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Sommary

Optimal sllocation of energy to growth, reproduction and storage was considered for perennial plants
differing in the proportian of vegetative structures persisting over winter and/or in the amount of resources
which can be relocated to storage before abacission of some organs. It was found that for every mortaiity
level there exists 3 critical proportion of persistent organs. Below this critical value it is optimal 10 grow
without reproduction for the first years until a charscteristic size is resched; afterwards, that size is
maintained year after year and all extrs resources are devoted Lo reproduction. Some storage is also
necessary 10 maintain constant size. If the proportion of retained vegetative mass is above the critical value,
the optimal strategy it gradual growth to an asymptotic size. with growth and reproduction occurring in
seversl yean following maruration. In this case real storage occurs only until maturation is reached, then -
storage it realized only by energy relocation from the vegemtive body. Although the optimal soluton
changes abruptly qualitatively at a given proportion of resources saved from Year (o year, further growth
of this proportion above the critical level brings about a greater difference berween size reached ar marninty
end final size. The predictions of the model seem to follow the pattern of nature qualitatively.

Keywords: Optimal life histories; perennial plants: relocations.

Introduction

In most of the existing papers on optimal energy allocation to growth and reproduction annual
organisms are considered (e.g. Cohen, 1971; Vincent and Pulliam, 1980; Schaffer e al., 1982:
King and Roughgarden, 1982a, 1982b, 1983; Ziolko and Kozlowski, 1983; Koziowski and
Wiegert, 1986). The most consisient result from the models in these papers is that in order 1o
maximize reproductive output at the end of the growing scason it is optimal to switch
instantanecusly from energy allocation into growth 1o energy allocation into reproduction. This
result is unreliable only when season length is unpredictable (Cohen, 1971, King and Roughgarden,
1982b) or when the growth rate of the reproductive pan is constrained by the size of this part
{Kozlowski and Ziolko, 1988).

The problem becomes more complex when perennial organisms are considered. In a given

. sc=s0m it is no longer optimal to switch from growth to reproduction at the peint which maximizes
“reproductive yield ar the end of the season. It is optimal to delay such & switch becavse logses
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in reproductive output in a given year can be pald back in subsequent years if an individual is
lucky enough to survive. When the survival rate is high it may even be optimal to postpone
reproduction for several years. .

Optimal paitern of growth and reproduction in perennial organisms was considered by
Kozlowski and Uchmanski (1987) under the assumplion that all vegetative parts are retained
over the winier. They concluded that after resching maturily it is optimal to continue growing
cither asymptotically to the end of life (if life span is unlimited) or through several years (if life
span is limited), which means that many years of mixed growth and reproduction should occur.
In contrast, Pugliese (1987, 1988a) and, independently, Iwasa and Cohen (1989) assumed that
all vegetative paris except for storage organs are lost, and an organism must regrow at the
beginning of the next season using energy stored in the previous year. Results obtained ’vilh this
assumplion are qualitatively different; life span should be divided into two parts, with pure
growth at the beginning and lack of growth (except spring regrowth) later on; only one transient
year of mixed growth and reproduction can occur in this case, .

In nature there is a continum of perennial species. Al one extreme some herbs lase virtually
the entire vegetative body at the end of growing season; then there are other herbs keeping part
of root system; suffrutescent shrubs (hall-shrubs) develop herbaceous shoots which die back each
year and retain perennis) woody tissues only near the base of their stems, deciduous shrubs and
trees accumulate ageing or dead soma and an increasing body of dependent tissue and lose only
the leaves in resting seasons. At the other extreme, there are evergreen shrubs and trees whose
leaves can live a few years on average. Relocation of non-structural carbohydrates from parts
that are shed to storage organs can also take place; this means that resources allocated to
vegetative paris are nol completely lost.

In this paper we examine the optimal solution over this continuum of possibilities, when part
of the vegetative body is retained into the next season (trees, shrubs, some herbs) and/or a certain
proportion of energy can be relocated into storage organs from the parts that will be jost. We
show analytically 1he qualitative characteristics of optimal solutions; using numerical examples,
we examine the influence of the proportion of tissue conserved to the following year on growth
pattern and size of piants. It is always assumed that there are discrete growing end resting
seasons; therefore the modei could not really he applied to evergreen plants. Apart from this,
it is @ very simple model which, at least to some extent, could be applied to most plant forms
quoted above.

The model

The model describing the processes occurring in one season, denoted here by i, has been
considered by several authors (see the Introduction). There are three compartments, Vi(r), the
vegelalive parts, Ri(f), the reproductive pacts, and S{f), the storage. If V is the size of the
vegetative parts, resources are accumulated at the rate fiV); these resources can be aliocated
either to vegetative parts, or to reproduction or to storage. Neglecting al} other processes, we
therefore have the following equations on [0,7], where T is the length of the growing season:

LV, =(1-u-mtv)

4 R = ustv) m

4 5, = vvy.
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u, and v, are the proportion of new resources allocated to reproduction and storage, respectively.
Therefore, they must be between 0 and 1, and their sum has to be lower or equal 1o 1.

What has Lo be clarified is what happens in winter. In previous work. we had assumed either
that the vegetative parts are completely lost over winter and only storage persists (Pugliese,
1988a). or that the vegetstive paris are completely retained (Kozlowski snd Uchmanski, 1987).
In general, one may assume that a fraction ¢, of the vegetative parts persists over winter and a
fraction g, is relocated 1o storage at the end of the growing season. Therefore system (1) is
completed by the initial conditions for season i+1.

{ Viel(0) = q,V(T)

Sina(0) = Si(D) + 92 V(T : (2)
Ri( =10,

‘We may consider, within the approximations of the present model, that a large g, is typical of

trees and shrubs, especially if evergreen, while ¢, should be close to ¢ for herbaceous perennials;
the magnitude of g; could depend on the species.

We further assume that resources are relocated from the vegetative paris (o slorage only, and
not to reproductive parts as well. The latter process is also important in herbaceous perennials;
however, as noted in Pugliese (1988a), il relocation is equally possible 1o storage and
reproduction the qualitative conclusions of the model without relocations stitl hold. Therefore
here we consider only the relocation process which is restricted to storage, mostly because of
lime constraints (reproductive allocation has to end by the time seeds are dispersed, while
allocation to storage may go on alter the end of the growing season).

In order 1o produce a more mathematically traciable model, we apply a further simplificstion
to Equations (1) and (2). Namely. if resources are to be transferred from storage to vegetative
parts, we should add a term describing this translocation to Equation (1); however, we consider
that the transiocation process is so fast that its dynamics can be neglecied, and that all resources
in the storage compartment sre instantancously transferred to the vegetative parts at the
beginning of each growing season (sec also fwasa and Cohen. 1989. for a discussion of this point).

All unavoiduble losses of energy in this.process are also neglecied. Thesefore, we obtain the
initial conditions

Vi-H(O) =4q Vl(n + SU(T) (3)
Sin() = Riu(“) =0

where g=g,+4q,. The model of resource aliocation we consider consists, therefore, of Equations
(1) and (3). :

Mortality has also 10 be considered if we wish to study the maximization of fitness. Here we
make the simplest assumptions, i.e, that mortality occurs only between growing seasons and that
is independent of the age and size of the plant. Therefore, mortality is described in total by a
single parameler, p, the survival probability between growing seasons. To consider mortality
during growing seasons as well would simply make the formufae more clumsy (Kozlowski and
Wiegert, 1986; Kozlowski and Uchmanski, 1987), while size-dependent mortality introduces
more complicstions that can only be handled partially (Pugliese, 1987; Kozlowski and Wiegert,
1987).

Other simplifying assumptions have been made in order 10 obtain Equations (1) and (3). It
has been assumed that the vegetative parts can be described by a single variable; Iwasa and
Roughgarden (1984) consider roots and leaves separately for an annual plant model, and at least
for trees one may have to consider a structural compartment. The ageing and herbivory of
vegetative parts (described in Pugliese, 1988a as metabolic rate) are not considered here. It is
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assumed that the relative cost of producing a successful seed does not change with the investment
made in reproduction: the consequences of relaxing this assumpiion (see Schafler and Rosenzweig,
1977, Pugliese, 1988b) will be discussed below. Constant population size is also assumed; this
makes it possible to use expected (at birth) offspring number as 3 measure of fitness. Finaliy,
with the exception of scasonality, environmental Auctuations in space and lime are neglected,
as in most allocation models.

Qualitative results

The controls u;{r) and v,(r) that maximize the expecled (at birth) lifetime reproductive output
are ‘bang-bang’, that is they are either 0 or 1, as found by several authors (see the Introduction).
Therefore it is sufficient to find, for each season, the switching times v, to reproduction and T
to storage. For model (1) it is irrelevant whether storage ocours before reproduction or vice versa
or they both occur simuliancously, as long as the propottions of the allocation 10 either
compartment are kept fixed; to be definite, we assume that storage accurs after reproduction.
We then oblain the expressions for the vegelative parts, reproduciive output and storage a1 the
end of the scason as follows

V(T) = V(1)
R(T} = (12 = 1)AV(71)) ' (4
S(T) = (T - )AV(n)).

1t may well be that 1, is equal to +, (no reproduction) or to T (no siorage).

For a study of the qualitative properties of the optimal atlocation, it is convenient 1o rephrase
the whole model as a discrete problem, similar to (hose considered in mathematical economics
(McKenzie, 1986); this is briefly described in Appendix 1.

1t is found that two different kinds of optimal strategies exist. For a given function f and
survival probability p, a critical value for the proportion g of vegetative pans that are kept or
relocated, say ¢*, exists. For ¢ below the critical valye q". the optimal strategy is growth without
reproduction for the first years until a characteristic size is reached st the beginning of the season;
sfterwards, that size is mainteined year after year, snd exira resources are devoted 1o
reproduction. For g above ¢*, on the other hand, the optimal sirategy is a few years of pure
growth until maturation, followed by growth and reproduction in all subsequent years; size
increases gradually towards an asymptotic size.

As for the allocations within the growing seasons, if ¢>q*, reproduction, when it occurs,
completely takes up the final part of the growing season, except possibly in the first year of
repeoduction. Allocation to storage then occurs only as relocation from vegetative structures
after the end of the growing season. If g<4*, in addition 10 relocation from vegetative structures,
some ailocation Lo storage always occurs during the growing season,

Nuomerical resuits

For numerical computstions of the optimal strategies, we always used AV) = aV* For that
function, many expressions used in the Appendices for computation of the optimal strategy
become explicit. First of all, one obtains that the critical value 9" is equal to p'®; the plots of
" vs p for different values of the power b are shown in Fig. 1. As may be noted, the curves
change very little for different values of b; the value of ¢* depends almost only on mortality
levels.
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Figure 1. Plots of the threshold value q* agains! survival probability p. Where the proportion of persisting
structures ¢ is less than g°, the optimal sirstegy is first growth then reproduction. Where q is greater than
q°. the optimal siratcgy is gradual growth together with reproduction. Different curves correspond to
different values of b, the exponent in the ‘production’ function, f{V).

There are also explicit expressions for the final size x*. If g>¢°, we have

b{1-b)g'*T
(x-)lkb - a ( )q (5)
1—pq'-*=bq'-*(1-p)

while, if g<q", we have

b(1-bypti-swT
(x*)'* = ko {6)
1-g—b(pt-t¥t_g),

Optimal switching times 1o reproduction and storage were found through Powell's minimization
algorithm, as described in Press ef al. (1986). We let switching times vary for the first 20 seasons,
while assuming that size at the beginning of seasons had (o be the same for all seasons beyond
the twenticth one. This yields only an approximation for the infinite optimal sequence, but a
rather close one.

In Figs 2A and B growth of vegetative parts (lines), the amount of stored energy (open
squares) and relocated energy (closed squares) are shown. In Figs 2C and D reproductive output
tn consecutive years is also shown, both weighted by the probability of surviving to a given age
(bars) and- unweighted (squares). Figs 2A and C represents the case where the relocatable
proportion of vegetstive mass (g) is lower than p'? (see figure caption for the values of
psrameters). Reproduction starts in the fousth year, and from the fifth year size both st the
beginning of the season and at the end of the season remains constant. Reproductive output,
storage and the amount of relocated energy are also constant from this year,

Figure 2B and D represents the case when g is greater than p'. Reproduction starts in the
Afth year, but growth still continues and brings about a gradual incresse of unweighted
reproductive output yesr after year. Storage, which is present in the initial years, disappears
after maturation, and spring regrowth is possible as a result of relocated encrgy only.
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Figure 2. The optimal strategies lor different values of q. the proportion of persisting tissues. In A and B
the solid lines tepresent vegetative size over seversl growing sessons, the open squares the amount of
storage accumulated at the end of a growing season, the biack squares the smount of resources which either
persist in the vegetative structures or are relocated to storage afier the end of the season. In C and D the
reproductive output of every season is shown; open squares represent the actus! amount; bars represent
that amount weighted by the survival probability (from birth) to that age. In A snd C ¢ = 0.5; in B and
D ¢ = 0.7. The production function f{V) is 0.2 V"7, The survival probability per season p is 0.7,

1n Fig. 3 the influence of g on size at maturity snd on final size is shown. In Fig. 3A the solid
line represents the final size (Equation (5) or (6)). and the dashed line size at maturity, which
is defined as the size at the beginning of the season following the first reproductive year.
Although qualitatively the optimal solution changes abruptly st a critical q..whlch is ‘0.62 in 1!“5
example, an increase in the relocatable portion of energy brings about an increase in final size
for values of g both below and sbove the critical value. An increase in g always Ields to greater
expected life time reproductive output. Thus a sma!l q must either be considered 10 be a

Stk 2N b Alemsiamad fa bl

Figure 3. Final size and size st maturity for different values of ¢ and p. In A the solid line represents fin
size, the dashed line size at maturity; p = 0.7 and {V) = 0.2 V*™_ The insert is sn enlargement of tf;
first pant of the graph. In B the ratio of finsl size 10 size at maturity is shown by the solid lines for w.
diffcrent values of p. The ratios of final size 10 size in the sinth year (dashed line) and to size al the sevent,
yeas (line with dots and dashes) are also shown for p = 0.7. Further expianations can be found in the tex -

In Fig. 3B the solid lines represent the ratio of final size ¢o size at maturity for different value
of ¢. This ratio is equal to 1 for ¢ below the critical value, and increases rapidly for q above thi
value. Moreover, the values of the ratio are higher when mortality is higher.

The sharp decrease (for p = 0.7) in the ratio when g is just below 0.9 is due to the fact ths
at that value of g the first reproductive season changes from the fifth to the sixth year; this cause
an abrupy increase in size at maturity, which can also be seen in Fig. 3A, and therefore s decreas
in the ratio of final size to size at maturity. In the same figure, the dashed line represents fing
size over size in the sixth year; the line with dots and dashes final size over size in the sevent
year. Both lines are smooth. However, maturity jumps suddenly from the fifth to sixth year, sn:
then the ratio of final size 1o size #1 maturity jumps from one line 10 the other. On the othe
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Discussion

Resource allocation models can be considered s an interface between life history optimization
based on demography and the changing field of physiological ecology (Sibly and Calow, l9§6).
Such models make it possible to use the ultimate fitness measure, i ¢ reproductive value at birth
or expecied offspring number at birth for constant population size, snd on the other hand they
incorporate some physiological and design constraints. Despite these sdvaniages !hat mnk'e such
models powerful predictive tools, at least potentiaily, lhey.nre not eommot:ﬂy usec! in evolutionary
ecology. One possible reason is that they deal mainly with annual species, whl.ch are not very
common in nature, Therefose, producing allocation models for perennial organisms seems very
i riant.

lmﬁei::ndel presented in this paper can be applied to the full continuum of abilities to ke‘ep
vegelative parts over winter. It is a simple model with onty one compartment for ail vegelative
organs, and does not distinguish formally between resource relocation 10 storage and maintenance
of parls of the vegetative hody over winter. Furthermore, constant mortality is ussumed as well
us unilormily of the entire growing season. Vegetalive reproduction is also neglected, wherc_as
this phenomenon is common among many perennials. There are. however, severat perennial
plants that do nol reproduce vegetalively at all or do so so infrequently that. as the first
approximation, the process can be neglected. For example, most trees do nol reproduce
vegelatively at ail. '

Because of its simplicity. this model can only be considered a first approximation for any
specific plant. On the other hand, it gives valuable qualitative predictions of gtp\.wlh pallcr.ns f(?r
different parameter values. In particular it shows the influence of the ability to maintain
vegetative parts between growing seasons on growth patterns. )

Perennial species differ strongly in their ability to retain their vegelative parts (or 2t least the
energy or nutrient content of these parts) over winler. Some animals, such as mo_llusc's, fishes,
amphibians or reptiles, keep their entire vegetative parts, excepl the stored materials, into next
year. We restrict ourselves here 10 the consideration of plants, but similar model's can nnt? have
been applied 1o animals (Hom, 1987; Kozlowski and Uchmanski, 1987). As discussed in lh.c
introduction, plants range in this respect from evergreen Irees and shrubs to herbs that lose their
entire vegetative parts except for storage organs, which are usually in Ihc.form of bulbs or stolons
(Harper, 1977). The resulls in this paper show that, in accon?nnce with the value, g, of_ the
proportion of resources allocated to vegetalive parts that are cither k_ept. or.r.elocn‘lcd. optimatl
sirategies divide in two distinct categorics. When ¢ is small (Fig. 2A)'. life is divided in two parts:
first pure growth without any reproduction; and sccondly, reproduclion every year with grnu:'lll
occurring only in the first part of the season in order lo grow back frf)m storage to l_hc size
achieved in the previous year. There is at most one intermediate yeat in which there is some
real growth and reproduction. On the other hand, when q is Jarge (Fig. .ZB) growlh goes on after
reproduction has staried. Moreover, after reproduction begins, there is no more allocation 1o
storage during growing seasons; storage occurs only as relocation after the end of ﬂ!e senson.
An increase of ¢ beyond the threshold value causes an increase of the ratio of final size to size
at maturity (Fig. 3B). L. .

These p-‘r(egicsiom lrerc obtained assuming constant environment. Of COl‘.Ir.s?,.bIO“C and nblotllc
fluctuations would bring about more complicated patterns with the ?ossnbllltles of -decruse in
size, or of seasons with low or no reproduction interspersed be.lween highly reprodudlye seasons,
However, the general patterns shown in Figs 2 and 3 should withstand the effect of environmental
fluctuations. o .

Do real plants follow these predictions? We do not know of qusntitative data on which to test
whether the ratio of final size over size 8t matyrity is about one for small ¢ (the proportion of
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resources in vegetstive parts saved from one year to the next), and then grows with q as shown
in Fig. 3B. However, we believe that this pattem is worth studying.

As lor a qualitative pattern, we would generally assign a large ¢ to trees, and a relatively smali
q to herbs, especially those that lose most of their vegetative tissue from one season to the next.
Trees have generslly long juvenile periods (Harper and White, 1974), although this is clearly

- dependent on the environment: nevertheless, growth seems to continue after maturation, The

phenomenon of ‘mast’ years is aiso widely known. For such a phenomenon to be advantageous
it has 1o be relatively Jess expensive (perhaps because of lower seed predation) to produce secds
in large numbers: this possibility is not altowed for in the present model (but see Schaffer and
Rosenzweig, 1977: Kozlowski and Uchmanski, 1987; Pugliese, 1988b).

As for perennial herbs, not many data are available about growth and reproduction over
various seasons, Smilacing racemosa individuals seem more or less not 10 increase in size after
reproduction; actually, in some yerrs they even decresse in size afier reproduction (Pugliese and
Armstrong, 1989), Hepatica nobilis individuals seem to have aboul the same number of flowers
from one year to the next (Inghe and Tamm, 1988): however, it is unclear from that paper
whether individuals tend on average to increase in vegetative size over the years; moreover, /1,
nobilis maintains leaves for at least one year and roots for several years {Inghe and Tamm, 1985),
s0 probably g is relatively large. The pattern of flowering of several other perennial herbs is
discussed by Inghe and Tamm (1988), but no quantitative data are given; it seems apparent tha
most, bul not all of them reproduce almost every year after the first reproductive year. We aliso
know of al least one herb species which apparently does not fit the scheme predicted from the
model: Corydalis cava goes on growing after maturation despite low mottality and the loss of
both stems and roots between growing seasons (D. Tumidajowicz pers. comm.).

A higher proportion of retained vegetative tissues, as' shawn in numerical examples. brings
about larger size at maturity, more growth after the onsel of maluration (Fig. 3). and higher life
time reproductive output as a result. Can we conclude that inability 1o keep the vegetative body
is a design constraint or does renewing the entire vegetative mass or part of it have some
advantages? One possible sdvantage is escape from the problem of ageing. If all tissues are
rebuilt every year, a plant stays in perpetusl somatic youth except possibly for the accumulation
of viruses and somatic mutants (Harper 1977). Furthermore, the overwintering parts must cope
with adverse environmental conditions which require special adaptations likely to decrease some
sspects of physiological performance. Summing up, it is only advaniageous to keep as latge a

body mass, and also on the season length. Adaptations to keep vegetative parts may have a
negative effect on all of these.

Relocation of resources before vegetative part abscission always seems (o be advantageous.
The extent of this process is undoubtedly physiologically constrained and can be species
dependent. There are also environmental limitations 1o this process. Relocation is not an
instantaneous event, as is assumed in this paper, but takes some time and must occur when the
temperature is not very low. Thus this process must be precisely placed in time, and must occur
after it no longer Pays to keep vegelative organs because of Jow net production but before the
temperature drop is too greal. This problem can be less serious for early spring herbs living under
2 canopy, because access (o light, rather than lemperature, seems to be the limiting factor on
their season length. Such herbs can relocste their resources at the end of spring before shedding
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can also be relocated 1o maturing fruits. This changes the optimization resuits qualitatively, the
solution corresponds to the case of very small q.

The function f{w), which describes the dependence of net production rate on vegetalive mass,
is expected to be concave downward for most cases. ‘This is because of seli-shading and an
increase in the proportional size of support tissues. However, it is quite possible that the function
fiw) has several piatcaus, corresponding for example to the build up of & new stem, with a sharp
rise after each of them. Clearly, the intensity of self-shading and the proportion of support tissues
10 ‘productive’ parts will depend very strongly on the shape of the plant. This in turn will be
influenced by neighbouring plants, by water and light conditions, and by soil fertility. We cin
therefore, expect strong plasticity in patterns of growth and reproduction.
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Appendix 1. Qunlllltlve- behaviour of optimal strategies

We want to lt.nnsform the problem of maximizing expected lifetime reproductive output for
model (1)(3) into » completely discrete problem. To this aim, given two positive numbers, z;
and z,,. we consider all the controls, u(r), vi(7), such that bring the vegetative size rom Vi(0)

= 2,10 Viq (0) = 2;,(; smong all these controls, assuming that at least one such control exists, -

we find the one that m.nimizcs R,(T). The existence of maximizing controls is guaraniced by
standard theorems (for instance, see Theorem and Corollary 5.1 in Berkovitz, 1974) and they are

the only ones that need be considered; it is in fact clear that a control that takes equally from ~

2; 10 2;,, and yiclds a lower value of R,(7) cannot be optimal.
Let U(z,,21+)) be the valve of R(T) obtained through the maximizing control. The problem

tr)el'pﬁnding the controls [u,(1), vi{r).. . ..o(0).v().. . .| which maximize expected lifetime
ro-

ductive output is then reduced to
Probiem |
Find » sequence (2] that maximizes

o
T U
i=1

under the constraints that z, is equal to V,(0), and that 2,,, are reachable from z,.

Problem t is 1ypical in mathematical cconomics (see for example, McKenzie, 1986). In order
to study it, we wish 10 investigate beiter the properties of the function U(x,y).

U(x,y) is precisely defined as the maximum for R(T) under the consiraints

d
& V= {1-u-v)AV)

9 R = uflV)

dr (A2)

4 5« v,
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(A1)

]
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and .
V(0) = x, R(0) = $(0) = 0 (A3)
N+ qV(T) = y. (A4)

U(x,y) is only defined when y is reachable from x.

The main assumptions we make are that f{V) is increasing and concave and that AM=0, We
also need the technical sssumption that f is log-concave, in the sense that the function ${u) =
log fle*) is concave. Graphically, this assumption means that [ locks concave, whe.n drawn in
log-log paper. Finally, for the sake of simplicity, we will also assume that there exist first and
second derivatives of f. )

Using Pontryagin's maximum principle, one can prove the following facts:

as proved by Kozlowski and Wiegert (1986), there exists #(x) such that the control that

maximizes R(T) + gV(T) under constraints (A2)-{A3) is: u is equal to 0 on (0,3), u{r)=1 on

T,

S\s-’f})r the controls (a(1), v(r)) that maximize R({T) under constraints {A2)-(Ad). we have:
(r) 1f y ZgV(¥{(x}), (1) + #(1) = Oon (0.3{x)), () + ¥ = 1 on {1(x). T}, The rclaliw_'c allocition
between storage and reproduction §s then enlibrated so us 10 Juive S(N = y — 4Vii{n)).

(b) If y <qV(3(x)}, then we have (1) identically zera, while 4(7) = 0 on (O.x(x.y)), a(n) =1on
(1(x,y),T); 1(x,5} is such that gV(1(x,y)) = y. Note thal Vit) depends on x through the initial
value V{0}=x.

In case (b) then there is no allocation 1o storage during the growing season, For ease of
notation, we define the function Q(x)=gV(i{x}); we can then say that case (a) holds when
¥ 20(x), while case (b) holds when y < Q(x).

Defining

M(x) = AVH)IAT-3(x)) + qW(i(x)) . (AS)
which is the maximum size that can be reached in u season starting from size x, we have

Mx) -y when y = Q(x)
Ulx.y) = (A6)
fV(r(x.))(T-1(x,y}) when y < Q(x).

From Equation (A6) one then obtains, through several computations similar to those
performed in Appendix 2 of Pugliese (1988a), that

M'(I) whe" )’ = Q{I); (A-’)
‘% Ulxr,y) = | Aivig) when y < Q(x).
flx)

-1 when y 2 Q(x);
ai Ulx,y) = [ Y taN T=x.y)) - 1] when y < O(x).
y &

We summarize some properties of the above functions as

(Pl) If X < X3 and n<y then U(Il.y|} + U(I;,yz) > U("I-Yl) + U(.l‘:._)ﬁ). A function u
satisfying this property is sometimes called supermoduiar (Ross, 1983).

(P2) M(x) is a concave function.

(P3) There exists £ = 0 such that O(x) > x on (0.£), Q{x} < x on (£,+x),

(A8)
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(P4) pU,(x.x) + U(x.x) is a continuous, decreasing function of x.

The main 100ls in the analysis of Problem | are the principle of optimality and Euler's
equations. We define W(x) (the value of size x) as the maximum offspring number expected
siarting from size x,

a0
W(x) = sup E r- Uzz01)
i=1
subject 10 the constraints Z, = x, and that 2z, is reachable from z;; for ease of notation. we

define m(z) as the minimum size that can be reached from z, so that 2y41 reachable from 2, can
be written as m(z)) = Z;41 = M(2;}. The principle of optimality states that

Wix) = max|U(x,2) + rw(2)) (A9)

taken over all z that are reachable from 1. Equation (A9) can actually be used as the definition
of W through a fixed point argument. We aiso define the map
0(x) = mux |z mlx) sraMy), Dix,2) + pW(2) = Wix)).

In words, 0(x) is the fArst point reached from x along an optimal path (in case more than one
such point exists, we choose the largest one).
Euler’s equations state that small variations from an optimal path are not advantageous.
Therefore we have for an optimat path |z
=0 if Z; = M(Zi_|)
UWaina) + pUdza,) (=0 m(z_y) <z < M(z;_,). (A1)
=0 i 2| = m(z._,).

The first result is that optimal sequences do not oscillate. This follows from the fact thas
Wx <y, then 8(x) s 8(y). (AlD)

The proof of (A11) follows from (P1). repeating step by step the proof of the analogous result
in Dechert and Nishimura (1983)

Since, for an optimal path, z,,, = 0(z,}, we have that either =z loralli,orz; < z;_, for
all i.

We have 10 add an assumplion that avoids growth 1o infinite of optimal sequences, which is
not very sensible biologically. Namely we assume

(PS) lim pM'(x) < 1.

(P5) is true if lim f(x} < 1—-;—‘3 which seems a reasonable assumption.

Under (P1)-(P5}, the optimal sequence {z| is monotone and bounded; therefore it admits a
limit £2 0,

1f2>0 Ms> £ Letting i go to infinite in Equation (A10), one then obtains

U,,_(:.f)+pu,,u.n = 0 (A12)

From (P4), we know that there exists al most one £ satisfying (A12). If li , PU{x,x) +
Uyx,x) > 0, let r* >0 be the solution of pU,(x,x) + Uy(x,x) = 0 (there exists one such solution

because of (P4) and PS)). It lim, pUslx.x) + Uyx.x) < 0, set x* equal to 0,
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Size x* will be the one approached by optimal paths. To distinguish between the two cases

discussed in the text, we have to use also size £ introduced in (P3). We can now state our main
result.
Theorem. All optimal paths converge to x*. 1f x* = £, the optimal path |z can be described for
2, < x* 85 73, = min Ix* M(z)}; i.c., the path is the quickest approach 1o x*. 1f x* < £, thete
is only asymptotic convergence to z*; in this case, we can say that ‘there is a finite number
{possibly zero) of i's such that z; = M(2,_;) (no reproduction), followed by possibly one yeas
where M(z,.)) > 1 2 Qzi.). and finally by an infinite sequence of i's where 2, < Q{(zi-))
(relocation occurs only through storage); unless 2, = x* (one starts already from the optimal
size), this sequence is striclly increasing.

Proof. 1f x* = £, consider the suggested optimal path; since x* 2 Qix*) = 0(z;). we have 2\,
= Q(z)), for alt i. Therefore

. E prU(,24) = 2 P‘_'IM(Zi)'zml > E P"'IM(I's)'Z'uul

i=1 i=1 i=1

L. ]
z E Uz 2
i=t
for any feasiblc path [z*} different from {2,]. The strict inequality comes from the results of Spence
(1973) and Pugliese (1987).
11 0 < x* < £. consider only 2, < x*. We altready know that Jim z; = x*; since 8(x*) = X,
from Equation (A1) we know that 7,5, = 8(z,) = x*. 1t is impos;imc to have z;,y = x*;in fact,
if we had 2, < x* = Z;,;5, from Equation (A10) we would obtain

(A13)

Ufzx) + pUx*x*) 2 0 (A14)
while by definition of x* we have
Ufe* x*) + pU(x° ") = 0 {A15)

and. since x* < 2, using Equation (AB), we have Ufx* x*) > Ufz,.x*).

Thus we have found that 2, < x*; it is also true that 2, < zja1s 0 fact, if‘zm = z.,.from P
= §(2,). it would follow that 2,3 = 8{2,,;) = 2; and 50 0N, in contrast o !gg 7; = x*; finally

x* < Q(x*)implies that, for i large enough, O(z) > £* = 7,41 (storage only from reproduction).
We now prove that

< M(Zi_.), then 21 < Q(Z‘). (A|6)

“This means that if in yeat i there is some reproduction, from year i+1 on there will always be
reproduction, and there will be no direct allocation to storage. )

Suppose, on the contrary, that there exists i, such that z; < M(2,1). and 200 2 Q(2)- Using
Equation (A10) for year i and year i+1, we obtain

pU 2i2is1) = ~Uplziori2)
pUL2i1,2i42) = = Uy z1,2441)-
2;41 2 Q(z)) implies that —Ufzntin) = 1, Udzi,240) = M'(2). We also know from Equation

(A8) that —Uy(2,-),2) S L and U(zis 1121 ;) S M’(2;41). Putting these equalities and inequalities
together, we obtain pM'{zi41) = pM‘(2)), while the concavity of M and the fact that 7; < 2y
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imply that M'(z;) > M’(zis)). We have therefore found a contradiction, from which Equation
{A16) follows,

Appendix 2. An explicit characterization of the two cases

We have seen in Appendix 1 that the important constants ta characterize the strategy are x* and
£; £ is defined in (P3), while, denoting pU,(x,x) + U (x,x) by Z(x), we see from Equation (A15)
that x* solves Z{x*) = 0. If r* < £, we have gradual growth with reproduction; if x* 2 £, we
have first growth, then reproduction. Since Z(x) is a decreasing function of x (see P4), we have

ifZ(£) 2 0, then x* 2 £;

(A1T)
if Z(2) <0, then £° < &. (A18)

We then see from (A7)-{AB) and the expression for M(x) that
Z(%) = pM'(£) = 1 = pfLiig)f() — | (A19)

In order 1o see how (A17) or (A18) depend on g, one can show, using the dependence of £
on ¢ and an explicit formuta for M(x). thal pM’(£) is 8 decreasing function of ¢. Since it is easy
to show that for g = 0 Z(#)} > 0, while for ¢ = 1 Z(2) < 0, it follows that there exists ¢* such
that Z(#) = 0. For ¢ < q" {A17) holds; for ¢ > ¢* (A18) holds.

T we assume that f{V) = aV*, Equation (1) can be solved explicitly; then also £ and x* can
be computed. From Equation (A19) one sees that Z(#) = pgq*—1. Therefore Equation (A7)
holds when p 2 g". Equation (A18) holds for p < q*. Expression (5) and (6) for x* can
then he ohtained through some computations.
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