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Fresnel volume ray tracing

Viastislav Cerveny* and José Eduardo P. Soarest

ABSTRACT

The concept of “*Fresnel volume ray tracing’ con-
sists of standard ray tracing, supplemented by a com-
putation of parameters defining the first Fresnel zones
at each point of the ray. The Fresnel volume repre-
sents a 3-D spatial equivalent of the Fresnel zone that
can also be called a physical ray. The shape of the
Fresnel volume depends on the position of the source
and the receiver, the structure betwéen them, and the
type of body wave under consideration. In addition,
the shape also depends on frequency: it is narrow for
a high frequency and thick for a low frequency. An
efficient algorithm for Fresnel volume ray tracing,
based on the paraxial ray method, is proposed. The

evaluation of the parameters defining the first Fresnel
zone merely consists of a simple algebraic manipula-
tion of the elements of the ray propagator matrix. The
proposed algorithm may be applied to any high-fre-
quency seismic body wave propagating in a laterally
varying 2-D or 3-D layered structure (P, S, converted,
multiply reflected, etc.). Numerical examples of
Fresnel volume ray tracing in 2-D inhomogeneous
layered structures are presented. Certain interesting
propertics of Fresnel volumes are discussed (e.g., the
double caustic effect). Fresnel volume ray tracing
offers numerous applications in seismology and seis-
mic prospecting. Among others, it can be used to
study the resolution of the seismic method and the
validity nc:&:oam of the ray method.

INTRODUCTION

In seismology, similarly as in other branches of physics,
the rays can be introduced in several different ways. Com-
monly, they are defined as extremals of Fermat’'s functional,
or as characteristics of the eikonal equation. They can also
be interpreted as trajew.ories along which the high-frequency
part of elastic energy propagates. All these alternative defi-
nitions yield the same ray trajectory. The actual ray trajec-
tory, however, is only a mathematical fiction. For finite
frequencies, the properties of the wave propagating along
the ray under consideration and recorded at the receiver are
influenced not only by the structure along the ray, but also
by the structure in some vicinity of the ray.

The region in the vicinity of the ray that actually influences
the properties of the wave propagating along the ray under
consideration and recorded at the receiver has been a subject
of interest and of numerous theoretical and experimental
tnvestigations for a long time. The results of such investiga-
tions are vsually expressed in terms of well-known first
Fresnel zones and their 3-D spatial equivalents, Fresnel
volumes (see Figure 1). The Fresnel volume depends, of

course, on the position of the source and receiver. However,
it also depends on the frequency f. For higher frequencies,
the Fresnel volumes are narrower. As we will show, the
width of the Fresnel volume is inversely proportional to the
square root of the frequency /\.w

The term Fresnel volume is due to Kravisov and Orlov
(1979, 1980). Fresnel volumes are also known as 3-D rresnel
zones {see Bertoni et al., 1971). Alternatively, they are also
called regions responsible for diffraction, and similarly. It
would also be sensible to call them physical rays, to empha-
size their difference from mathematical rays. Whereas math-
ematical rays are merely volumeless trajectories, the physi-
cal rays are volumes of nonzero width concentrated close to
the relevant mathematical rays. Their width is frequency
dependent.

In a homogeneous medium, the ray connecting the source
A with the receiver B is a straight line. The relevant Fresnel
volume can then be calculated analytically, and it is repre-
sented by an ellipsoid with its foci at A and B (see the simple
examples in Figure 2). Similarly, the Fresnel volume corre-
sponding to a wave reflected from a planar interface between
two homogeneous half-spaces can also be evaluated analyt-

Manuscript received by the Editor March 27, 1991; revised manuscript received January 3, 1992,
*Institute of Geophysics, Charles University, Ke Karlovu 3, 121 16 Praha 2, Czechoslovakia.
1Rua do Matao 1226, Instituto Astrondmico e Geofisico, Universidade de Sdo Paulo, Cidade Universitaria-Sio Paulo-S.P., CEP. 05508, Brazil.
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Fresnel Volume Ray Tracing 903

ically and has an ellipsoidal shape. In general. in laterally
varying layered structures, the shape of the Fresnel volume
is more complicated and must be evaluated nurmerically.

The exact computation of Fresnel volumes in complex 2-D
and 3-D structures would require an extensive two-point ray
tracing and would be extremely time consuming. In this
paper, we propose a considerably more efficient approach
for the calcufation of the Fresnel volumes in complex
structures. }t is based on the application of the paraxial ray
theory, particuiarly on the application of the ray propagator
matrices. As the paraxial ray method is only approximate,
the Fresnel volume evaluated by it will also only approxi-
mate the Fresnel volume computed exactly. To distinguish
between the Fresnel volume calcuiated exactly and the
Fresnel volume calculated by the paraxial ray method. we
shail also call the former the exact Fresnel volume and the
latter the paraxial Fresnel volume. The paraxial Fresnel
volumes, however, represent the exact Fresnel volumes
usually with high accuracy, particularly for higher frequen-
cies. See a comparison of both computations in Figure 2.

At present, standard ray-tracing routines are uswally sup-
piemented by the dynamic ray tracing and by the computa-
tion of the ray propagator matrix. The dynamic ray tracing
is. in general, required to determine the geometrical spread-
ing and ray amplitudes. If the results of such computations
are avatlable along the ray, the paraxial Fresnel volume can
be calculated at any point of the ray, simply by algebraic
manipulation with the elements of the ray propagator matrix.
There wili be practically no additional ¢éxpense to compute
the Fresnel volume.

We shall introduce the following terminology and call the
computation of a ray Q from A to B, supplemented by the
evaluation of the relevant Fresnel volume along the whole
ray {} from A to B, the Fresnel volume ray tracing. Alter-
natively, it would also be possible to use an abbreviated

Fi1G. 1. Schematic presentation of a Fresnel volume for a
point source at A and receiver at B. The point F belongs to
the Fresnel volume if and only if it satisfies equation (i). The
cross-section of the Fresael volume by a plane 3 r perpen-
dicular to the ray at a point O, represents the first Fresnel
zone at Or. Assume that the point F is situated in the plane
2 r. Then it also belongs to the first Fresnel zone at O if it
satisfies equation (1).

Tl UMM N ey

term, the Fresnel ray tracing, or to speak about physical ray
tracing.

The Fresnel volumes and Fresnel zones play an important
role in the solution of many wave propagation problems. In
seismic prospecting, they have been used to study the
horizontal resolution of seismic reflections (see Hagedoorn,
1959; Hilterman, 1970; Sheriff, 1977, 1980, 1985, 1989;
Sheriff and Geldart, 1982; Kleyn, 1983; Lindsey, 1989; Eaton
et al., 1991; and other references given in these papers and
books. Also see, Pant and Greenhalgh (1989) for the labora-
tory investigation of the horizontal resolution of the seismic
reflection method. Fresnel volumes and zones have also
been used in the classification of scattering problems (see
Flatté et al., 1979; Aki and Richards, 1980: and Wu and Aki,
t988). Fresnel volumes play an important role in the formu-
lation of validity conditions of the ray method (see Kravisoy
and Orlov, 1979, 1980 and Klem-Musatov, 1980). These
applications will be discussed in greater detail in the last
section. Even in singular regions, where the standard ray
method fails (caustic regions, etc.), the Fresnel volumes can
be used to find some robust quantitative estimates of the
wavefield (See also Kravtsov and Orlov, 1980).

We believe that Fresnel volume ray tracing will find even
some other, perhaps more important, applications in the
numerical modeling of seismic wavefields and in the inver-
sion of seismic data in the near future.

FRESNEL VOLUMES

We consider an elementary elastic harmonic wave propa-
gating from a point source situated at A to the receiver
situated at B. We denote the frequency of the wave by fand
the relevant vn_.En__ by T. Further, we denote the ray
connecting A and B by () and the traveltime from A to B by
(8, A) (See Figure 1).

We introduce an auxiliary point F in the vicinity of the ray
{} and construct the rays connecting F with A4 and 8. Along
each of these rays, we compute the traveltimes F, A) and
{F, B).

We are now ready to give a definition of the Fresnel
volume corresponding to the point source at A and receiver
at B. Supported by numerous experiments and observations
and by verious theoretical and numerical investigations
(e.g., by the method of the stationary phase), the Fresnel
volume can be defined by the following equation (see
Kravtsov and Orlov, 1980),

[T{F, A) + =(F, B) — 1(B, A)|<iT. (n

The point F belongs to the Fresnel volume corresponding to
the source at A and receiver at B if and only if it satisfies
equation (1}. Note that the definition of Fresnel volumes in
Kravtsov and Orlov (1980) is formally written in a slightly
different form than in equation (1), as they use phases, where
we use traveltimes,

As is obvious from the definition, the Fresne! volume is
reciprocal, i.e., if we exchange the source and receiver, the
Fresnel volume remains the same.

The boundary of the Fresnel volume is described by the
relation

I=(F, A} + 1(F, B) — (B, A)l=:T. (2)

JEN ST R
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FiG. 2. Comparison of exact and paraxial Fresnel volumes in a homogeneous medium, with velocity v = 6
km/s. The point source is situated a1t depth, with two receivers at the earth’s surface. The boundaries of the
exact Fresnel volumes are shown by continuous lines, and the paraxial Fresnel volumes are represented
discretely, by the radii of paraxial Fresnel zones. Five frequencies are considered: (a) f = 0.75 Hz, (b) f =
1.5Hz, {c) f = 3Hz, (d) f = 12 Hz, and (¢) f = 48 Hz. The differences between the exact and paraxial Fresnel
volumes are observable only for low frequencies close to the source and receivers.
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We shall call the cross-section of the Fresnel volume equa-
tion (1) by a plane perpendicular to the ray {1 the Fresnel
zone.

The Fresnel volume as defined by equation (1) as well as
the Fresnel zon¢ corresponds to the point source and re-
ceiver situated at points A and B. For different types of
sources, alternative definitions can be written. For example,
a Fresnel volume corresponding to the wavefield generated
at an initial surface ¥ and recorded at a point B can also be
introduced. Such a configuration will play an important role
in the study of the wavefield generated by finite faulting
earthquake sources in seismology. In this paper, however,
we shall consider only the point source—point receiver
configuration.

Let us now discuss Equation (2) for the boundary of the
Fresnel volume in a homogeneous medivm. If we denote the
velocity by v (= const.}), we can rewrite equation (2) as
follows:

N
¢(F, A) + €(F, Slﬁw,\»vum. 3)

Here A = vTisthe wavelength, £(A. B) denotes the distance
between poinis A and B: ¢(F, A) and £(F, B) have a similar
meaning. It is nol necessary to write the absolute value in
equation (3), as the expression on the left-hand side is always
positive in homogeneous media. '

We now demonstrate the differences between exact
Fresnel volumes and paraxial Fresnel volumes. The Carte-
sian coordinates X, ¥, Z aré considered, with points A and B
situated along the r-axis. The coordinates of A, B, F are
denoted as follows: A =[x4,0, 0] B =lxg.,0, 0] F=
[xps Yo 28D with xg = Xa. Then equation (3) yields,

(e - xa)? +yE+ 20"

A

f i —xp)? FyE T E g (4)

where € = €(A, B) = xg — XA This is the equation for the

boundary of the exact Fresnel volume. It represents a

rotational ellipsoid with foci at points A, B. The Fresnel

sones are circles. The algebraic treatment of equation (4) is
left to the reader.

For small y§ + 2f, equation (4) can also be treated

approximately. Forxp = Xg = Xa, We obtain from equation

),

. Aaﬁlamikwl.«l "
r—= A —_—

xp — Xa

) (3)

where r = (YF + z2)V? is the radius of the Fresnel zone.
Equation (5) corresponds, in fact, 10 the paraxial ray approx-
imation of equation {4} in a homogeneous medium.

Figure 2 demonstrates the differences between exact and
paraxial Fresnel volumes. The boundaries of the exact
Fresnel volumes calculated by equation (4} are shown by
continuous lines, and the paraxial Fresnel volumes calcu-
lated using equation (5) are represented discretely, by the
radii of paraxial Fresnel zones.

It is obvious from Figure 2 that the paraxial Fresnel
volumes are good, sufficiently accurate approximations for

the exact Fresnel volumes. Only close o points A and B,
particularly for Jow frequencies, the accuracy is lower. Let
us discuss the differences in the vicinity of A and B in greater
detail. )

The radius of the exact Fresnel zone directly at A and B is
simply obtained from equation (4),

AL+ A
__.nxu.::: = ﬁnxsn_ﬁwv = M [+ ZN&.

For € = ., we obtain approximately Fexact(A) = Fexact!BY ™
M2. In paraxial computations, however, the Fresnel zones
at A and B shrink to zero, se€ equation (5). Similarly, for the
vovershooting™” A of the exact Fresnel volume behind A and
B along the x-axis (for yp = 2F = 0), we obtain from
equation (4), & = M4. The paraxial computations do not
give any overshooting.

Equation (3) and Figure 2 allow us to draw some conclu-
sions regarding the typical sizes of the Fresnel volumes and
Fresnel zones in homogeneous media. For example, jet us
compute the radius of the Fresnel zone al the BE&.& point

between points A, B. Then xp = X4 = xg — Xg = 34x8 7

x4) = 3¢ and equation (5) yields r = _MC,S:M. The same
equation is valid for the radius of the Fresnel zone at a plane
interface between (wo homogeneous media, if a reflected
wave with the source and receiver situated at the same point
is considered {normal incidence), and if the distance of the
source from the interface is w ¢. Similar analytic expressions
for Fresnel zones in simple structures have been known for
a long time. See, for example, Flatté et al. (1979), Born and
Wolf (1980), Sheriff (1980), Kravisov and Orlov (1980}, etc.
Most of them af¢ also only approximate, i.e., based on
paraxial methods; even though the authors do not emphasize
this fact.

In laterally varying layered structures, the computation of
Fresnel zones is considerably more complicated. The most
general approach for the evaluation of Fresnel zones along
the rays in complex structures was proposed in Gelchinsky
(1985). To evaluate the Fresnel zone at a selected point of
the ray, he uses a geometrical approach based on the
curvatures of the wavefront. Gelchinsky traces two wave-
fronts, one from point A and one from point B; however, he
does not specify how 10 evaluate the curvature matrix of the
wavefront along the ray in an inhomogeneous medium. The
computation of the curvature matrix in an inhomogeneous
medium along the ray can be done by solving a noalinear
matrix equation of the Riccati type. Such computations are
usually less efficient. An alternative approach to compute
the curvature matrix is based on a linear dynamic ray-tracing
system. Then, however, the evaluation of the curvature
matrix is not needed at all, i.e., the equations for the Fresne!
zone parameters may be obtained directly, in a simple way
See more details on the curvature matrix computation witt
both approaches in Hubral (1980}, Hubral and Krey (1980)
and Cerveny (1985, 1987).

In case of inhomogeneous media with curved interfaces
the situation can become complicated in another way. Th
Fresnel zones are not necessarily elliptical, but may also b
hyperbalical or parabolical. For a detailed discussion ¢
hyperbolical Fresnel zones and their physical interpretatic
see Asatryan and Kravisov (1988).
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A final note. In the whole treatment, we have considered
harmonic waves, with a frequency f. In the case of actual
seismic waves, however, we do not have harmonic waves,
but usually some high-frequency signals. The definition of
the Fresnel volume will remain approximately valid only for
very-narrow-band-limited high-frequency signals, if the
dominant frequency is used for f. For signals that are not
very-narrow-band-limited, it will be necessary perhaps to
consider several Fresnel volumes for different frequencies.
It would also be possible to use an alternative definition of
Fresnel volumes in terms of transient waves, with T repre-
senting the width of the signal. [See also Knapp (1991) and a
discussion of band-limited raypaths from a different point of
view in Woodward (1989).1

PARAXIAL FRESNEL VOLUMES IN 3-D STRUCTURES

In this section, we shall present equations for the paraxial
Fresnel volumes in 3-D laterally varying layered and blocked
structures. The derivation is based on the principles of the
paraxial ray method (see Babich and Buldyrev, 1972; Cer-
veny and Piencik, 1983; ﬁn_.e.a:w\ et al., 1984, 1988; Beydoun
and Keho, 1987) and on the properties of the ray propagator
matrix. For a detailed exposition of the paraxial ray method
and, particularly, for the properties of the ray propagator
matrix see Cerveny (1985, 1987, 1989b).

I
Paraxial ray methed in 3-D smooth structures

et us consider the ray £ connecting two points A, B. The
ray (¢ can be described by the parametric equation x; =
x;(s), where x; are Cartesian coordinates of points along the
ray (1, and s is the arclength of the ray, measured from the
reference point 5 = s, on the ray, situated at A. The ray
trajectory x; = x;(s) satisfies the well-known ray-tracing
equations. At any point of the ray {2, we also determine the
traveltime 7(s5)}, the slowness vector p(s) = Vt = t/v, where
t is the unit normal to the wavefront v(x;) = const. and v is
the propagation velocity (v = a for P-waves, v = B for
S-waves). Along the ray 2, we introduce the orthogonal ray
centered coordinate system g, g3, ¢3(= s} and relevant
basis vectors e, e;, €3{= t). Directly along the ray () we
have g, = g, = 0.

We perform the dynamic ray tracing in ray centered
coordinates along () from A to B and determine the 4 X 4 ray
propagator matrix (s, 55). At the initial point 5 = 5, the
ray propagator matrix (s, 53) equals the 4 x 4 identity
matrix, We introduce four auxiliary 2 X 2 matrices Q,{s,
5o}, Qa(s. 59), Py(s, 59). P2(s, 5¢) by the relation

I _{Quils, s0) Qals, sq) 6
s, 50) = P\ (s, s0)  Pals, s0)) A

Along the ray {), the ray propagator matrix satisfies the chain
property I(s, s4) = H(s, s"I{s', 5¢), whete s' is any point
on {2, and its inverse is given by the relation,

H-A.qc ’ .m.v

It

(s, sq)
Pl(s, 50)  —QJ(s. s0)

~P{(s. 50) Q5. 50)

(7)

In the ray centered coordinates, the traveltime field
7(q,, 2. 5} at a point situated in the vicinity of the ray 0,
specified by coordinates ¢q,, g2, g1 = s is approximately
given by the relation,

VT q1
=7(0,0, 5) +;9'M(s)q, gq= - B
- - q2
Here M(s) is a 2 x 2 matrix of second derivatives of the
traveltime field with respect to g, g, at £},

Tq1. g2, %)

3°1(q1, g2, 5)
MyG)=|——™ . 9)
99194 41 =q2 =0

The superscript T in equation (8) denotes a transpose. It is
obvious that the matrix M is symmetric.

The matrix M can be expressed in terms of the ray
propagator matrix (6). We can rite

M(s) = P(s)Q "\(s), (10)
where P(s) and Q(s} are given by the following equations:

Q @Qm p mw.ﬂ
=T . =\l '
M1/ yy — 4y =0 04131/ 4 =43 -0

where v, v are ray parameters. P(s) and Q{s) are solutions
of the dynamic ray-tracing system. They satisfy the contin-
uation relation

oy v Qlso) "
= 1l(s, s . |
ey ) A
{
For a point source 4jtuated at 54, we have Qsg) = 0.
The above relations play a very important role in the
compact formulation and computation of paraxial Fresnel
volumes.

Paraxial Fresnel volumes in 3-D smooth structores

We shall again consider the ray () connecting two points
A, B. We wish to construct the Fresnel volume correspond-
ing to the rav 2 with endpoints A, B (point source, receiver).
Let us select an arbitrary point O on the ray () between A
and B (see Figure 1). At Of, we construct a plane 3
perpendicular to . Finally, we choose a point F in the plane
Zr. According to the definition, the point F belongs to the
Fresnel volume corresponding to € with endpoints A, B if
and only if the following condition is satisfied,

[#(F, A) + 7(F, B) — %(B, A)| =;T. (12)

Here T is the period, and 7(8, A) = (A, B) corresponds to
the traveltime from A to B. The quantities T(F, \C and T(F,
B) have a similar meaning.

To compute 7(F, A) and 7(F, B) for a mvonmmn point F in
a laterally varying structure, it would be necessary to
perform exhaustive numerical two-point ray tracing. If the
point F, however, is not too far from (}, we can use an
analytical approach based on the paraxial ray method. This
will reduce all the work to only a few matrix muttiplications.

We shall introduce the following convention. !If we write
the matrix M with two arguments, e.g., M(Op, A).
corresponds to the matrix of second derivatives of the
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traveitime field at point O due toa point source sitwated at
A. Similarly, M(Og, B} is due to a point source at B. A
similar convention will also be used for matrices Q and P.
We shall now specify the ray centered coordinate systermn
41 92, 3. We shall assume that the coordinate g3 = §
increases along (2 from A to B, and denote the ray centered
coordinates of points Op and F as follows, OF(0, 0. 5},
Figy. g2. s). To emphasize the fact that ¢,, ¢ are
coordinates of the point F, we shall write g, (F) and g2(F}.
Then, using equation (8), we can write,
oF, A) = 1(0p, A) + T_:E&E,., Ag(Fy. (13

Similarly, we obtain
«F. B) =1(0r, B) — 1q"(FIM(OF, B)g(F). (14

Note that equation (14) corresponds to the same ray cen-
tered coordinate system q,, gz, g3 = 5 a8 equation (13),
with the same arclength s along (, increasing from A to B.
Thus, equation (14) corresponds to a backward continuation
and the sign " — ' must be used with the quadratic term.
Even the quantitics M(Of, A} and M(O. B) arc defined
with respect to the same ray centered coordinate system g .
g;, g3 = s. For example, in a homogeneous medium,
elements of M(OFg, A) are positive. but elements of M(O .
B) are negative, :

‘We now take into account that 1(Of, A) + T(Op., BY =
(B, A}. Inserting equations (13) and {14) into equation (12)
yields the final equation for the paraxial Fresnel volume,

laT(FIM(OF. A) — M(OF. BYlatP)| =T (13)

Similarly, the boundary of the paraxial Fresnel volume is
composed of points F which satisfy the equation,

la"(F)M(OF . A) = M(OF, BYlq(F)| =T (18)

Let us now consider a fixed point Of, with a relevant
plane X perpendicular to ray Q at Op. Then equation (15)
represents a normal cross-section of the paraxial Fresnel
volume with the plane X p. We call this cross-section the
Fresnel zone. From a physical puint of viow, it corresp~nds
to the first Fresnel zone.

The left-hand sides of equations (15} and (16) are real
valued symmetric guadratic forms, and equation (16) repre-
sents a quadratic curve in the plane 2 5. The curve may be a
circle (not common in laterally varying structures), an el-
lipse, a parabola, or a hyperbola. To simplify the terminol-
ogy, we shall discuss the Fresnel ellipse. However, it should
be understood that the curve may be any quadratic curve,
not only an ellipse.

Equations (15) and (16} represent final equations for the
paraxial Fresnel volume and for its boundary. It will, how-
ever, be useful to discuss the computation of matrices
M(Of, A) and M(OF, B). In principle, it would be possible
to use a hungry wolf approach and to perform the dynamic
ray tracing along the £} twice, once from the point A 10 B and
second from B to A. In the second case, it would be
necessary to use the same choice of ray centered coordinate
system as in the first case. In addition, it would be necessary
to choose proper initial conditions for matrices
P(A) and P(B). Note that Q(A) = 0 for a point source at A,

and Q(B) = 0 for a point source at B.

It is. however. possible to express M(Of, A} and M(OF,
B) in terms of the minors of the ray propagator matrix and
remove all the difficuities mentioned above. It is not neces-
sary to perform the d ynamic ray tracing {wice, but just once,
from A to B. No actual initial conditions for matrices P(A)
and P(B) are required.

Using equations (10) and (11}, we obtain the following

equation for M(OFf. A),
M(OF. A) = B2(0F, A)Q; '(OF, A). (17)

Thus, to determine M(Of, A), we only need to know two
minors of the ray propagator matrix INOF, A): P1(Op. A)
and Q1(Of. A). Initial conditions for P(A) arc not required.

An equation for M(OF. B) is more complex, as we want to
express it in terms of elements of the ray propagator matrix
Os, A), not INOFp. B). We shall show that this is
possible, if the ray propagator matrix [I{B, A) along the
whole ray {} from A to B is also known. The matrix II(B, A)
is. of course, known when we perform the dynamic ray
tracing along the whole ray (1. If we use the chain property
and equation (7} for the inverse of the ray propagaior matrix

(6}, we obtain,
M(OF, B) =[~B(OF, A)Q1(B, A)
+ P, (0f. A)Q[(B. A)] x1-Qi(OF, A)QI(B, A)

+Q,(0F. AIQ{(B. Al (18)

Equations (15) and (16), together with (17) and (18), are final
equations for the paraxial Fresnel volume and its boundary.
As soon as the 'minors of the ray propagator matrices
IKOg, A) and INB, A) are known, the boundary of the
paraxial Fresnel volume in the plane Z ¢ perpendicular to the
ray {1 at Op can be computed analytically. When these
minors are known at ali points O of Q, including the
endpoint B, the whole paraxial Fresnel volume and its
boundary can be analytically computed. An alternative
version of several equations derived above was also pre-
sented, without derivation, in Cerveny et al. (1988).

Note tnal nowadays the minors of the ray nropagator
matrix are routinely evaluated in most of the existing pro-
gram packages for numerical modeling of seismic wavefields
in 2-D and 3-D complex structures. Because they are needed
in many applications, the cost of a Fresnel volume compu-
tation is extremely low.

The final expressions (15)(18) for the paraxial Fresnel
volume and its boundary contain only the minors of the ray
propagator matrices TI(Of, A) and II(B. A). These expres-
sions remain valid even for any laterally varying structures
with curved interfaces, if proper expressions for the ray
propagator matrix are used (see Cerveny, 1989b).

Boundary of the paraxial Fresnel volume and Fresnel ellipse

The boundary of the paraxial Fresnel volume in the plane
¥ r. perpendicular to the ray £ at the point Of, is given by
equation (16}, with equations (17) and (18). We shall now
rewrite equation (16} as a diagonal form. As the 2 X 2
matrices M(Op. A} and M(Of, B) are real-valued and
symmetric, matrix M(O;, A) — M(Op, B) has two real-
valued eigenvalues. They arc denoted by M (Of) and
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M,(Op). Simitarly, we denote the relevant eigenvectors by
e (Of) and e¥(Of). Then we can write,

M(Of, A} — M(OF, B)

. [Myo0p 0
= R7(0f) R(OF). (19
0 My0p)

Here R(O ) is a rotation matrix that rotates the basis vectors

e,(0F) and e;(OF) into eigenvectors e (Oy) and e (Of).
its elements are components of the eigenvectors e’ and e’
into axes ¢, and g,. Then we can write the quadratic form

{16) in the following diagonalized form,

M, (OF) 0 q1
q'(MI =T, ¢ =

_u.m.
TN o myon)? T\

(20)

nere g and g5 are new local Cartesiw.. coordinates in the
plane %r. The axes g} and g5 arc oriented along the
eigenvectors e (Of) and e(O). Equation (20) yields,

g\ AFYM(OF) + g3 2(FIM2(0p)| = T. (21}

For M, (Og) > 0 and M,(0Of) > 0, equation (21) represents
a Fresnel ellipse. The half-axes of the Fresnel ellipse,
r(Of) and r,(Og), are given by relations,

T 112 T 172
n0p) = |————| , 12(0p) = | ——
M {(OF) M3(OF)
These are final equations for the half-axes of the Fresnel
ellipse in the plane %g. They can be used to find the
dimensions of the Fresnel ellipse at any point O of the ray
Q in a laterally varying layered 3-D structure. For
M (OFp).M,(Oy) < 0, the Fresnel hyperbola is obtained.

. (22)

PARAXIAL FRESNEL VOLUMES IN 2-D STRUCTURES

Equations for the paraxial Fresnel volumes simplify con-
siderably for plane rays (1. Here we shall discuss an impor-
tant special case of plane rays (), particularly the rays in a
2.D medium situated in the plane 2 perpendicular to the axis
of symmetry. We specify the triplet of the basis vectors
e,(s5q), €2(5p), e5(59) = Usy) at the initial point A in such a
way that e,(5g) is perpendicutar to X. The two other basis
vectors are given by the relations e;(sy) = v(sg)plsgh,
e,{sp) = e,(59) X e3(s55). Then e, is perpendicular to X
along the whole ray Q, e,(s) = e;(so), and e5(s), €,(s) are
given, for any s, by the same relations as at sy: e(s) =
v(s)p(s), €;(5) = e;(5) X e3(s). The plane X is perpendic-
ular to X along the whole ray {1 and the matrices M(Of, A),
M(Of, B), are diagonalized (M;; = M, = 0) with the
diagonal elements M|, = M and My, = M*. Here M!
denotes the in-plane second derivative of the traveltime with
respect to g,, in the plane Z. Similarly, M* denotes the
perpendicular-to-the-plane second derivative, with respect
to q,, along the unit vector e;. Expressions (19) then remain
valid, but R is an identity matrix, and M ,(O¢), M(Op) are
given by relations,

M\ (0F) = MYOF, A) - MI(Of, B),
M>(OfF) = MY{Op, A) - M*(Of., B).  (23)

T e L T L e e

Similarly, equations (20)+(22) remain valid. The final expres-
sions for the radii of the Fresnel ellipse r|(Of) and ro(OF)
are given by equation (22}, with equation (23). In the analogy
with M! and M ', we shall also use the notation rl(0F) for
r(OF), and r *(Qf) for r2(Op). The quantities rb(Of) and
r*(0f) have a simple physical meaning: rlo F) represents
the in-plane radius of the Fresnel ellipse, and r* (Of) the
radius measured along e,, in the direction perpendicular to .

FRESNEL VOLUME RAY TRACING IN 2-D LATERALLY
VARYING LAYERED STRUCTURES

In this section, we shall briefly describe an algorithm and
computer programs for the Fresnel volume ray tracing in 2-D
laterally varying structures containing curved interfaces. We
shall also present examples of numerical calculations. In the
whole section, we call the paraxial Fresnel volumes simply,
the Fresnel volumes.

Algorithm of Fresnel volume ray tracing

Assume that a program package for a 2-D numerical ray
tracing and traveltime computation is available. For each
calculated ray, the program package should yield the Carte-
sian coordinates of points situated along the ray and certain
additional quantities at these points (traveltime, components
of slowness vector, etc.). Assume also that the program
package performs dynamic ray tracing and calculates the ray
propagator matrix at all evaluated points along the ray. If
such a program package is available, the algorithm for the
Fresnel volume ray tracing is straightforward. In the first
step, no changes are made in the computations described
above, and only a sypplementary file containing some com-
puted quantities is .wmnn_.wﬁa. As soon as such a file is
available for a setected ray (or rays), the Fresnel volume(s)
corresponding to the selected ray(s) can be computed and
plotted using a supplementary program.

The program package BEAMS87, described briefly in Cer-
veny {1989a), was used to generate the file described above.
Many other recently available program packages could, of
course, be used alternatively, e.g., the program package
SEIS83 as described in Cerveny and P3encik (1984). The
program package BEAMS7 is designed to perform the ray
tracing and dynamic ray tracing and to compute amplitudes,
synthetic seismograms, and particle ground motion diagrams
in 2-D laterally varying layered structures. The structure of
the model may be rather general, with blocks, pinch-outs,
and isolated bodies. Any type of multiply reflected, P, §, or
converted wave, can be considered as optional. The point
source A may be situated at any point of the medium, with
the receivers (B) along the earth’s surface.

To plot the results of Fresnel volume ray tracing, two
methods are used. In both methods, the mathematical ray
under consideration is plotted first. In the first method, the
radii of Fresnel zones rl(0f) (or r'(Of)) are plotted
discretely, in the direction perpendicular to the mathemati-
cal ray at points Og. We shall refer to it as discrete
presentation of Fresnel volumes. For examples, see Figures
8, 10, and 11. The advantage of the discrete presentation is
an extreme simplification of the generated plots. The disad-
vantage consists of a complicated behavior close to the
interfaces. As the ray is not generally perpendicular to the
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interface, the abscissas, with the radii of Fresnel zones.
partially intersect the interfaces {see Figurcs 10 and 11). In
the second method, the Fresnel volumes are plotted contin-
uously by a linear interpolation from the discrete presenta-
tion. We shall refer to it as continuous presentation of
Fresnel volumes (see Figures 3, 4, and 5 for examples). Such
a presentation, however, requires a little more aumerical
effort, particularly close to interfaces. We feel that the
simple discrete presentation is quite sufficient for most
practical purposes.

In all the examples. only the in-plane radii of the Fresnel
zones r! will be presented. The behavior of r* is simple and
is not discussed here. All computations were performed by
the paraxial ray method, so that the pictures correspond to
paraxial Fresnel volumes.

Fresnel volumes of reflected/transmitted rays

The Fresnel zone with radii ' and r* represents an

intersection of the Fresnel volume with a plane perpendicu-
lar to the ray. Sometimes, however, a calculation of the

intersection of the Fresnel volume is required, with an
arbitrarily oriented surface % (not necessarily perpendicular
to the ray} which may also be curved.

In the framework of the paraxial ray method, it is possible
to evaluate the parameters of such an intersection analyti-
cally. We call the intersection of the Fresnel volume with X
the Fresnel zone on the surfuce X. From a mathematical
point of view, the problem of determining the Fresnel zone
on the surface I practically reduces to the problem of the
determination of the traveltime field generated by a point
source along a curved surface. In the paraxial ray approxima-
tion, this can be done simply. Such a problem is solved, e.g.. in
Cerveny [1985, Eq. (7.9)] and will not be discussed here.

Such equations are applicable even for Fresnel zones at
interfaces. It is not difficult to prove that the boundary of the
Fresnel volume is continuous across the interface.

Simple examples of Fresnel volumes of reflected P-waves
are shown in Figures 4 and 5. The continuous presentation of
Fresnel voiumes is used.

PROFUNDIORDE EM KM
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Fi6. 3. Example of the paraxial Fresnel volume of a di
with a positive constant velocity gradient, v{z} =

5 7] 1 B8 9 10
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rect P-wave in a vertically inhomogeneous medium
1 + 0.875z km/s. The frequency is f = 30 Hz.
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Fi. 4. Example of the paraxial Fresnel volume of a PP-reflected wave in a two-layer medium. The velocity
in the upper layer is 3 km/s, and in the bottom layer 6.5 km/s. The frequency is f = 30 Hz. The penetration
of the Fresnel volume below the reflector is not shown. {See text for more details.)
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We add one note concerning Fresnel volumes of reflected
waves. The exact Fresnel volume of the reflected wave does
not stop abruptly at the reflector, as shown in Figures 4 and
5, but extends slightly, even below the reflector. Actually, a
point F situated below the reflector close to the point of
incidence may satisfy the Fresnel volume condition (1). This
is well known from literature, see e.g., Hagedoorn ( 1959)
and Sheriff and Geldart (1982). For example, the maximum
penetration below the interface for a2 normal incidence is m?
where A is the wavelength below the interface. Such a
penetration is not avtomatically included in the paraxial
Fresnel volume computation and is not shown in figures
presented here. Perhaps, it will not be difficult to supplement
the paraxial procedure by some simple estimates, similarly,
as in the vicinity of the source and receiver, and to plot the
boundary of the Fresnel volume even below the interface.

Fresnel volumes close to caustic points

Let us consider the point source situated at A and a
caustic point C on () between A and B. At the caustic
point C, the ray € touches an envelope of rays and
MO, A)| = = for O — C. Consequently,

rlicy = 0.

Thus, at a caustic point C, the radius of the Fresnel zone
1:9 vanishes. Before we present numerical examples illus-
trating this fact, we shall discuss in greater detail one
interesting effect connected with the caustic points,

Let us consider a ray of a direct wave from A to B in a 1-D
vertically inhomogeneous medium (see Figure 6). It is obvi-
ous that this ray is symmetrical about the vertical line
passing through the minimum of the ray M.

First, assume that the point source is situated at A and the
receiver at B (see Figure 6a). Consider a velocity-depth
structure that generates a caustic point C between M and B.
Let us now exchange the source and the receiver so that the
receiver is situated at A and source at B. As the medium is

1-D, the caustic point must be situated at the same epicentral
distance from the source as before. Thus, it will be situated
at the point C', symmetrical to C.

Similarly as E:ﬁ.. A) = =, we also have E__An;. B) —»
=. Equations (22) and (23) then yield that the Fresnel volume
vanishes not only at C, but also at C’. Thus, if the structure
is 1-D, not only is the mathematical ray from A to B fully
symmetrical about the vertical line passing through M, but
also the Fresnel volume is symmetrical, including the two
symmetrical caustic points C and C’ for sources at 4 and B.
We call this effect the dowble caustic effect.

We emphasize again: for a fired source at A and JSixed
receiver at B, only the caustic point at C is real; the ray field
is quite regular at C’. The relevant paraxial Fresnel volume,
however, shrinks to zero not only at C, but also at C’.

The double caustic effect is very common in Fresnel
volume ray tracing. Of course, the equations presented yield
the double caustic effect automatically.

The double caustic effect is common not only in the case
of symmetrical rays Q, but also in case of rays in laterally
varying layered structures with curved, nonsymmetrical
interfaces. The rays in such structures are not symmetrical,
but the caustic C (corresponding to the source at A) and ¢’

SOURCE RECEIVER RECEIVER SOURCE

A [} A B
( g
M " [

Fig. 6. Explanation of the double caustic effect using the
principle of reciprocity. For the source at A, the caustic
point is situated at C. For the source at B, the caustic point
is situated at C’'. At both these points, the width of the
paraxial Fresnel volume shrinks to zero.
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Fig. 5. Example of the paraxial Fresnel volume of a PP-reflected wave in a three-tayered medium. The
velocities in individual layers are 3 km/s, 4 km/s, and € 5 km/s, from the top to the bottom. The frequency is
30 Hz. The penetration of the Fresnel volume below the reflector is not shown. (See text for more details.)
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distribution yields »(0) = (15} = 5.6 km/s and v(40) = §
km/s. The lowest velocity is reached at z = 7.5 km,
v(7.5) = 5.465 km/s. The ray diagram (initial value ray
tracing) and the traveitime curve, cotresponding to a point
source situated at the earth’s surface, are shown in Figure 7.
The Fresnel volumes corresponding to a selected ray, for
frequencies of § Hz and 10 Hz, are shown in Figure 8. The
discrete presentation of Fresnel volume is used.

(corresponding to the source at 8) will usually influence the
shape of the Fresnel volume.

Examples of the double caustic effect are shown in Figures
7-10. In Figures 7 and 8, we consider a vertically inhomo-
geneous medium with a velocity-depth distribution v(z)
specified by a quadratic parabola v{z) = 5.6 — 0.036z +
0.0024z% (km/s). Here z is taken in kilometers, z = 0
corresponds to the earth’s surface. This velocity depth
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F16. 7. The ray diagram and traveltime-distance curve of a direct wave in a vertically inhomogenegus medium
with the velocity depth distribution given by the relation »(z) = 5.6 — 0.036z + 0.0024z° km/s. An
envelope of rays (a caustic) is formed in the ray diagram. The caustic intersects the surface at the epicentral
distance of 126 km. -
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FiG. 8. Double caustic effect. The paraxial Fresnel volumes for one ray of the direct wave in the model shown
in Figure 7 which passes through a caustic point at an epicentral distance of about 98 km. The freugencies are
5 Hz and 10 Hz.
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In another example, we consider a wave reflected from an
interface of the syncline form. The ray diagram (initial value
ray tracing) and the traveltime curves for a point source
situated on the axis of symmetry of the model are shown in
Figure 9. A Fresnel volume corresponding to one selected
mathematical ray, for frequency of 30 Hz, is shown in Figure

10. The discrete presentation of the Fresnel volume is used

again.

Remember that the Fresnel volumes presented are evalu-
ated by the paraxial ray method, which fails at caustic
points. Actually, the Fresnel zone will not vanish at the
caustic point, but it will be very small, The situation is very
similar to the situation at the point source. The radius of the
exact Fresnel zone at the point source is W A, but the paraxial
Fresnel zone vanishes there. Thus, we can expect a radius of
the Fresnel zone of the order of W A, even at caustic points.

Fresnel volume ray tracing in complex 2-D layered
structures

Using the algorithm proposed in this paper, we can
compute the radii of the Fresnel zone by a simple step-by-
step procedure in any laterally varying structure. The cost of
the Fresne! volume ray tracing in 2-D layered structures
does not significantly exceed the cost of standard ray trac-
ing, as the evaluation of the radii of Fresnel zones requires
only a simple algebraic manipulation,

We shall present several simple examples. The synthetic
model under consideration contains icurved interfaces, a
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FiG. 9. The ray diagram and traveltime-distance curve of a
wave reflected from a structural interface of a syncline form.
The caustics can be clearly observed in the ray diagram. The

velocity in the upper layer equals 2 km/s and 4 knv's in the
bottom layer.

lens-like isolated body, a pinch-out, and edge points of
interfaces. The velocity distribution in individual layers
changes slightly in both x- and z-directions. Fresnel volume
ray tracing along a selected mathematical ray, is performed
for four frequencies, 20 Hz, 30 Hz, 50 Hz, and 100 Hz (see

Figure 11). The Fresnel volumes are presented in a discrete
form.

As Figures 1] are self-explanatory, we shall not discuss
them in detail here. Still, however, we shall point out that an
edge point is situated close to the reflection point of the wave
under consideration. For the frequency of 20 Hz, the edge
point is situated within the Fresnel volume, but for the
frequency of 100 Hz, it is situated safely outside the Fresnel
volume. This implies that the wavefield recorded at the
receiver will be influenced by the edge point for frequencies
close to 20 Hz, but will rot be influenced by it for frequen-
cies close to 100 Hz. A similar situation is related to the
pinch-out at the descending part of the ray ().

DISCUSSION AND CONCLUSIONS

We have presented a simple and efficient technique for
Fresnel volume ray tracing. It yields the parameters of the
Fresnel zones at any point of the ray, and can be applied to
any type of seismic body wave propagating in 2-D and 3-D
laterally varying layered structure.

As the technique practically does not require more com-
puting time than the standard ray tracing, it can be included
in routine computer packages to solve various direct inverse
seismic problems. We shall discuss several possible applica-
tions.

The applications of the Fresnel volume ray tracing in the
investigation of the horizontal resolution of seismic methods
are well known and do not require any additionat explana-
tion. It should be emphasized only that the algorithm of the
Fresnel volume ray tracing proposed here considerably
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FiG. 10. Double caustic effect. The paraxial Fresnel <o_==.._n
for one ray of the reflected wave in the model shown in

Figure 9 which passes through a caustic point. The fre-
quency is 30 Hz.
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extends the possibilities of such investigations for complex vector) must not vary considerably within the cross-
2-D and 3-D laterally varying structures. section of the relevant Fresnel volume.

Another important application of the Fresnel volume ray If we denote the greater half-axis of the Fresnel zone
tracing consists in possible routine computations of some by rg. the validity conditions are as follows:
quantitative estimates of the inaccuracy of the ray method
and in a routine separation of regions where the ray method , Vv <1 ViA;
is or is not applicable. As this application is not as obvious, Fl ’ L =1,
we shall discuss it in greater detail.

The validity conditions of the ray method have been V.p:
discussed by many authors. For a detailed treatment and for rr p <1, elc. (24)
many other references see Cerveny et al. (1977), Kravtsov
and Orlov (1980), Chapman (1985). Beydoun and Ben- Here V| denotes the gradient in the direction perpen-
Menahem (1985), and Ben-Menahem and Beydoun (1985). dicular to the ray, p, are components of the slowness
The validity conditions usually have only a quantitative, not vector, and A; components of the ampiitude vector.
a quantitative character. Using the concept of the Fresnel The physical meaning of the above inequalities is obvi-
volumes, the validity conditions can be expressed in a more ous.
quantitative way. We shall mainly follow the formulation 2) The Fresnel volumes corresponding to different rays
and 'scussion of the Fresnel volume validitv conditions arriving at the receiver point must not substantiaily
given by Kravtsov and Orlov (1979, 1980). They propose two intersect each other,
validity conditions: We understand that two Fresnel volumes intersect

each other substantially if the larger parts of the two

1) The parameters of the medium and the parameters of Fresnel volumes overlap. The criterion may also be

the wave under consideration (amplitude, slowness expressed in the following way,
a)
a .
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FIG. 11. Fresnel volume ray tracing in a complex 2-D laterally varying layered structure. The frequencies in
individual figures are as follows: {(a) f = 20 Hz, (b) f = 30 Hz, () f = 50 Hz, and (d) f = 100 Hz.
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25
Ve (23)

Here V£ is a sum of both Fresnel volumes, and 3V is
the common (overlapping) part of the volumes.

According to Kravtsov and Orlov (1979, 1980), the criteria
(24) and (25) are not only necessary, but also universal and
sufficient, They investigated many special cases and found
that the validity conditions (24) and (25) can replace many
other forms of validity conditions of the ray method pro-
posed by other authors. They also found that the signs < in
equations (24} and (25) can usually be replaced by signs =,
Thus, it is possible to introduce quantities, o, o, ..., of
the following type,

V.v SV
o) =rp - , o = ||, etc.,  (26)
v d\m.u
and
Q.HKNMAQ._.Q.NG...W. 27
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The quantity o can then be used as a heuristic quantitative
estimate of the inaccuracy of the ray method. The boundary
between the region of applicability of the ray method and the
region of its inapplicability can be constrirtad along points
at which ¢ = 1. For a more detailed discussion of equation
(27} see Kravtsov and Orlov (1980).

Thus, the Fresnel volume ray tracing is an efficient tool to
find the regions of inapplicability of the ray method. The
Fresnel volume ray tracing, however, can offer even more:
to find some robust estimates of the wavefield in certain
regions of inapplicability of the ray field. Such possibilities
were demonstrated by Kravtsov and Orlov (1980} on a
caustic singular region. Perhaps it will also be possible to use
an alternative approach in the region of inapplicability of the
ray method: to combine locally the ray method with some
other, more sophisticated approach. We believe that the
hybrid combination of various methods is very promising.

Another possible application of the Fresnel volume ray
tracing has a different character. The basic property of the
Fresnel volumes consist in the fact that they define the
region in space that is responsible for the properties of the
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Fig. 11. Continued
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wave propagating along the ray under consideration and
recorded at a specified point. This property may play an
important role in both the numerical modeling of seismic
wavefields and in the inversion of seismic data.
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ABSTRACT

Cerveny, V. and Coppoli D.M., A., 1992. Ray-Born synthetic seismograms for complex structures
containing scatterers. Journal of Seismic Exploration, 1: 191-206.

The hybrid method based on a combination of the ray theory with the Born approximation
can be used w compute synthetic seismograms in complex, laterally varying layered structures
containing small scatterers. The scatierers can be combined to form objects of a complex shape. The
wave field in the background, laterally varying layered structure is computed by the ray method and
the single scattered wave field by the Born approximation. A computer program package designed
for such hybrid ray-Bom computations in 2-D models is briefly described and numerical applications
ire presented. The ray-Born numerical modeiling of seismic wave fields extends the possibilities of
ray modelling considerably.

KEY WORDS: ray method, Born approximation, hybrid ray-Bom method, scattering of seismic
waves.

INTRODUCTION

The ray method has found many successful applications in seismic
prospecting for oil and in seismology. It is very general and can be used to
study the propagation of high-frequency seismic (or acoustic) waves in complex,
laterally varying layered structures. Even though the accuracy of the ray method
is only limited, it is the only method that is able to give an approximate answer
o many wave propagation problems in 2-D and 3-D complex structures of a
great practi¢al importance,

0963-0651/92/$5.00 © 1992 Geophysical Press Lid.
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The ray method, however, can be applied only to wave fields in media
with smooth variations of elastic parameters and density. The model may
contain interfaces, but these interfaces must be also smooth. In regions of high
velocity gradient, the ray method is not applicable. Similarly,the ray method is
not directly applicable to study the interaction of the wave field with scatterers,
the size of which is less than or comparable with the wavelength.

The scattered wave field generated by such scatterers can, however, be
studied by other methods. If the velocities and the density within the scatterers
do not differ considerably from the velocities and the densities in the
surrounding media, the perturbation methods can be used, for example the Born
or the Rytov appoximation.

Here we discuss the hybrid method based on a combination of the ray
method and the Born approximation. We consider a general smooth, laterally
varying layered structure, in which the ray method can be used. This structure
is considered as a background medium. In addition, the structure contains a

limited number of scatterers. The single scattered * savefield is then evaluated
by the Born integrals.

In this contribution, we briefly describe both the ray and the Born
computations for a general 3-D background model containing scatterers, For
simplicity, we consider here only acoustic media; the generalization for elastic
media is straightforward. We also briefly describe the computer program
package used for the ray-Born numerical modelling of acoustic wavefields in
complex 2-D stuctures, and present examples of coriputations.

ACOUSTIC RAY THEORY GREEN FUNCTION

The pressure wave field p( x,t } satisfies in inhomogeneous medium the
acoustic wave equation

VeloVp) — xp = —q(x,t), (1)

where 1 is time, x = ( x;, x,, X; ) are Cartesian coordinates, ¥{ x ) the
compressibility, o( x ) the specific volume and q( x,t ) the volume injection rate
density. The dots above the letters denote partial « erivatives with respect to
time. Instead of o and », we can also use the density o( x ) and the propagation
velocity c( x ) using the following relations: ¢ = 1/g, ¥ = 1/pc?. We define the
acoustic Green function G{ x,t ; x,,1, ) as a solution of (1} at a point x and time
t corresponding to the source function § ( x,t ) given by the relation

1

f
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alx,t) =86 - t,) 6(x - x5 ). ' 2)
Thus, the acoustic Green function satisfies the equation
V- 6VG) -~ G = - 80t - 1) 8(x - x5 ). 6)

The Green function can be calculated by ray methods for very general
3-D laterally varying layered structures. At interfaces, proper interface
conditions must be taken into account (continuity of the pressure and of the
normal component of the particle velocity). Then the ray theory acoustic Green
function is described by the following equation

Gixt; xpulo) = %: G x,t: X0 ), @)

where the summation runs over all rays Q connecting x and x,, corresponding
to direct, reflected, multiply reflected, and other types of waves. The number
of rays connecting x and x, may be finite or infinite. If the number is infinite,
the series (4) must be truncated. The Green function G x,t ; xo.t; ),
corresponding 1o a selected ray Q, will be called here the elementary Green
function. It is given by the following equation

GO x,t; Xt ) = Rel AP(x, x, )6t — t, - T x,x,)}]. (5

Here 6% (£) is an analytic delta function and T %( x, X, } is the travel time from
X; to x along the ray Q. The analytic delta function is given by the well-known
relation 8% (&) = &(&) - if(x&), where 8(E) is a standard real-valued delta
function. The travel time T ®( x, x, } can be calculated by ray tracing. The
complex-valued amplitude factor A®( x, x, ) is given by the relation

A% x, X ) = fol x ol % ) x )el X, )]*Re ' TT® %)/ azy(x, x,).  (6)

Here the function J( x, x, ) is the relative geometrical spreading. It can be
calculated by dynamic ray tracing along the ray Q, performed in the ray-centred
coordinates. By the solution of the dynamic ray-tracing system aiong € from
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Xg 10 X, we can determine the 4x 4 ray propagator matrix II( X, X ) which
satisfies at x = x, the initial conditions II( XX ) = I, where [ is a 4x 4
identity matrix. We introduce four 2 x 2 matrices Pix, x50, Qiix, x,),
P{x, x4} and Qy( x, x, } by the following equation

Ql(x,xq) Qz(x.xo)
O x, x,) = . 7

Pix, xy) Pyx, xy)
Then the relative geometrical spreading J( x, x, ) is given by the relation
J(x,x0)=[d6lQ2(X,xo}|. (8)

It is possible to show that the relative geometrical spreading J{ x, x, ) is
reciprocal,

Jix,xy) = J(xp, x), 9)

and that it does not depend on the parametrisation of the ray field. The function
OT( x, x,) in (6) is the phase shift due to caustics and can be also calculated by
dynamic ray tracing. In a homogeneous medium, J( x, X,) and 8T( x, x,) can
be determined anaiytically, J(x, x,} = ¢* | x — x, ;2 and 6T(x, X,) = 0. For
a 2-D case, the matrix Q,( x, x,) has a diagonal form and the relative
geometrical spreading can be expressed as follows:

J(x, x) = |Q3(x, x)] a(x, x;), (10

where a{ x, x,) is given by the relation,

X

a( x, x,) = .[ cds. (11)
X

The integral in (11) is taken along the ray Q. The function [Q}( x, x,)| is the
relative geometrical spreading in a plane of the ray § and can be evaluated by
a 2-D dynamic ray tracing, consisting of 2 equations only.
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For a ray Q crossing N interfaces at points Q,, i = 1,2,.....N, the ray
propagator matrix should be multiplied by a 4x 4 interface matrix F(Q, ) at any
point Q;, to satisfy the boundary conditions. The final expressions for the ray
propagator matrix is then as follows,

O(x, x,) = TH Qy,;, Qu) IT [FQ) M(Q,, Q_)1, (12)

=N

where the point Q, corresponds to x, and the point Q,,, to x. For more details
‘on dynamic ray tracing and derivation of all above presented equations see
Cerveny (1987, 1989a).

Finally, the symbol R in {6) denotes the complete reflection/transmission
coefficient. Tt is given by the relation,

N
R = I r@Q,), (13)
i=1

where the product corresponds to points Q,, Q,, ..., Qy of reflection/trans-
mission along the ray. The reflection/transmission coefficients can be expressed
by the following relations:

Run.
-

{p;c,c08 i) — gycicosiy) / (gpc 008 iy + ¢ c08 iy ),

(010201 ¢5008 1, cos i;)" / (g;¢,c08 1) + @, ¢ €08 iy). (14)

Here ¢, and g, are the velocity and density at the point of incidence Q,, on the
side of the incident wave, c,, ¢, have the same meaning, but on the opposite
side of the interface, i, is the angle of incidence, i, is the angle of transmission.
Note that both R, and R,,.. are reciprocal, so that the complete
reflection/transmission coefficient R given by (13} is reciprocal. Note also a
non-traditional form of the reciprocal transmission coefficient in (14).

In the frequency domain, the acoustic Green function G( x, x,, w ) is a
solution of the acoustic wave equation

VoVG) + ’x G = - 8(x - x,). (15)
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The ray theory Green function G( x, x,, @ ) is again given by the summation
(4) over all rays Q, where the elementary Green functions G ( x, x,, @ ) are
given by the equation

G(x, xp, ) = AP(x, x,) e @T® xa) (16)

It should be emphasized that the acoustic ray theory Green function is spatially
reciprocal, both in the time domain, see (5), and in the frequency domain, see
(16);

Gx,t; X)) = Gl x5 x,8) ,

Gix, xp, 0) = G(xg, X, w ).

BORN APPROXIMATION

Let us consider a model in which the specific volume ofx) and the
compressibility x(x) are given by the equations

oylx) + a'(x) ,

a(x)

x(x) = 2(x) + »'&x). {17)

Here g,(x) and x,(x) correspond to the background model, and o' (x), #'(x) are
small perturbations. When a wave is incident on a region of non-vanishing
o'(x), x'(x), a scattered wavefield is generated.

Let us assume that a point source (2) is situated at a point x = x,, and
the receiver at x = x,. Then the Born integral representation of the single

scattered acoustic wave field B{ x,, x,, @ } in the frequency domain is as
follows:

B(x,,x,,0)= “’f {?x'(x) G(x,,x,0)G(x, x,,w)

-0'x) VG{x,, x, @) VG(x, x,, w)} dx. (18)

o e Ao 57 s e Ml bbb B
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The integration is over ihe whole space V in which ¢’(x) and x'(x) are
non-vanishing. The symbol G denotes the Green function in the background
medium. In the following, we shall consider an asymptotic high-frequency
expression for B( x,, x,, @ ). In other words, in (18) we can use the ray
expressions for the Green functions, see (4) and (16). For simplicity, we shall
not write the summation (4) and the superseript Q in the expressions for the
Green function, its amplitude and relevant travel time. We will tacitly
understand that the summation should be performed over all rays connecting
x, with x and x, with x. Our expressions will correspond to one, but arbitrary,
selection of rays from x, to x and from x, to x. Using (16), we can easily
obtain an approximate high-frequency equation,

VG(x,.x, 0) =iwA(x,, x) VT(x,, x)el@Ta.x)

and similarly for VG( x,, x, o ). This yields

Bix,,x,,0)=¢[[[ r® + o
X cg(x cosB(x,,x,,x)}
x a(x,,x,,x)e @TERX.x) 4, (19)
where
a(x,,x,,x)=A(x,.x)A(x,,x),
T(x,,x,,x)=T(x,,x) + T(x,,x),
cos O(x,, x,,x) = c(x) VI(x,,x) VI(x,, x ). (20
All the quantities a, T ad cos @ are reciprocal. Let us emphasize that the
expressions for the amplitudes A and travel times T in (20) can be calculated by
ray tracing in the background medium, even inside the volume V.

Several alternative forms of (19) are possible. It is not difficult to show
that the perturbation factor in (19) can be written as follows:

#'(x) + [0'(0)ic*(x)] cos 8 = -4 coRBI2R( x,, x,. x Ve, ) Zo &), (21)

ey - .

e
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where

R{x,, x,,x} = 12 6Z + 15 & tan®(8/2). {22)

Here Z = oc is the acoustic impedance, §Z = (Z -- Z,)/Z,, & = (c ~ c;)/cy;
the subscript "0" corresponds to the background medium. The function R
corresponds to a linearized form of the reflection coefficient R, from (14).

Inserting (21} into (19) yields:
B(x,,x,, @)= —4u? III R cos?(6/2)[cy(x} Zy(x)]"!

x a(x,,x,,x)e @ ®exox) g 23)

The equations (19} and (23) are final expressions for the 3-D Born integral.
In a 2-D case, Born integrals can be simplif 2d. Let us assume that both
the background model and the perturbations do not depend on x, . In other
words, the scatterers are infinitely prolongated along the x, axis. We also
consider the source x, and the receiver x, situated in the plane x; = 0, so that
X2 = X, = 0. We do not consider a line source, but a point source at X; such
a configuration is often called a 2.5 dimensional case. Then the integral over x,

in (19) and (23) can be calculated for high-frequency w by the method of
stationary phase to give

B(x,.x,.w) = 2 a)?ué "‘II {£'(x) + o'(%) ¢j%(x) cos 8}

x alx,,x,,x)Y(x,, x,,x)e @T&x,.x) dx, dx, , (24)

or, alternatively,

B(x,,x,, @)= -4 :r)”awme“"‘” R cos?(8/2)[c(x} Zoix)]

xalx,, x,, x)Y(x,,x,,x)el @To x,x} ay d4x. (25)

Here the function Y( x,, x,, x )is given by the r¢ ation

Yix,,x,,x}=[Volx,, x} + lol(x,,x} ], (.26)

[

VR

b

PRy

RAY-BORN SYNTHETICS 199

o is given by (11). The integration is over the volume V' which represents a
part of the plane x, x; in which 6Z and éc are nonvanishing.

For more details on the Born approximation, including the elastodynamic
case, see Beydoun and Mendes (1989), Beylkin and Burridge {(1990), Coates and

Chapman (1990), Wu (1989a,b}. These papers also present extensive literature
related to this subject.

HYBRID RAY-BORN MODELLING

The hybrid ray-Born modelling can be used to compute synthetic

.- seismograms for laterally varying layered structures, containing scatterers of the

size smaller than a prevailing wavelength. The scatterers can be, of course,
combined to form bodies of a complex shape. To compute the wavefield
corresponding to the background laterally varying layered structure, the ray
method is used, and relevant synthetic seismograms are generated. To evaluate
the single scartered wave field, eqs. (19) or (23) can be used for 3-D, and eqs.
(24) or (25) for 2-D.

The program package BEAMS87, see Cerveny (1989b), is modified to
perform such hybrid ray-Born computations in two-dimensional laterally varying
layered structures.

The wave field, generated by a point source situated at any point of the
model, is computed by the ray method as a superposition of individual
elementary waves. The elementary waves may be selected by the user {direct,
reflected, transmitted, multiply reflected/transmitted). Zero-order approximation
of the ray method is used in the computation.

The scarterers may be also situated at arbitrary positions. The elementary
wave incident on the scatterer and generating the single scattered field may be
again selected arbitrarily, similarly as the rays along which the scattered waves
propagate from the scatterer to the receiver. The single scattered wave field is
calculated by Born integrals.

NUMERICAL EXAMPLES

In the numerical examples, we shall consider a simple laterally varying
2-D background model with two curved interfaces (see Fig. 1). The velocity ¢
in all layers is increasing downwards, and also laterally from the left to the
right. The average velocities in the first layer are close to 3 km/s, in the second
layer close to 4 km/s, and in the last layer close to 5 km/s. For example, in the
first layer, the velocity changes from 2.7 km/s in the top left-hand corner of the
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layer 10 3.6 km/s in the bottom right-hand corner of the layer. The density is
constant in the whole model, and the absorption is not considered.

In the model, the x,-axis of the Cartesian coordinate system is taken along
the upper boundary of the modetl, which is pressumably planar, and is situated
inside the medium. (The effects of the surface are not taken into account). The
x;-axis of the Cartesian coordinate system is oriented downwards, the coordinate
X, corresponds to depth. The receivers are distributed along the upper boundary
of the model. The point source is situated at x, = 2 km, X; = 0 km. The
source time function corresponds to the Gabor signal

x(t) = exﬁ [ = @ afyt/y ¥lcos 2 afyt + v),

with y =4, fy, = 30 Hz, v = 0. The scafterers are situated in different parts of
the model in individual presented examples.

The ray-Born method has been used to evaluate the wave field at
individual receivers. The standard ray method has been applied in the
calculation of the waves reflected from both interfaces in the background model,
and the scattered wave field from the scatterers was evaluated by the Born
approximation.

a.s
' 9177 /
- al , II’:’”‘I‘\ “ \ ///7
: \\\‘,ﬁ% it
: i f I
%l. r A ":’r‘%,,l"él / “ ‘\\“\\\\\\\\\\///
5 L
2.er
*50 l.lca 2.0 3. 4.9

OISTANCE IN KM

Fig. 1. A 2-D laterally varying structure with two curved interfaces and one single scatterer. A point
source is situated in the middle of the upper boundary of the model, Ray diagrams of waves refleeted
from both interfaces and of the scattered wave are shown.
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Fig. 2a. Ray-Bom synthetic seismograms for the model corresponding to Fig. 1. The size of the
scatterer is 25 x 25 m, end the velocity within the scatterer is by 10% higher than in the
background model.

In the first example, the scatterers are situated close to the point
X,=3km, x,=0.6 km. Fig. 1 shows the ray diagrams of waves reflected from
both interfaces, and a ray diagram corresponding to one scatterer of the size
Ax, = Ax; = 25 m, situated at x, = 3.0 km, x, = 0.6 km. The scatterer is, of
course, infinitely prolongated along the x, axis. The velocity ¢ within the
scatterer {in the perturbed model) differs by 10% from the velocity in the
background medium. The ray-Born synthetic seismograms for the model with
the above described scatterer are shown in Fig. 2a. All the synthetic
seismograms are normalized with respect to the maximum amplitude in the
whole section. The scattered wave field has a simple hyperbolic appearence. A
very interesting behaviour of the scattered wave field is a slow decrease of
amplitudes along very long tails of the diffraction hyperbola. Fig. 2b shows the
ray-Born synthetic seismograms corresponding to a thin plate scatterer situated
roughly at the same place as the individual scatterer considered in Figs. 1 and
2a. The thickness of the plate is 25 m, and its length 275 m. Note that the
wavelength in this part of the model is close 1o 110 m. The scatterer is again
infinitely prolongated along the x, axis. The plate makes approximately an angle

ot .

- .
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of 45° with the x, and x, axes. From a numerical point of view, the plate
scatterer is approximated by eleven individual scatterers. The velocity inside the
scatterer is the same as in the individual scatterer in Fig. 2a. It is interesting to
observe that the scattered wave field corresponding to a thin plate is of a
different character than the scattered wave field corresponding to a single
scatterer. The tails corresponding to individual scatterers forming the plate
scatterer are mutually cancelled by a destructive interference. Qnly two tails are
formed, corresponding to its end points. The t: il amplitudes are weaker in this
case than in Fig. 2a. In between, a regular reflected wavefield from the
scattering thin plate is formed, see receivers at x; = 2.5 - 3 km. The scattered
wave field is very intensive, comparable with the intensity of waves reflected
from the two interfaces.

Several similar numerical experiments have been performed with different
shapes and orientations of combined scatterers. In general, the amplitudes of the
scattered wave field recorded on the surface of the model depend considerably
on the orientation of the {plate) scatterer, The scattered wave field is rather
strong for horizontal scatterers, but considerably weaker for vertical scatterers.

OISTANCE IN KM
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Fig. 2b. Ray-Bom synthetic seismograms for the same configuration as in Fig. 2a, only the single
scatterer is replaced by a scattering plate of the size 2° 3 x 25 m. composed of 11 indjvidual
scatterers. The plate makes an angle of 45° with the x, and x, axis.
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Fig. 3. Ray diagrams for the same structure as in Fig. 1, only the scatterer is situated directly above
the first interface, in the first layer.

In the second example, the scatterers are situated directly on the upper
side of the first interface. For one scatterer of the size Ax, = Ax, = 25 m, the
ray diagram is shown in Fig. 3. In Figs. 4a,b,c, the ray-Born synthetic
seismograms are shown, corresponding to different scatterer configurations. The
velocity within scatterers corresponds to the velocity below the interface. The
synthetic seismograms are again normalized with respect to the maximum
amplitude in the whole section. Fig. 4a corresponds to one scatterer, see the ray
diagrams on Fig. 3. Fig. 4b simulates a corrugated interface of a length of
325 m, between x; = 1.8 km and x, = 2.1 km. The scatterers, of a size of
25m, are situated along the interface, also with gaps of 25 m. Finally, Fig. 4¢
shows a continuous system of scatterers of a length of 325 m, without gaps.
Thus the last model represents an elevation of the interface by 25 m in the total
length of 325 m, with sharp edges at both sides of the elevation.

The wave field corresponding to a single scatterer in Fig. da is simple.
The decrease of amplitudes along long tails is again very slow. The wavefields
corresponding to the corrugated interface (Fig. 4b} and to the elevated interface
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(Fig. 4c) are, of course, mutually very different. The corrugated interface
generates strong and long reverberations, see the L.H.S. of Fig. 4b. Tt also
destroys the regular reflected wave field at certain receivers, see e.g., receivers
atx; = 3.2 - 3.4 km in Fig. 4b. On the other side, the local elevation of the
interface does not yield such a strong scattered field (see Fig. d4c). The
reverberations are considerably supressed. The local elevation generates only
two scattered waves from the edges of the elevation. If we compare the arrival
times of reflected waves at x;, ~ 2.0 - 2.5 km in Figs. 4a and 4c, we can
clearly observe the earlier arrivals in Fig. 4c, due to the elevated interface.
Close to both edges of the elevation, the reflected wave field is considerably
influenced by the edge effects. See the traces at x; = 1.6 - 1.9 km and at x, =
3.0 - 3.4 km. For other examples of computations, see Coppoli D.M. (1991).
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Fig. 4a. Ray-Born synthetic seismograms for the model corresponding to Fig.3. The size of the
scatterer is 25 x 25 m. The velocity within the scatterer correspond to the velocity below the
interface, in the second layer.
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Fig. 4b. ‘Ray-Bom synthetic seismograms for the same configuration as in Fig. da, only a single
Scatterer is replaced by a system of seven scatterers. These individual scatterers form a corrugated
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CONCLUSIONS

As we have shown, the numerical modelling of high-frequency seismic
wave fields in 2-D laterally varying layered structures containing small
scatterers can be simply performed by the combination of the ray theory with
the Born approximation. Even though the presented numerical examples are very
simple, the method could be applied to considerably more complex situations,
€.g. to a random distribution of horizontal and/or vert cal scatterers within some
region, to combined scatterers of an arbitrary shape, etc. To simplify the
explanations, only the acoustic case is discussed here, but the modification for
an elastic isotropic and/or elastic anisotropic case is straightforward. Similarly,
any algorithm for 3-D ray computations could be simply generalized to include
the 3-D ray-Born modelling. The proposed method has several important
limitations. It can only be used if the perturbations of the model are weak and
if the wave field is of a high-frequency character. Moreaver, only the single
scattering is considered; multiple reflections betweer. individual scatterers and
inside the bodies of complex shape are not obtained.
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INFLUENCE OF A NEAR-SURFACE STRUCTURE ON SEISMIC
WAVE FIELDS RECORDED AT THE EARTH'S SURFACE

VLASTISLAV CERVENY *? and FERNANDO C.M. DE ANDRADE ?

! Institute of Geophysics, Charles University, Ke Karlovu 3, 121 16 Praka 2, Crechosiovakia,
? Instituto de Geociéncias, Universidade Federal da Bahia, Rua Caetano Moura 123, Federagdo,
40.21¢ Saivador, Bahia, Brasil.

(Received October 3, 1991; r-vised version accepted October 30, 1991}

ARSTRACT

Cerveny, V. and de Andrade, F.C.M., 1992. Influence of a near-surface structure on scismic wave
fields recorded at the eanth's surface. Journal of Seismic Exploration, 1: 107-116.

The hybrid ray-reflectivity method is applied to the numerica) modelling of seismic wave
fields in laterally varying layered models containing a thin near-surface low-velocity layer. The
computations within the laterally varying layered model are performed by the ray method, but the
thin near-surface layer is attacked locally by the matrix methods. The thin layer need not be
homogeneous, it may include arbitrary inner layering and it may vary slightly laterally. All multiples
within the layer are automatically taken intc account. Numerical examples of hybrid ray-reflectivity
seismograms for two models of the thin near-surface layer are presented. An inverse algorithm to
remove the effects of a thin near-surface layer from seismograms recorded at the earth’s surface is
proposed.

KEY WORDS: seismic waves, ray method, hybrid-ray reflectivity method, near-surface structure,
multiple suppression

INTRODUCTION

Seismic wave fields recorded at the earth’s surface are greatly influenced
by the loctl structure close to the receiver. Commonty, the structure close to the

0963-0651/92/$5.00 © 1992 Geophysical Press Lid.



108 CERVENY & DE ANDRADE
receiver (meters or tens of meters in depth) is rather complex. In a near-surface
thin layer, the velocities of propagation of seismic waves are usually very low,
considerably lower than the velocities at greater depths. The structure of the
near-surface thin layer plays an important role both in the numerical modelling
of seismic wave fields and in the inversion of seismic data.

Within the thin near-surface layer, there are very favorable conditions for
the generation of strong multiple reflections of a high multiplicity, as the surface
of the earth and the bottom interface of the layer ire very good reflectors, with
strong velocity contrasts.

In the numerical modelling of seismic wave fields by the high-frequency
methods (such as the ray method or the method of summation of Gaussian
beams), any of the multiple reflections generatec within the thin near-surface
layer may easily be taken into account. However, if the number of muliiples is
high, such computations are cumbersome, particularly if the near-surface
thin layer consists of several sublayers.

In this contribution, a hybrid ray-reflectivity method proposed by Cerveny
(1989) is modified to perform such computations for models containing thin
near-surface layers. The method automatically includes all multiples, including
converted multiples. It can, however, be used on'y for thin near-surface layer,
the thickness of which is roughly less than one half of the prevailing
wavelength. Attempts have also been made to solve the opposite problem: to
remove the effects of a near-surface thin layer from calculated (or observed)
seismograms. Such ‘clean’ seismograms are required in many recent

applications, particularly in the inversion of complete seismograms (Born
inversion, etc.).

~ Note that the proposed algorithms can pla - an important role even in
seismology, mainly in seismic microzoning. The near-surface geological
structure has a great influence on an earthquake’s effects on a given locality.

HYBRID RAY-REFLECTIVITY METHOD

The hybrid ray-reflectivity method has been designed to compute body
wave synthetic seismograms in 2-D and 3-D laterally varying layered structures
containing thin transition layers. A thin transition layer is not necessarily
homogeneous; it may be represented by a stack of roughly parallel sublayers.
The velocity, density and absorption contrasts between individual sublayers may
be quite arbitrary (in the vertical direction). In the lateral direction, the
velocities, densities and absorbing parameters within individual sublayers are
also allowed to vary, but only smoothly. The 1.1in transition layers may be

At d B
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smoothly curved. The total thickness of a layer should not greatly exceed one
half of the wavelength.

The hybrid ray-reflectivity method combines the ray and matrix
calculations. The ray calcalutations are applied in the parts of the model where
the rays are not in contact with the thin transition layer. On the contrary, the
matrix methods are applied locally at the points of reflection (transmission) on
the thin transition layer.

Programs for the calcalution of ray-syntethic seismograms can be modified

- to yield such hybrid computations. Assume that a single interface of the first

order in the model is replaced by a thin transition layer. Then the

reflection/transmission coefficient corresponding to the interface should be

replaced by the reflection/iransmission coefficient at the thin layer, calculated
by matrix methods. Such a reflection transmission coefficient at a thin transition
layer is, of course, frequency dependent. Thus, the modification consists, in
fact, in an application of a frequency filter.

A program package designed for such hybrid computations in general 2-D
laterally varying layered structures containing a thin transition layer was written
and described in Cerveny (1989). For the matrix computation of
frequency-dependent reflection/transmission coefficients, the routines written by
Miiller (1985) were used. The package was used to study the properties of PP
reflected waves from thin transition layers of different types, see Cerveny
(1989). In Cerveny and Aranha (1991), the method was applied to the problem
of tunneling of the reflected wave field through a high-velocity stack of thin
layers situated in the overburden of the reflector. Both these papers present an
extensive literature related to these problems. To test the accuracy of the
method, the hybrid ray-reflectivity synthetic seismograms were compared with
the full reflectivity computations for 1-D models. Tt was found that the accuracy
of the hybrid ray-reflectivity computations was quite sufficient for pratical
purposes. The hybrid method is most successful in the case of a near-normal
incidence of the wave on the thin layer. With an increasing angle of incidence,
the accuracy may decrease.

HYBRID RAY-REFLECTIVITY METHOD FOR A STRUCTURE WITH A THIN
NEAR-SURFACE LAYER

In this contribution, the hybrid ray-reflectivity method is modified to
include a thin near-surface layer. Above the top boundary of the thin layer, a
vacuum is assumed. The modification is as follows: In the ray method, the
complex-valiied amplitude of the wave incident on the earth’s surface should be
multiplied by the so-called conversion coefficients to obtain the horizontal and

KL
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vertical displacement components. If a thin near-surface layer is considered, it
is necessary to compute the conversion coefficients corresponding to the wave
incident on the bottom of the layer and the receiver situated on the top of the
layer at the same lateral position. It is possible to show that such conversion
coefficients can be expressed in terms of ‘transmission’ coefficients through a
thin layer, corresponding to the transmitted wave passing formally into the
vacuum. Such coefficients can be evaluated simply by matrix methods. In the
algorithm, the upper boundary of the earth is replaced by the thin layer, and the
standard conversion coefficients are replaced by the relevant conversion
coefficients evaluated by matrix methods. In other words, the spectrum of each
single event, computed by the ray method at the bottom of the near-surface
layer, is multiplied by a scalar filter F(i,w) corresponding to the ratio of the
Iocal conversion coefficients computed by the two methods,

Fii,w) = Cli,w) / C,{i) (1)

Here C(i,w) is the conversion coefficient corresponding to the thin near-surface
layer, computed by the matrix method, C,{i) is the standard conversion
coefficient for a free surface, o is the frequency and i is the angle of incidence.
There are four different scalar filters {1); they correspond to incident P- and S-
waves and to recorded horizontal and vertical components. The filters, of
course, depend on the local structure in the vicinity of the receiver.

REMOVING THE EFFECTS OF THE NEAR-SURFACE LAYER FROM SEISMOGRAMS

The scalar filter (1) can be inverted,
FYWi,w) = C6) / Cli,w) . 2)

The application of (2) to the data calculated (or observed) on the top of the thin
near-surface layer removes the effects of the near-surface layer. In greater
detail: the filtered wave field corresponds 1o the receiver situated on the surface
of the earth, situated in the place where the bottom of the thin layer was. The
filter F =, of course, includes even the so-called static correction,

Such a scalar filter {2) may be applied to synthetic or to observed
seismograms of individual single events. The main problem in the application
of the procedure to the observed seismograms consists primarily in a-
decomposition of the seismogram into single P- and S-events and in an
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inaccurate knowledge of the local structure and of the angles of incidence of
individual events.It would be useful to transform the compiete vertical- and
horizontal- component seismograms into seismograms corresponding to incident
P- and S-waves. After this, it would be possible to apply the inverse filters
independently to P- and S-seismograms, considering some average angles of
incidence. Both the transformation and inversion filters could, of course, be
combined.

EXAMPLES

We will present here two simple examples of the application of the
proposed algorithms.

In both examples, we consider a PP reflected wave from a horizontal
interface, situated at a depth of 1 km below the surface of the earth. The P-
wave velocities above and below the interface are: @, = 3 km/s and a, =5
km/s, respectively. The S-wave velocities 3 and the densities © are determined
from & using the relations: 8 = @ /v/3 and ¢ = 1.7 + 0.2 a. The absorption
is not considered. An isotropic point source is situated close to the earth’s
surface; the interaction of the source with the surface is not taken into account.
The source time function is represented by a Gabor signal

x(t) = expl- @xfult—1/¥)? ] cos2afuylt~t) +vl, (3

where fy, = 30 Hz, y = 5, v = 0, t, = 0.043 5. Here f, represents a
prevailing frequency, t, is a small time shift which is used to shift the time zero
to the effective onset of the signal (Fig. 1).

REDUCTION FACTOR= 0.99998
T

1.0
0.5
0.0
-0.5

-1.0 1
' ) 0.1 0.2
0.0 TIME(S)

. INPUT SIGNAL

Fig. 1. The source time function used in examples.
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The ray synthetic seismograms of the vertical component of the PP
reflected wave for receivers situated along the earth’s surface at offsets from 0.2
km to 2.5 km (with steps of 0.1 km} are shown in Fig. 2a. The critical distance
for a given configuration equals 1.5 km; see the increase of amplitudes and
non-zero phase changes immediately behind 1.5 km.

In the first example, we shall modify tt 2 global model described above
by inserting a thin low-velocity layer of a constant thickness on its surface. We
shall also place the receivers on the top of the thin layer. The total thickness of
the layer is 20 m. The layer consists of two thin sublayers of 5 m and 15 m
thicknesses, with the P-wave velocities of 0.7 km/s and 1.4 km/s, respectively.
The S-wave velocities and the densities within the sublayers are determined from
the P-velocities using the same relations as in the global model. The absorption
inside the sublayers is assumed to be zero.

The synthetic seismograms of the vertical component of the P-wave are
shown in Fig. 2b., displaying clear effects of multiple arrivals generated inside
the thin layer. The greatest effects can be observed in the critical region. The

time shift of the signal due to the thin near-surface layer is also clearly seen in
Fig. 2b.

An attempt has been made to apply the inverse filter locally on the
seismograms shown in Fig. 2b. The resulting seismograms from which the
effects of the thin near-surface layer are removed, are shown in Fig 2¢c. If we
compare the synthetic seismograms shown in Figs. 2a and 2¢, we can see that
they are practically the same. We can also see that the signals are shifted to a
proper time position so that the inverse filter ir cludes the static correction.

In the second example, we shall use the same global model of the
structure. We shall, however, use a different thin low-velocity near-surface
layer. The layer is homogeneous, with a P-wave velocity of 1.2 km/s, and with
the S-wave velocity 8 and density p determined using the same relations as in
the global model. The thickness of the thin layer, however, varies linearly along
the profile. It is 40 m at the first receiver and 0 m at the last receiver. The
synthetic seismograms of PP reflected waves are shown in Fig. 3a. If we
compare Fig. 2a and Fig. 3a, we can observe great changes at small offsets,
with expressive multiples. As the offset gets larger, the differences between
these seismograms are becoming smaller. We cannot see any difference at the
last trace. We can also observe distinct differences in arrival times due to the
variation of the thickness of the thin layer,

In addition, a random noise was introduce 1 in the seismograms of Fig.3a,
as shown in Fig. 3b. Applying the position-dependent inverse filter to these
noisy seismograms, the removal of the effects of the thin near-surface layer is
again excellent; compare Figs. 3c and 2a. Even the noise is partially suppressed.
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Fig. 2. Synthetic seismograms of a vertical component of a PP reflected wave from a reflector
situated at g depth of 1 km. Fig. 2a: No thin low-velocity near-surface layer is considered. Fig. 2b:
A thin low-velocity near-surface layer of a constant thickness is considered. Fig. 2c: An inverse
filter is applied locally to the seismograms shown in Fig. 2b to remove the effects of the thin layer.
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The reason why the removal of the near-surface structure effects in the
two synthetic examples presented is so successful consists mainly in the simple
form of the seismograms, corresponding to one single event only. Thus, the
simple scalar filter {2) can be directly applied. Moreover, the structure and the
angles of incidence have been perfectly known. If several different events, e.g.,
the reflections from different reflectors, arrive at the same detector, the removal
of the near-surface effects would be more complicated. For a more detailed
discussion and numerical examples of the application of the hybrid
ray-reflectivity method and of the removal of the effects of the near-surface
layer see Andrade (1991). The examples include the removal of the effects of
the near-surface layer from P-reflection seismograms containing reflections from
different non-planar reflectors situated in a complex laterally varying structure,
the removal with an incorrectly known structure and incorrect angles of
incidence, and even the effects of a near-surface layer on incident S-waves. The
results are promising.

CONCLUSIONS

A hybrid ray-reflectivity algorithm can be used to compute the seismic
wave fields in general 2-D and 3-D laterally varying layered structures
containing a thin low-velocity near-surface layer. in an opposite way, the
algorithm can be used to remove the effects of a such a thin layer from
computed (or observed) seismograms.

Even though the examples presented here consider only a very simple
global model, the algorithm and relevant program package can be used to
compute synthetic seismograms for very general, 2-D laterally varying layered
global models. A slight absorption in the global model is also allowed. Not only
P- (as in the examples presented here) but also S- and converted waves
propagating in such a model may be taken into account. The structure within the
thin layer may also be very complex, with an arbitrary number of sublayers of
arbitrary contrasts of velocities, densities and absorption parameters.

As follows from many other computed examples, the influence of a thin
low-velocity near-surface layer on S-waves is, as a rule, considerably greater
than on P-waves.

Here we have considered only a low-velocity thin layer. The algorithm
used can also consider the near-surface high-velocity layers, e.g., permafrost
layers. In such a case, the hybrid algorithm will automatically include even
certain important non-ray effects, such as the inhomogeneous waves behind the
critical angle of incidence on the near-surface layer.
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Fig. 3. Synthetic seismograms of a vertical component of a PP reflected wave fqr the same glob;a]
model as in Fig. 2. Fig. 3a: A thin low-velocity near-surface layer of a varisble thickness is
considered. Fig. 3b; Random noise is added 1o the seismograms shown in Fig. 34?. Fig. 3c: An
inverse filter is applied locally to the seismograms shown in Fig. 3b to remove the thin-layer effects.
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TUNNELING OF SEISMIC BODY WAVES THROUGH THIN
HIGH-VELOCITY LAYERS IN COMPLEX STRUCTURES

VLASTISLAY CERVENY
Institute of Geophysics, Charles University, Prague®)
PauLo R, A, ARANHA

Instituio de Geociencias, Universidade Federal da Bahia, Salvador**)

Summary: The hybrid ray-reflectivity metkod is applied to the problem of the transmission
of the reflected wave field through a thin high-velocity layer (or through a thin stack of high velocily
layers), situated in the overburden of the reflector. In the hybrid ray-reflectivity metkcd, the stan-
dard ray method is applied in the smooth parts of the model, and the reflectivity method is used
Iocally at the thin high-velocity layer. With the exception of small epicentral distances, the standard
ray method itself fails in such computations. The reason is that a considerable part of the energy
Jor overcritical angles of incidence may be tunneled through the thin high-velocity fayer along com-
plex ray-paths, corresponding to inkomogensous waves. The reflectivity method, applied locally
at the thin high-velocity layer, automatically inciudes all inhomogeneous wave contributions. Thus,
the hybrid ray-reflectivity method removes fully the limitations of the standard ray method. but
still retains its main advantages, such as its applicability to 2-D and 3-D complex layered struc-
tures, flexibility, and low-cost computations. In the numerical examples, the hybrid ray-reflectivity
synthetic seismograms are compared with standard ray synthetic seismograms and with full reflect-
ity computations, The numerical examples show that the hybrid ray-reflectivity method describes
the tunneling of seismic energy through a thin high-velocity layer with sufficient accuracy.

1. INTRODUCTION

The hybrid ray-reflectivity method can be used to compute body wave syothetic seismo-
grams in 2-D and 3-D laterally varying layered structures containing thin transition layers,
see [10]. By a thin transition layer we understand a layer the thickness of which is roughly 1/2
ot less of the prevailing wavelength, In the hybrid ray-reflectivity method, ray calculations are
applied to those parts of the model which do not contain the thin high-velocity layers and which
are assumed to be smooth. On the contrary, matrix (reflectivity) computations are applied locally
to the thin transition layers, The BEAMS7 program package, designed for such hybrid computa-
tions in 2-D laterally varying layered structures containing & thin transition layer, was described
in [10]. The method and the program package were used there to study the P waves reflected
from a thin transition layer separating two halfspaces.

In this paper, we apply the hybrid ray-reflectivity method also to reflected P waves, but in
& more general configuration. We will not compute the waves reflected from a thin transition
layer, but passing through a thin high-velocity layer, The waves are reflected from a single
structural first-order interface, and the thin high-velocity layer is situated in the overburden.
The thin high-velocity layer is not necessarily homogencous; it may be represented by a stack
of very thin homogeneous layers. It is well known that the standard ray method is not able to
treat such a problem, with the exception of small epicentral distances. An important role in

*) Address: Ke Karlovu 3, 121 16 Praha 2,
**) Address: Campus Universitério de Federagio, 40210 Salvador, Bahia, Brasil.

Studia geoph. st geod. 3§ (1982) 115



V. Cerveny, P. R. A. Aranka

the transmission of the seismic cnergy through the thin high-velocity layer is played by in-
homogeneous waves. The inhomogeneous waves do not propagate through the thin Jayer along
real-valued rays, but along complex-valued ray-paths. As the contribution of inhomogeneous
waves to the transmission of energy through a thin high-velocity layer may be rather high,
the standard ray method itself fails in such computations [23, 9). Fuchs and Schulz [23] speak
of tunneling of scismic cnergy through the thin layer, These effects are frequency-dependent,
the wnneling is stronger for lower frequencies. The hybrid ray-reflectivity method automatically
includes all inhomogencous waves propagating through the thin layer, since the reflectivity algo-
rithm includes them [30]. Thus, the hybrid ray-reflectivity method removes fully this serious
limitation of the standard ray method,

In the algorithm of the hybrid ray-refiectivity method, only the ray method in its zero-order
approximation is used. The zero-order approximation of the ray method is fully based on the
concept of real rays. It is used in many of the computer algorithms and program packages, To
simplify the terminology, we speak of the standard ray methed. It would, of course, be possible
to generalize it by using certain ‘higher-order waves (head waves, etc.). Moreover, it would
also be possible to consider complex rays (in addition to real rays). From a theoretical point
of view, there is no fundamental ptoblem in the generalization for complex rays [2, 5, 12, 18,
26, 27, 34]. Complex rays have even been used successfully in applications, see, c.g. [25, 33].
The above list is far from complete; many other important references can be found in the papers
given above.

However, we have no intention of proposing an algorithm and developing a computer package
for the numerical modelling of seismic wave fields using complex rays here. Just the opposite.
We merely wish to show that the hybrid ray-reflectivity method can be used to solve certain
problem, which involve complex rays, without difficulties.

Various alternatives of 1he hybrid method used in this paper have been described in the seismo-
logical literature. They are designed mostly for one-dimensional computations only [16, 32].
The hybrid ray-reflectivity code proposed by Bernasconi and Drufuca [6] can even be used for
a non-horizontal stack of layers. Some of the hybrid methods use the WKBJ method instead
of ray computations [1, 15]. Also the method of summation of Gaussian beams can be uged
instead of the standard ray method [10}, Another hybrid method was proposed for models
with localized heterogeneities. It uses finite differences in a heterogeneous region and the
frequency-wavenumber method outside the region [19). The ray method can also be efficiently
combined with modal summation. However, we do not intend t( review here all the uged or
possible hybrid methods in the nurnerical modelling of seismic wave fields; we only wish to say
that the hybrid codes are very promissing.

To avoid a terminological misunderstanding, it would be useful to add one remark. In the
hybtid ray-reflectivity method, by the reflectivity method we understand just matrix computations
of frequency-dependent plane-wave reflection/transmission coefficients of a stack of thin layers,
for a given angle of incidence. We do not perform any integration over angles of incidence as
in the full reflectivity method {22, 30). Thus, it would perhaps be more suitable to speak about
the hybrid ray-matrix method, not about the hybrid ray-reflectivity method, We will, however,
follow the terminology introduced in the seismological literature [16]. Only in the Gaussian
beam summation method and, consequently, in the hybrid Gaussian beam-reflectivity method
some sort of integration (summation) over angles of incidence is performed.

In Section 2, we will briefly discuss the problem of the transmission of reflected waves through
a thin high-velocity layer. In Section 3, we will present several numerical examples and discuss
the results from a seismological point of view. In all cases, we will compare the ray synthetic
seismograms with hybrid ray-reflectivity synthetic scismograms. To assess the accuracy of the
hybrid ray-reflectivity seismograms, we will compare them with the full reflectivity method
computations for one simple 1-D model.
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2. TUNNELING EFFECTS IN MEDIA CONTAINING THIN
HIGH-VELOCITY LAYERS

Before we present and discuss the results of numerical computation, we will
briefly describe several important properties of homogeneous and inhomogeneous,
reflected and transmitted waves propagating in layered structures. This will help
us to understand better the results of numerical computations. We will mainly con-
centrate our attention on the role of inhomogeneous waves in the transmission of

energy of seismic waves through a thin high-velocity layer. See also [3.4,7, 13, 14,
20, 21, 34].

-~ Homogeneous and inhomogeneous reflected and transmitted
waves at a single interface

We consider a plane interface between two homogeneous halfspaces, and a point
source of seismic waves situated in one of these halfspaces. We call the halfspace
containing the source the first {or the upper) halfspace, and the halfspace without
the source the second (or the bottom) halfspace. We denote the compressional and
shear velocities in the first hulfspace by «,, §,, and in the second halfspace by «,, 8,.
We assume that a;, > «,.

Let us congider compressional incident, reflected and transmitted waves, We in-
troduce the critical angle i} in a standard way,

sin i} = a,fa, . (1)

For a subcritical angle of incidence (i; < it), the angle of transmission is real-
-vaiued and & standard transmitted ray-theory wave, with a real-valued ray, is
obtained. For an overcritical angle of incidence, however, the angle of transmission
is complex-valued. The corresponding transmitted wave cannot be studied by the
standard ray method. We call such a wave a transmitted inhomogeneous wave.

The properties of inhomogeneous waves are well known from the seismological
literature, see [7, 31] for the acoustic case and [8] for the elastic case, The most
important property of time -harmonic inhomogenecus waves is that their amplitudes
decrease exponentially with increasing distance from the interface. The exponential
decrease of amplitudes is frequency dependent: for higher frequencies it is faster
and for lower frequencies slower.

In contrast to the transn:itted waves, the rays of reflected compressional waves
are always real-valued, for any real-valued angle of intidence of a compressional
incident wave. However, the critical angle still plays an important role even for
reflected waves. We will explain this role from the point of view of the standard ray
approximation. In the subcritical region (i < #7), the amplitudes of reflected waves
are usually small. The amplitudes increase rapidly as the angle of incidence i,
approaches the critical angle, i, — if. At the critical angle of incidence, the amplitudes
of the reflected waves reach their maximum. Beyond the critical angle, ihe amplitudes
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are large, and decrease slowly with increasing epicentral distance. The reflection
coefficients are real-valued for subcritical angles of incidence, but complex-valued
for overcritical angles of incidence. This implies that the shape of the wavelet of the
reflected wave is the same as the shape of the wavelet of the incident wave for sub-
critical angles of incidence. For overcritical angles of incidence, however, the shape
of the wavelet of the reflected wave is different from the shape of the wavelet of the
incident wave. All these conclusions are only approximate, and valid only in the
approximation of the standard ray method. Exact computations yield some well-
-known differences, namely in the region close to the critical point. In exact computa-
tions, the maximum of the amplitude-distance curve of the compressional reflected
wave is shifted from the critical point to some distance beyond the critical point,
The shift is frequency-dependent, it is small for high frequencies. In addition to the
reflected waves, classical head waves are also obtained in the overcritical region.
{The head wave is not obtained by the standard ray method, but can also be evaluated
by the higher approximation of the ray method.)

Let us add one note to inhomogeneous waves. Consider an inhomogeneous trans-
mitted wave generated by a regular incident wave (with a real-valued ray element
between the source and the interface). If we exchange the source and the receiver
and use the principle of reciprocity, we obtain waves which propagate as inhomogene-
ous from the source to the interface and then along a regular ray from the interface
to the receiver. Such waves were also described and discussed in the references
given above. They were even experimentally verified in seismic laboratory modelling,
using a schlieren technique. See [11], where these waves are called pseudospherical
waves. At present, such waves are also called “star” waves (P*, S$*), see [17]. The
inhomogeneous waves propagating from the P-wave point source may also generate
regular S waves, Recently, certain S* waves attracted the attention of seismologists,
namely the S* wave generated at the Earth’s surface by a P-wave source situated
close to the Earth’s surface {4, 5, 21, 24].

Transmission through a thin high-velocity layer

We will first discuss the compressional wave transmitted through the thin layer,
without any multiple reflections within the layer. Assume that the P velocities in the
upper halfspace and in the bottom halfspace are the same, a,. Also assume that the
velocity e, in the thin layer separating these two halfspace is higher, o, > «;,. We
consider two cases of incidence: the subcritical angle of incidence (i, < i{) and the
overcritical angle of incidence (i, > i7)}. The critical angle of incidence i} is given
by (1). The situation is simple for subcritical angles of incidence, see Fig. 1a. The
wave propagates through the thin layer along a real-valued ray; the angle between
the ray and normal to the interfaces inside the thin layer is given by Snell’s law,

()

sini, _ sini;

o3 oy
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For the overcritical angle >f incidence, the transmission has a more complicated
character. Only an inhomogeneous wave propagates within the thin layer, see Fig.
1b. The inhomogeneous wave, however, changes again into a regular transmitted

(b)

Fig. I. A schematic explanation of the transmission of a P wave through a thin high-velocity
layer. (a) Suberitical angle of incidence /,. (b) Overcritical angle of incidence i, Tunnel wave.

wave in the bottom halfspace. This is obvious, as Snell’s law must be valid at both
the upper and lower interf ces of the thin layer; no matter whether the angles are
complex or real-valued. Thus, the angle of transmission below the thin layer is
again i;. Even though the transmitted wave below the thin layer again propagates
along a real-valued ray, it has different properties than the transmitted wave corre-
sponding to the subcritical angle of incidence. It does not propagate along a real-valued
ray through the thin layer. We also speak of the tunneling effect and tunnel wave,
see Fuchs and Schulz [23]. This type of wave, of course, cannot be calculated by the
standard ray method. The amplitude of the transmitted time-harmonic wave for
an overctitical angle of incidence (tunnel wave) depends considerably on k/1, where
h is the thickness of the thin layer, and A is the prevailing wavelength within the layer.
The larger hfA, the smaller the amplitude; the amplitude decreases exponentially
with increasing #/1. For small hfA (say, h/A < 0-5), the amplitude of the transmitted
wave may be rather distinc:. .

As the amplitudes of the transmitted waves depend on hfi, i.e. on frequency, the
thin transition layer acts as a low-pass filter at overcritical distances: the lower
frequencies propagate easil through the thin layer, but the high frequencies will be
mostly filtered out.

Let us emphasize one important point. The above discussion indicates that the
angle of transmission i, in the bottom halfspace cannot exceed the critical angle
it if the standard ray method is used for computation. A real-valued angle of trans-
mission greater than i, in tne lower halfspace can be obtained only if some more
sophisticated method is used for computation, in which the inhomogeneous wave
propagating within the thin layer is taken into account. As the standard ray method
does not consider inhomogeneous waves, angle i, in the lower halfspace never
exceeds 7 in the ray computations, Thus, the angles i 1 > if are screened by the thin
high-velocity layer in ray computation. We can also speak of angular filtering by a
thin high velocity Iayer in the standard ray method.
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If also shear waves are considered, severa] different inhomogeneous waves can
carry energy through the thin layer. The discussion of such cases, however, is straight-
forward. The situation is considerably worse if an inner layering inside the thin
layer is considered (laminas, etc.). Many multiple reflections, including converted
waves, have to be taken into account. It would be impossible, or at least numerically
inefficient, to consider all these elementary rays in ray computations. Thus, we
have at least two reasons for combining locally the standard ray method with the
reflectively method. The reflectivity method automatically yields all multiple re-
flections and conversions within the thin layer. In addition, it also yields all in-
homogeneous waves, which cannot be evaluated by the standard ray method at all.

Effects of a thin high-velocity layer in the overburden
on amplitudes of waves reflected from a first-order
interface

The model under consideration is shown in Fig. 2a. We are interested in waves
reflected from the bottom reflector, see Fig. 2b. The P-wave velocity below the re-
flecting interface is again «,, and in the overburden @y, with &t; < ;. We, however,
assume that a thin layer with velocity a3 = @, > «, is situated in the overburden.

q, Gy

(c)

Fig. 2. A schematic cxplanation of the transmission of a P reflected wave through a thin high-

-velocity layer situated in the overburden. (a) Velocity depth distribution, (b) Suberitical angle

of incidence at the thin high-velocity layer. {¢) Overcritical angle of incidence at the thin high-
-velocity layer: Tunneling of energy through the thin high-velocity layer,
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The wave field of the wave reflected from the bottom halfspace will obviously be,
considerably influenced by the high-velocity thin layer.

If we use the standard ray method for the computation (and do not consider in-
homogeneous waves), the amplitude-distance curve of the reflected wave differs
considerably from the amplitude-distance curve calculated for a model without
the thin transition layer. The main reason for this difference is a follows. As discussed
above, the amplitudes of reflected waves are small in the subcritical region (i, < i1}
and large in the critical and overcritical region (i; > i1}, where i} is given by f1).
If a3 = a;, no rays with angles i, close to iT penetrate through the thin layer; such
rays are screened by the thin high-velocity layer. Only rays with angles i, satisfying
the relation sin i, < o,fa; penetrate below the thin layer and strike the bottom
reflector. Thus, the critical region related to the reflector with strong amplitudes is
completely suppressed by these computations. The calculated amplitudes are, in
general, considerably weaker than in a model without the thin layer (as reflected
waves correspond only to subcritical reflections). This effect is, however, fully due
to the inaccuracy of the standard ray method, i.e. due to its inability to consider
inhomogeneous waves. Actually, the inhomogeneous waves carry most of the energy
through the thin layer in this case, If we do not use the standard ray method, but
some other more sophisticated method which includes computations of inhomogene-
ous waves, the situation is quite different. For thin transition layers (small h/1)
sufficient seismic energy is tunneled through the thin layer, even for angles of incidence
iy with sin i, > a,fa,, see Fig. 2c. We then obtain strong critical reflections from
the bottom interface, even though regular rays with angles 1, close to iy do not pene-
trate through the layer. The differences between the reflected wave fields computed
by the ray method and by any more sophisticated method (e.g., by the hybrid ray
-reflectivity method) are very dramatic in this case. Numerical examples will be
presented in the next section.

For a detailed discussion of the effects of a thin high-velocity layer on the re-
flected wave field see [23, 29]. Fuchs and Schulz [23] presented interesting example
of synthetic seismograms for models containing a high-velocity layer, computes
by the reflectivity method. The paper also gives many other references related to the
effects of a high-velocity layer, both theoretical and observational.

3. NUMERICAL EXAMPLES

In this section, we will study numerically the effects of a thin high-velocity layer,
situated in the overburden, on amplitudes and seismograms of reflected P waves.
The hybrid ray-reflectivity method will be used for computations. The results wil]
be compared with standard ray theory computations and with {ull reflectivity method
computations.

The numerical examples were computed using the BEAMS7 program package,
described in [10]. The program package is designed for hybrid ray-reflectivity

Studia geoph, ot geod. 36 {1992) 121



V. Cerveny, P. R. A. Aranka

computations in general 2-D laterally varying layered structures, containing a thin
transition layer. Instead of the standard ray method, the Gaussian beam summation
method can also be optionally used in combination with the reflectivity method,
The model may contain isolated bodies, blocks, fractures and pinchouts. The structure
within the thin layer is simulated by a system of very thin layers; the velocities and
densities in these layers may be arbitrary. Thus, the thin transition layer may represent
a laminated layer, a high-velocity layer, an actual transition region with a high gradient
of velocity, ete. The thin layer may be smoothly curved and the structure within
the thin layer may also slightly vary laterally. Slight absorpt on can also be considered.

A point source may be situated at any point of the medium, with the exception
of the thin layer. Various radiation patterns and source-time functions may be
considered. In our computations, we will use isotropic radiation patterns, and
a source-time function representing a Gabor signal.

x(1) = exp { —(2nf(t ~ 1o)[¥)*} cos (2nf.(t — 1) + §), (3
with f,, = 5 Hz, y = 4, t; = (-4 s and § = 0. Note that f,, has the meaning of the
prevailing frequency.

We will present three examples of computations. In the first one, the model is
one-dimensional, and the thin layer represents a homogeneous high-velocity layer.
In the second example, the thin high-velocity layer has a laminated character. In the
third example, a 2-D laterally varying structure is considered. The reflecting inter-
face is dipping and the thin layer is curved. The veloc'*y distribution within the
individual layers varies both vertically and laterally.

Thin homogeneous high-velocity layer

The first model is very simple. It consists of one homogeneous layer, bounded
by the plane surface of the Earth at the top, and overlaying a homogeneous half-
space at the bottom. The bottom interface (reflector) is placed at a depth of 40 km
and is horizontal. The P and § velocities and densities in t -e layer are « = 1-5 km/s,
£ = 0-87kmfs,¢ = 2000 kg m™?, and in the halfspace & = 29 km/s, § = 1-15 km/s,
g = 2100 kg m™2. The P-wave point source with an isotropic radiation pattern is
situated close to the Earth's surface. The interaction of the source with the Earth’s
surface is not taken into account. The source-time function is given by (3).

Four alternative computations are performed. In the first version, no thin high-
-velocity layer is considered, and the standard ray method is used for computation,
The ray diagram of the P waves reflected from the reflector is then very simple, see

Fig. 3. Ray diagrams of a P wave reflected from a single interface. (a) No thin high-velocity layer

is situated in the overburden. (The bold line at a depth of 2-0 km has only a formal meaning,

the interface is fictitious). (b) A thin homogeneous high-velocity layer is situated in the over-

burden, Standard ray computations. {¢) A thin homogeneous high-velocity layer is situated

in the overbucrden. Hybrid ray-reflectivity computations. Note the great difference between (b)
and {c).
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Fig. 3a. The bold herizontal line at a depth of 2:0 km does not represent any interface;
it merely indicates where a thin high-velocity layer will be inserted in the next three
versions.

In the second, third and fourth versions, a thin high-velocity layer, 0-05 km thick,
is inserted into the overburden, at depths between 2:0 and 205 km. The reflector
is then also shifted from 4-0 to 405 km. The P and § velocities and density within
the thin layer are « = 2:0 kmfs, § = 1-15 kmfs, ¢ = 2100 kg m~3. Thus, the
medium parameters within the thin layer are exactly the same as in the halfspace
below the reflector. Note that ihe ratio of the thickness of the layer to the prevailing
wavelength is 0-125. This number indicates that the hybrid ray-reflectivity method
can be applied.

In the second version, the standard ray method is again used for computations,
but in a model containing the thin high-velocity layer. The relevant ray diagram
is shown in Fig. 3b. As we can see in the figure, the thin high-velocity layer influences
the ray diagram considerably. For larger epicentral distances, the ray elements within
the thin layer are very close to horizontal. The angle of ir cidence at the reflector is
less than the relevant critical angle, at all epicentral distances. It is obvious that
this behaviour of the ray diagram will influence considerably the synthetic scismo-
grams of waves reflected from the reflector situated at a depth of 4-05 km.

In the third version, the hybrid ray-reflectivity method is used for computations,
again in the model containing the thin high-velocity layer. The relevant ray diagram
is shown in Fig. 3c. The transmission through the thin high-velocity layer is locally
cvaluated by the reflectivity method. To express this fact graphically in Fig. 3c,
normal lines to interfaces are plotted instead of rays through the thin layer; they
connect the ray elements which would form the ray if the thin high-velocity layer
were removed. They also indicate the tunneling of the inhomogeneous waves through
the thin layer.

In the fourth version, the full reflectivity method [22, 30j is used for the computa-
tion. The reflectivity zone extends from a depth of 2 km to 405 km and contains

both the high-velocity layer and the bottom reflector. Thus, the reflectivity code .

yields not only the waves reflected from the bottom interface at a depth of 4-05 km
but also the reflections from the thin high-velocity layer at depths of 2—2-05 km,
and the relevant converted waves.

The relevant synthetic seismograms corresponding to the discussed four versions
are presented in Figs. 4a, b, c, d. Let us first briefly explain Figs. 4a, b, ¢, showing
synthetic seismograms of the P waves reflected from the bottom interface. Fig. 4a
shows the ray synthetic seismograms for the model without the thin high-velocity
layer (see Fig. 3a); Fig. 4b the ray synthetic seismograms for the model with the
thin high-velocity layer (see Fig. 3b), and Fig. 4c the hybrid ray-reflectivity seismo-
grams for a mode] with the thin high-velocity layer (see Fig. 3c). In Figs. 4a, b, c,
the relevant head waves generated at the bottom reflector and the waves reflected
from the thin high-velocity layer are not computed. Mor. aver, only simple trans-
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nussions through the thin layer are taken into account in Fig. 4b; multiple reflections
inside the thin layer and under it are not considered. Finally, the reflectivity method
computations for a reflectivity zone extending from a depth of 2-:0 km to 4:05 km
are shown in Fig. 4d. All multiple reflections, converted, inhomogeneous and head
waves, etc., are automatically included in these computations.

In all synthetic seismograms, the time axis is oriented down (as is common in
seismic prospecting), and the time is shown in milliseconds. The receivers are distri-
buted regularly along the Earth’s surface, with a spacing of 0-5 km. The traces are
numbered: number 1 corresponds to an epicentral distance of 1-0 km. Thus, the n-th
trace corresponds to an epicentral distance of (n -+ 1)/2 km.

Figure 4a displays the well-known ray theory properties of P waves reflected
from a plane reflector. The strongest reflections are obtained close to the critical
point which is sitvated at an epicentral distance of 9-07 km (close to the trace 18).
At small epicentral distances the amplitudes gradually decrease with increasing
epicentral distance and have a minimum at an epicentral distance of 4-5 km. After
this, they increase and reach a maximum at the critical distance, and again slowly
decrease. Amplitudes are sufficiently strong in the whole range of epicentral distances
under consideration. The shape of the signal changes beyond the critical point. {Head
waves were not considered in these computations.)

The ray synthetic seismograms for the same P reflected wave, but in a model
with a thin high-velocity layer in the overburden, are shown in Fig. 4b. The ray
theory computations now yield a quite different picture. They agree roughly with
the computations presented in Fig. 4a only with traces 114, i.e. for epicentral
distances of less than 7'5 km. The relevant angle of incidence is about 40°. There-
after, the amplitudes remain practically constant at several traces (or slighty in-
crease), but then they decrease radically. They practically vanish at traces 20—21,
corresponding to an epicentral distance of about 10-5- 11 km. The critical region
with its strong amplitudes and phase changes has been removed completely. Note
that the critical angle equals 41-8°.

The hybrid ray-reflectivity computations are shown in Fig. 4c. At small epicentral
distances (at first 14 traces) they agree fully with the previous results shown in Figs.
4a and 4b. This means that the thin high-velocity layer has practically had no in-
fluence on the amplitudes of the waves reflected from the bottom reflector, even
though the wave has been transmitted twice through it (up-down and down-up).
This is, of course, valid only for small angles of incidence and for a very thin layer.
For larger epicentral distances, the hybrid ray-reflectivity computations yield all
critical region effects. The decrease of the amplitudes beyond the critical region is,
however, faster than in the mode! without the thin layer. Moreover, it can be obser-
ved that the high frequencies are gradually filtered out. However, these effects are
not very pronounced in Fig. 4c as the thickness of the thin high-velocity layer is
small, and the Gabor signal under consideration has a very narrow-band ampli-
tude spectrum. They are more pronounced in the computations with a high-
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velocity layer of larger thickness and with a broad-band seismic signal (not pre-
sented here).

Both the ray method and the hybrid ray-reflectivity method are only approximate.
To appreciate the accuracy of synthetic seismograms shown in Figs. 4b and 4c,
the full reflectivity sy{lthetic seismograms shown in Fig. 4d can be used. Two distinct
waves can be observed in the reflectivity seismograms: the first corresponds to the P
waves reflected from the thin high-velocity layer, and is of no interest to us here.
The second distinct wave corresponds to the wave reflected from the bottom inter-
face, discussed in this paper. The two weak waves arriving later correspond to
converted waves and are of no interest to us.

The comparison of Figs. 4b, ¢, and d shows that the standard ray synthetic seismo-
grams of P waves reflected from the bottom interface completely fail in the whole
overcritical regicn (traces 17— 38). This has been, of course, expected as the standard
ray method does not consider inhomogeneous waves, On the other hand, the hybrid
ray-reflectivity seismograms show surprisingly accurate results, even at large epi-
central distances (see traces 30 — 38). There are, of course, several expected differences
between the full reflectivity and hybrid ray-reflectivity seismograms. At small epi-
central distances, the reflectivity method yields smaller amplitudes than the hybrid
ray-reflectivity method. This difference is caused by the well-known effects of the
apparent velocity filtering in the reflectivity code. In the critical region (traces
18 —25). we can observe the shift of the maxima of amplitudes of reflected waves
in the full reflectivity computations from trace 18 to trace 23. This shift, which is
frequency-dependent, is also well-known and has been described in detail in the
seismological literature. It has nothing to do with the thin high-velocity layer in the
overburden and exists even if the thin high-velocity layer is removed. For more
details refer to in [9, 10].

In the conclusion of this section we can say that the standard ray method fully
fails in the computation of overcritically reflected waves if a thin high-velocity
layer is situated in the overburden. In this case, however, the hybrid ray-reflectivity
method yields synthetic seismograms of good accuracy,

Thin laminated high-velocity layer

We keep all the conditions of computations the same as in the previous section,
with one exception; we change the inner structure of the thin high-velocity Iayer.
The thickness of the thin layer zlso remains the same, i.e. 0-05 km, but the thin
layer is divided into three laminas with the same thickness of 0-0167 km. The medium
parameters in the first and the third lamina are the same as they were before in the
whole thin layer, but the medium parameters in the middle lamina correspond to
the parameters in the overburden.

Figures 5a and 5b shown the synthetic seismograms of the P wave reflected from

the bottom halfspace. Fig. 5a shows ray synthetic seismograms, and Fig. 5b the
hybrid ray-reflectivity seismograms.
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The results are very similar to those demonstrated in Figs. 4b and 4c. At small
epicentral distances (traces 1~14), the synthetic seismograms again practically
coincide with those prsented in Figs. 4a, b, c. Thus, the inner structure of the thin
high-velocity layer does not influence considerably the synthetic seismograms at
small epicentral distances. In ray synthetic seismograms (Fig. 5a), the decay of
amplitudes at greater epicentral distances is even faster than in Fig. 4b. The reflected

W
i

i /////////

A
ik 3
i

DEPTH IN HH

\‘ N
LR
‘ é\ ““"n:%.

[V,

AU

2 2 4 B B ] 12 14 15 18
DISTANCE [N KM

)

QISTANCE IN KM

e

it

al \\W\\“\\\:\\?\\\\\\“\\\@N\
i
“’i

IR
\ AR
i

DEFTH IN KM

A
\y \‘\\\\

S
L
AR

SRS
“ PN SR
§ S0,

)
\
i

;

SRS
e
I‘“‘O‘\‘

%\\
L
o

DISTANCE IN w1

Fig. 6. Ray diagrams of = P wave reflected from the bottom reflector in a laterally varying 2-D

structure. The thin high-velocity layer situated in the overburden is curved, the bottomn reflactor

is dipping. The velocities inside the individual layers vary both laterally and vertically, {a) Standard

ray computations. A shadow zone is formed beyond the epicentral distance of 11 km. (b} Hybrid

ray-reflectivity computations. No shadow zone is formed. Note that the rays at larger epicentral
distance are curved due to lateral variations of velocity,
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waves practically vanish at traces 18— 19. On the other hand, the hybrid ray-reflect-
ivity synthetic seismograms for the high-velocity laminated layer display larger
amplitudes at larger epicentral distances than the hybrid ray-reflectivity seismograms
for the high-velocity homogeneous layer. Similarly as in Fig. 4e, the signals at larger
epicentral distances have a more low-frequency character.

Curved thin high-velocity layer in a laterally varying
structure

The model is again similar to the one above. The thin layer, however, is slightly
curved and the reflector is slightly dipping. Moreover, the velocities in the over-
burden vary both laterally and vertically. Even the velocity inside the thin layer
is not constant laterally, but varies from 2:0 km/s on the left-hand side to 2-1 km/s
on the right-hand side of the model. We wish to demonstrate that the hybrid ray-
-reflectivity method can be applied without problems even to laterally varying struc-
tures. We, however, do not wish to change the previous model completely, so that only
slight variations have been introduced.

Figures 6a and 6b show the ray diagrams for the model described above, correspon-
ding to standard ray computations{6a)and to hybrid ray-reflectivity computation (6b).
As we can see in Fig. 6a, the thin high-velocity layer again influences the ray diagram
considerably. The rays do not even penectrate beyond trace number 21 {epicentral
distance 11-0 km), where a shadow zone is formed. This effect is mainly due 10 the
curvature of the thin layer. The ray diagram in Fig. 6b, corresponding to the hybrid
ray-reflectivity method does not, of course, display any shadow zone. We thus expect
the differences between the ray synthetic and hybrid ray-reflectivity seismograms to
be even more pronounced than in Fig. 5.

The synthetic seismograms calculated by the two methods are shown in Figs. 7a
and 7b. The ray seismograms behave similarly as the ray seismograms for the two
previous models with a thin layer shown in Figs. 4b and Sa. Even though a ray
theory shadow zone is formed in the model under consideration and no shadow

zone was formed in previous cases, the actual behaviour of the ray synthetic seismo-

gram is very similar. The behaviour of the synthetic seismograms computed by the
hybrid ray-reflectivity method (Fig. 7b) is again drastically different from the ray
synthetic seismograms.

4. CONCLUDING REMARKS AND DISCUSSION

The hybrid ray-reflectivity method extends the possibilities of the standard ray
method considerably. It can be applied to 2-D and 3-D laterally varying layered
structures which contain thin transition layers. The inner structure and physical
properties within the thin transition layer may vary arbitrarily in the vertical direction.
The method was used in [10] to study the properties of waves reflected from such
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thin transition layers. The internal structure in the thin transition layer influences
the amplitudes and frequency responses of reflected waves considerably. In this
paper, the hybrid method is applied to the transmission of reflected waves through
a thin high-velocity layer situated in the overburden of the reflector. It is shown that
the method removes the difficulties of the standard ray method which is not able to
describe properly the tunneling of seismic waves through tt.e thin high-velocity layer
along complex ray-paths at overcritical distances.

The accuracy of the hybrid ray-reflectivity computations related to thin high-
-velocity layer was tested by comparison with the reflectivity computations. It has
been found that, in general, the hybrid ray-refiectivity method describes well the
tunneling of seismic energy through a thin high-velocity layer. Differences were, of

" course, observed in the critical region, as the standard ray method was used in the

hybrid ray-reflectivity computations presented in this paper. The hybrid Gaussian

- beam-reflectivity algorithm, which can be optionaily used in BEAMS7, would remove

these differences.

The hybrid ray-reflectivity method can be used in many other applications im-
portant in seismology and in seismic prospecting. One such application is now
under investigation and has yielded promising preliminary results. The thin layer
in this application is situated directly at the top of the model. Another application
is related to inhomogeneous waves. We feel it would be possible to incorporate
even waves as pseudospherical, P, S, etc., into the routine ray computations in 7-D
and 3-D laterally varying layered structures using the hybrid ray-reflectivity code.
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