = 1, w = 0.3,
K=100,a=n=10,0 =76, and k = 0.2. Withe = 0.] the parameter perturbations
are 1y = 1, a3 =n3 =4, f3 = 8 and all other genotypic effects equal 0. The exact value
(solid line) is obtained from solving the full 9 dimensional system while the approximation
(broken line) comes from solving (34). Notice the large effect of the genetic structure on
disease incidence.

0.5

Qo 50 100 150 200 250

t

Figure 7. The dynamics of the gene frequency p(t) in the SEI-model with density
dependent transmission and mortality as in Figure 6. The exact value of p( t) (solid line)
is obtained from solving the full model and the approximation (broken line) is obtained
by solving (37).
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Tlus in all the three systems we have investigated, our approximation works well in
spite of our expectation of problems in separating the time scales of the genetics and the

disease.

0. DISCUSSION

The existence of genetic variation in susceptibility and resistance to infectious diseases
is well documented in farm animals and crop plants. For instance, associations between
MHC-alleles and the occurrence or severity of infectious diseases are described in farm
animals (@stergaard et al., 1989; Owen and Axford, 1991). These associations indicate
genetic variation in various epidemiological parameters of a range of magnitudes. Loci with
major resistance effects exists in the gene-for-gene systems of plant-fungal interactions, but
more diffuse polygenic variation in susceptibility is known (Day, 1974).

The present models are especially suited for handling the evolution of polygenic vari-
ation in susceptibility. Each locus that influence the disease dynamics is then supposed to
have a minor effect, and through the study of the slow evolution at one locus properties of
tie evolution of the lot of loci are predicted. The loci with major effects, however, are not
necessarily excluded. An effect is viewed as major in terms of its detection, not necessarily
i terms of its effect on epidemiological parameters. The slow selection approximation 1s
not expected to describe the dynamics of major resistance gemes well, even though the
evolution of such genes in natural populations may differ substantially from the evolution
in domesticated populations. The variation in genetically based resistance in Australian
and European rabbits to the myxoma virus that was introduced 40 years ago (Fenner and
Ratcliffe, 1965) may be illuminated by evaluations of the varation in the approximate

fitnesses {29).

For human populations our method is not applicable to degenerative blood diseases
sucli as sickle cell anemia and a-thalassemia that promote malaria resistance since the
genotypic variation in mortality is significant. However, recent findings indicate familial
aggregation in mortality patterns for some infectious diseases (Sgrensen et al., 1988). This
indicate genetic variation for susceptibility amenable to analysis by our models.

Due to the short life time of infectious virus and bacteria, disease transmission usually
‘s modelled as a continuous process with few detajls about the course of the infection
process. Geneticists often prefer a discrete time approach to account for the demographic
details of sexual reproduction. A continuous time slow selection model allows us in a
simple way to combine explicit descriptions of the two processes on the genotype level
provided that the change in gene frequency is sufficiently slow to allow us to average over
age-classes. The slow selection assumption allows us to break the system of equations
into three parts. One that describes the transmission dynamics of the disease, one that
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describes the convergence of the genotypic frequencies to Hardy-Weinberg proportions, and
a third part that specifies change in gene frequency. We formally develop this three-block
separation by a straight forward coordinate transformation into coordinates (N, p, F) that
capture each of these processes.

The key to the transformation is Wright’s fixation index F. The fixation index has nice
dynamical properties in that for the neutral case, it will decrease to zero at an exponential
rate equal to the birth rate of the population in question. When Beck et al. (1984) analyzed
a slow selection approximation in a model similar to (14), they used a more complicated
transformation. Therefore they were forced to leave crucial computations to a computer
program of symbolic algebra manipulations. Apart from a couple of misprints we can
reproduce the results of Beck et al. (1984) with less computational effort.

Nagylaki and Crow (1974), Aronson and Weinberger (1975) and Hunt (1980, 1982)
use the absolute deviation z = (4z;23 — z3)/N? (= 4Fpq) to measure the distance from
Hardy-Weinberg proportions. In some respects z has nicer analytical properties than the
fixation index F, in that the transformation of rates between disease classes {Appendix 1,
item 3) simplifies and z has no singularity at the fixation boundaries p = 0 and p=1.In
spite of this we prefer F since it is in essence frequency independent. Near the boundaries
the range of variation of z will approach zero irrespective of the genetic composition of the
population while for all frequencies the fixation index F varies between 1 and the larger
of —p/q and —¢/p. So our result that F approaches zero as the population approaches
the boundary (section 4) show that the population will indeed reach Hardy-Weinberg
proportions as it approaches the boundary.

In the transformed (N, p, F')-space, the separation in time scales becomes clear. The
disease dynamics and convergence to Hardy-Weinberg proportions are fast, while the
change in gene frequency is slow. In practice the separation of time scales may be hard to
achieve since SIR-models themselves contain multiple time scales. Usually the duration
of infection is much shorter than the population turn over time, e.g. for childhood diseases
the ratio between these characteristic times may be as small as 103 — 10~*. Numerical so-
lutions show that our slow selection approximation works although the variation in fitness

is up to 20%.

The inherent presence of a slow time scale in disease models becomes more critical
{or epidemic diseases. Natural infectious diseases often exhibit large temporal variation in
incidence, and we would like to extend our equilibrium results to such epidemic situations.
By averaging the fitnesses over the stationary distribution of disease occurrence, we find
good approximations to the true selection process for models with intrinsic or forced os-
ciliations. This suggests a way to average over observed disease data in order to ohtain
the appropriate weights in the fitness expressions, and this approach is expected to work
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equally well for stochastic variations in the disease parameters (Christiansen, 1984). It
i« somewhat unclear why the averaging works. In general one can “average out” a fast
changing variable provided that it is independent of the slow variables (Sanders and Ver-
hulst, 1985; Murdock, 1991). For disease models this is not satisfied, since the oscillations
are only weakly stable leading to strong sensitivity to variations in parameter values. The

averaging procedure, however, seems to be quite robust and this may explain its apparent

SUCCess.

The transformation into {N,p, F')-space can be applied to other slow selection prob-
lems as well. Following the scheme from this paper, it is straight forward to write and
analvze two-species competition and predator-prey models with slow selection. Qur lim-
ited numerical investigations show that the neutrally stable limit cycles in the classical
Lotlka-Volterra model can not be averaged successfully while for a predator-prey model
with a stable limit cycle the averaging procedure predicts the change in gene frequency

" with the expected accuracy. The dynamical properties of the fixation index should be

useful in other situations, e.g. (age or spatially) structured populations.

Due to its short generation time and sloppy DNA-replication, evolutionary changes in
viral pathogens can occur on the time scale we consider leading to an “evolutionary race”
herween host and pathogen (Haldane, 1949). Assuming small variation among two types
of the disease. Beck (1984) extended the Beck et al. (1984) model to include competing
viral strains. With our (N, p, F)-transformation we effortlessly can reproduce her results
and obtain two equations for the slow change in the gene frequency of host and pathogen.
Apparently the model for an SIR-type disease is degenerate in that the real part of a
pair of complex eigenvalues changes sign without the creation of a limit cycle. Some
additional biological effects must be included before the model meaningfully can describe

Jiost-pathogen coevolution.
ACKNOLEDGEMENT

This research was supported in parts by grant 11-8296 from the Danish Natural Science

Research Council to VA,

29



APPENDIX A. FIRST ORDER EXPRESSIONS FOR dF'/dt

In this and the subsequent appendix, we derive simple transformation rules that allow
us to compute the dynamics of the new variables V, p, F when the dynamics of the genotype
variables (z,zz2,z3) are known, or in general to find the dynamics the variables @.,ro, Fo
when the dynamics of the genotype variables (@,,Q2,Q3), @ = S,I,R are given. For
convenience we will use u = 2Np and v = 2N¢ to denote the number of alleles of the two
types in the population, and # to denote the time derivative dz/dt.

1. The transformation is linear in the sense that if
;i =agi(...) +bhi(...)

where a and b can be density and frequency dependent functions while gi and h; are
genotype specific functions, then

N = aTw(g) + bTw(h)
where T'n(g) gives the dynamics of N when z; = g;.

The result is a simple consequence of the chain rule in that

NoON, oV, oN.
“31:11.1 63:2 2 5:1:1 3

aN oN ON oN N oON
=a( o1t 50+ 2—gs ) +b( ohi + by + o,
0z, 0z, dz,

dz, ' Bz, az,
= aTy(g) + bTw(h).

The result obviously extends to p and F'. To obtain an autonomous differential equa-
tion in (N, p, F') we still need (6) to express aTn(g) + dTn(h) in terms of (N,p, F), but
the result shows that we may treat each term in the dynamics independently.

2. Vector fields of the form £; = az; have no effect on F, ie. if ; = az; then F = 0.
Notice that a is the same for all genotypes but may be frequency and density dependent.

To see this observe that

431:&3 +4I3i1 - 21’2.7':2 _F (E}i + uv)
4uv
=2aF —2aF =0.

F=

This observation indicates that processes with rates independent of the genotype will
not affect the deviation from Hardy-Weinberg proportions.
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9. If &; = y; where y; 18 the abundance of genotype t in another population (o7 disease

class) then

. Y. (Py _Pz)2 Pydy )
F,=— ——-—-——-I—Fs-——-—Fz-—F
v ( 2l - gy - PR - F)

where z. and y. are the to.wal abundance of the two populations.

Here p; and py denote the frequency of allele 4 in the z and the y population respec-
tively, while Fy is the deviation from Hardy-Weinberg proportions for the ¥ population.

To see this we need (6) and some elementary algebra:

P - 4zyys + 473y — 2Z2Y2 F, (ﬂ’. + v__y)
44,V Uz Uz
y. (92 + PoeFe )} T Py0yFo) + (@2 + peae Fo) (P2 + yayFy) = 2P24ePy@y(1 = F2)(1 Fy)

T P24z

- ELFI (?ﬁ + (_ll)
z. Pz 4z

_ ¥ ((p:qy —a:py) L p  Pvlyp 9Py + Py F,) _
I P9z Pz4z Pz4z

3]

Thus the mixing of two populations affects the deviation from Hardy-Weinberg in two
ways. One effect is due to the difference in gene frequency among the populations and one
offect is caused directly by differences in the values of F in the two populations.

APPENDIX B. SECOND ORDER TERMS IN dp/dt

Since the first order dynamics of the allele frgaciuency p have a singulanty, we need
to compute the second order term in the p-component of the vector field. In general
chese terms are quite complicated. However, we need only evaluate them on the manifold

(N,p,F)=(N*,p,0) orin (21,22, T3)-space
wo(p) = (P°N*,2pgN ", ¢ N*).
By the chain rule the dynamics of the gene frequency p becomes

._2i1+i2 _ i‘1+i‘2+.’i:3

p 5N N )

so if 1; denotes the order £ term in the dynamics of z; as m (4), the second order term in

the equation for p 15

¥, = ($1g + L9a(g — ) — ¥ap)/N.
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On the manifold @ (p) we get from (5)

b1(@0(p)) = PNy
$2(@o(p)) = 2pgNr,
¥a(@o(p)) = ¢*Nrs,

where r; = bi(wy(p)) — pi(@o(p)). Therefore, the second order terms in p reduce to

¥p = pq((r1 —ra)p— (r3 —r2)q).

In the epidemic model genes flow between disease classes. To handle this situation
we need a minor modification of the preceding argument. The first order dynamics of
(ps,pi,pr) have a similar singularity, and we compute the second order terms in the p-
component on the manifold

CUO(p) = (51! 521533I11I21I3,R1’R21R3)
= (pS™,2p45", ¢°S™, p*I", 2pqI*, ¢*I*, p*R", 2pgR" , ¢’ R").
Hence for the dynamics of the allele frequency pq for the disease class Q (Q = 5, I, R), we

get

_ 2bo1(@0(p)) + ¥e2(m0(p)) _ dor(me(p)) + Poa(mo(p)) + bos(wo(p))
- 20" o* bg-

%e)

The map from (z[:QI, I,L’“Qz, T/J~Q3) to 1,q is linear according to the observations in Ap-
pendix A. We need only one additional property of this map:

If rﬂQ,- = k;P, where P = S,I, R, and k; may be density and frequency dependent,
then on the slow manifold wy(p) we get the second order term

E

P
Ypq = (k10* + kapq) o~ (k1p® + 2kapg + k3¢?)

Pt
Qe

*

P
=P (pk1 + (1 — 2p)ka — gk3)

= pq@:(kslp)

where the last equality defines the meaning of (--).
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