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These lectures assume a knowledge of the Theory of Elasticity and some knowledge of

seismology. A good mathematics background is essential.

EauvaTions OF  Moriow /v AN ELASTIC  MEDiUM

The lecture notes are extracted from the following sources:

The Qqu_qhsm of obion M an elashe medriaa 14 jwe:,-. by
Aki, K. and P.G. Richards (1980) Quantitative Seismology: Theory and Methods. 932 pp.,

W.H. Freeman and Company, San Francisco, California, 1980.
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Note: These notes are an atiempt to provide a complete background to the

lectures. Only some aspects will be discussed in the lectures. The

reader is referred to the original sources for complete details and for

b
references mentioned in the next pages.
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BASIC THEOREMS IN DYNAMIC ELASTICITY
2.3 heorems of Uniqueness and Reciprocity

It is patural to intreduce the discussion of uniqueaess (for the dispiacement
field u throughout a body with volume V and surface §) with some general
remarks conceraing the ways in which motion can be set up. Because the dis-
placement is constrained to satisfy (2.17) throughout V, the application of body
forces will generate a displacement field, as will the application of tractions on
the surface § We shall show that specification of the bady forces throughout I,
and tractions over all of S, is enough to determine uniquely the displacement
field that wilt develop throughout V from given initial conditions. An alternative
way to specify the influence of § on the displacernent field is 10 give a boundary
condition for displacement itself (on §) instead of lor the traction. For example,
S mig it be rigid. It might seem at first that the traction on 5 and the displace-
ment on § are independent properties of the displacement field throughout ¥,
This is not so, however, and it is impaortant for an intuitive understanding of
Sections 2.3-2.5 to appreciate thal traction over S determines the displacement
aver §, and vice versa.

UNIQUENESS THEOREM

The displacement u = u(x, ¢) throughout the volume ¥V with surface § 1s uniquely
determined after time t, by the initial values of displacement and particle velocity
at t,, throughout V; and by values at all times 1 2 ¢, ol (1) the body forces £
and the heat 2 supplied throughour V', (ii) the tractions T over any part &,
of §; and (iii) the displacement over the remainder §, of S, with S, + §, = S.
{Either of S, or §, can be the whole of §)

PROOE

Suppose u, and v, are any solutions lor u that satisly the same inttial conditions
and are set up by the same vatues for (1) (). Then the difference U = u, - u,1s
a displacement field having zero initial conditions, and is set up by zero body
forces, zero heating, zero traction on 5, and U = 000 §,. It remains 10 prove
that U = 0 throughout Vfor t = 1,

The rate of doing mechanical work in the <hsplacement field U is clearly zero
throughout ¥ and 5, and §; {sec {2.22)1 01 ¢ = 1, The third equality in (2.27)
can be integrated from ry to 1, and, togerher with the zero initial conditiens and
the use of a strain-energy functiop (U invoives adubatic changes), it follows that

_I._U;m},u.dr : ‘”‘f;.””ze‘_,l-‘“.,'l‘ -0
¥ +

Both the kinetic and strain encrgies are positive definite, so that [, = 0 for
1> 1 But U/, = Oatr = g, and bence U = 0 throughout ¥ forr > 1,

23 THEOREMS OF UNIQUENESS AND RECIPROCITY

25

Box 2.4

Lise of the term “homogeneous,” as applicd 1o cquations
and boundary conditions

The equation for elastic displacement is Lin) = £ where L. is the vector differential operator
defined on the components of u by

(La)), = pii, = (e 0t

Il body forces are absent, Lhen the equation L{u} = & for u is sax! 10 be homogeneous
MW{M on the surface S is one for which either the displacenient
or the raclion vanishes at every paint of the surface

This 1erminotogy is reminiscent of linear algebra, for which a system of n equalions in
nunknowns, in the form Ax = 0, is also said to be homogeneous Here, x 15 a celumn
vecter and A is some n x 1 matrix. [1is well known that nontrivial sulutions tx # 0) can
ewst, but only il A has a special property (namely, a zeco determinant). The cor esponding,
result in dynamic elasticity is that motions can occur throughout a finite elas.c volume
¥ without any body forces and with a homogeneous boundary condition over the surface
of V. These are the free oscillations or normal modes of the body, which can occur only at
certain frequencies. See Chapter 8.

RFECIPROCITY THEOREMS

We shall state and prove several general relationships hetween a pair of solu-
tons for the displacement through an elastic body V.

Suppose that u = u(x,1) is one of these displacement fields, and thal u 15
due to body forces [ and boundary conditions on § and initial conditions at
lime ¢ = 0. Let v = v(x, 1) be another displacement ficld due to body forces
£ and 10 boundary condittons and tnitial conditions iat 1 = () whach in general
are different from the conditions for u To distingwish the ractions on surfuces
normal (o nin these two cases, we shall use the notation Tiw, ni for the traction
due ta the displacement u and, similarly, T{v, n} for the traction due to ¥

The first reciprocal relation 10 note between u and v is

-E

[0 v vav s [T a v
s

J‘J:f(g . R udh o ﬂlu_m wils  (234)
v N

e is due to Betti. It can easily be proved by subsituion from {2 17) and
216 and then applying the divergence theorem 1o reduce the leflt side 1o

This resuly
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Paraiicls

A rearrangement of Belti's relation $2.34) gives

jff{f.[".,uul_r‘d = ) ,} dV = J‘f“.T"“- n) - Ty, ) 45
v

5

T'his is a vector theorem for the second-order spatial derivatives occurring in the wave
cuation of elasticity, which s analogous te Green's thearem

jJ' WY - GV AV - fsj (w ° e)?f)ds

far scalars and the Laplacian operator. Green's theorem is a working tool for studying
inhomogeneous equations, such as Vi = —d4np, and we shall use Betti's theorem for the
elastic wave equation, in which the inhomogenity is the body-fores term.

There are many further analogies between Dirichler problems (for potentials thai are

2ero on S) and elasticity problems with rigid boundaries; and between Neumann problems
(@/fn = 0 on §)and traction-free boundaries.

Uy eiut iy V. Similarly, the right-hand side reduces 10 [ff, Ciit, by AV,
and (2.34) follows from the symmetry ¢, = cy;.

Note that Betti’s theorem does not invelve initial conditions for u or v.
Furthermore, it remains true even if the quantities w, i, T(w, n), and f are eval-
uated at time 1, but v, ¥, T(v, a), g are evaluated at a different time r,. If we
choose r, = rand 1; = 1 — t and integrate (2.34) over the temporal range 0
te 1, then the acceleration terms reduce 1o terms that depend only on the initia!
and final values, since

J:P{ﬁlf) T 1) — ) VT~ 1y de

I .
? 1o % i) ¥t — 0 + 6y ¥t — 0} dr

gl w0 — a(0) - v(r) + u(z) - ¥(0} ~ u(0}- w1}

If there is some time 1, before which u and v are everywhere zero throughout
¥ {and hence u = ¥ = Ofor 7 < 1), then the convolution

f Tl vt - 1) — i) Ve ~ 1)) de
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is zero, We deduce from Beui's theorem the important result, for displicement

fields with a quiescent past, that

f_w_ di fff{u(\.zl BIX T - 1) w1 — g f(x, 1)) 4V

;
= J‘ . dr ff{v{x. T — 1) Tuix, 1), n) — w(x, HoTivix, t - ), n)}ds. (239)
5

Gireu«, Is )fvw\.c}‘\mv J[zu-« &fn.a}ual.j rea MM-*
Gireen's qu-/wd\.ur\-d awe  tha rwxlpu ke ré sponst. of am  elashe

Sohd |, Gat b, U 6 TBa duplacement Glatrakd L S brdy
by e  oppleabon  of aw ik force = E(R)S(2)
whane T2 (%, ¥, X5) avd £ b Ow Tewa.
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2.4 Introducing Green's Function for Elastodynamics

A major aim of this chapter and the next is the development of a representalion
for the displacements that typically occur in seismology. The representation
will be a formula for the displacement {al a gencral point in space and time)
in terms of the quantities that ortginated the motion, and we have seen {in
the uniqueness thecrem) that these are body forces and applied, tractions or
displacements over the surface of the elastic body under discussion. For earth-
quake faulting, the seismic source is complicated in that it extends over a
finite fault planc (ot a finite volume) and over a finite amounl of time, and in
general involves motions (at the source) that have varying direction and
magritude. We shall find that the representation theorem s really nothing
but a bookkeeping device by which. the displacement from realistic source
models is synthesized from the displacement produced by the simplest of
sources—namely, the unidirectional unit impulse, which is locahized precisely
in both space and time. .

The displacement field from such a simple source is the elastodynamic
Green function. If the unit impulse is applied at x = £ and t = t and in the
n-direction (see (2.4}, taking 4 = unit constant with dimenswons of impulse),
then we denote the ith component of displacement at general {x, 1) by
G,(x, t; & t). Clearly, this Green function is a tensor (we shall work throughout
with Cartesian tensors, and therefore do not distinguish between tensors and
dyadics). It depends on both receiver and source coordinates, and satisfies the
equation

a? o A
P G = Bu50x = 8131~ 1) 4 o (\( oy (,“) 12.36)

throughout ¥, We shall invariably use the initial conditions that G(x, t; §, )
and MG(x, t; & 0)}/0t are zero for 1 < rand x # § To specify G uniquely, it
remains to state the boundary conditions on §, and we shall use a variety of
different boundary conditions in different applications.

1(the boundary conditions are independent of time (.2, 5 always rigid), then
the time origin can be shifted at will, and we see from {2.36) that G depends on ¢
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and t only via the combination ¢ — . Hence
G ET =6 - D = Gix, —1;§, 1. (2.37)

which is a reciprocal relation for source and receiver limes,

If G satisfies homogeneous boundary conditions on §, then (2.35) can be
used to obtain an important reciprocal relation for source and receiver positions.
One takes f Lo be a unit impulse applied in the m-dircction at x = &, and time

¢ = 1,,and g to be a unit impulse applied in the n-direction at x = £, and time
t= —15 Thenw, = G ix, 1. &, tp)and ¢, = G 0% 1: &5 —15), so that [2.33)
directly yields

Gl 0 + 1280 1) 7 Gt - 106 7 (2.38%)
Choosing 1, = 1; = 0, this becomes
Gomt82. 185,00 = Gooffy, 185, 0L 239

which specifies a purely spatial reciprocity. Choosing 1 — 0n (2.38) gives
Conlfr 120 80 1) = Craly — 10085 - 1) (2.40)

which specifies a space-time reciprocity

The actual computation of an elastodynamic Green function can itsell be a
cotnplicated problem. We shall take up this subject in Chapter 4 for the simplest
of elastic selids {homogeneous, isotropic, infinite) and also for the case of large
separation between source and receiver :n inhomageneous media

2.5 Representation Theorems

If the integrated form of Betti's theorem, our equation (2.35), 15 used with a
Green function for one of the displacement fields, then a representation for the
other displacement field becomes available.

Specifically, suppose we are interested in finding an expression for the dis-
placement u due both to body forces f throughout ¥V and to boundary cenditions
on 5. We substitute into (2.35) the body ferce gidx. 1) = §,8{x - £d), for
which the corresponding solution is rix, f) = G, {x, ¢ & M, and find

wi = 7 d ffam oG g oav

[T JJ{G;,,(J&. T E O ()

— u,lx, l‘]cU.,n,Gh_,(x, - 4, 0)) 48



2.5 REPRESENTATION THECREMS

Before giving a physical inter i i
g pretation of this equation, it is helpful
interchange the sympqls x and § and the symbols ¢ and 1. This permi:)s\:x 1roj
to be the general position and time at which a displacement is to be :valuau‘:d

re; i
garded as an nn(Fgral over volume and surface elements at varying & with a
termporal convolution. The result is

wix = [ de [[[fie 0G4e 1 - <ix, 0 avie)
v

+ J'jl dt _U:G,,,H.'J - X, 0T (u(E 7). n)
) .

=l UGt gt ~ 1%, 0)) dS(E). (2.41)

This is our ﬁrs_l representation theorem. |1 states a way in which displacement

.,‘./a:u:;e;a: 'FLOT" is rr:jadc up from contributions due to the force { throughout

g rbutions due to the traction T{u. n) and the dj i
on §. However, the way in which e ‘ i o e

: ) ach of these three coneributi i i
15 unsatisfactory, since each involves a G i ith source a1 Dhed
: Y, reen function with

observation point at & {Note that th i rolves difroremtiates

: g ¢ last term in (2.41) involves differentiati

! L
:ilstglar::r?]c:lltnbfl)' \t: want x to be the observation point, so that ::cléllyt(:;
nt obtained there can be regarded as the s i
: . um (integral) of contri-
-ll)-;l]:ng @splaolemenls at x due to each volume element and sfrl’ar):e ciemner::
c0l,‘dir::.i:lpn:n:a lhcor.em l'or_G must be invoked, but this will require cxtré
A ions on Green's function itseli, since the equation G, (5.1 — 1;x,0)
b;::d;—:ofé()) (see (2.39)) was proved only if G satisgcs‘ homo'gc;acou;
pound: Ty con itions on S, whereas (2.41) is valid for any Green function set
y&’n impulsive I'Qroc in the n-directionat & = xand 1 = ¢ *
dc[crc':“sil:‘:g ex:lr:nsne two different cases. Suppose, first, lhal.Grt‘:cn's function 1s
wi as a rigid boundary. We write Grise i i

cter ‘ ‘ . ite G for this f

¥t —t;x, 0 =0forfin S Then (2 41) becomes unetion and

w0 = [* de [[] fig oGux, - o ¢ 0y av
¥

o L | YT R 2 Gt s
] _[_[ a2 G = 68,00, (242)

Alternatively, we can use G™™*
. m: : as Green's funclio :
CondilT/0E) GirE 1 — 1 x, 0) is zero for £in §, ﬁndilnz‘ " that the traction

wlo v = 2 av [ ue oG, - .8 0 av
¥

+f d e - cpoTue nmds. @y
s
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Equations (2.41)—2.43) are all different forms of the representation theorem,
and each has its special uses. Taken together, they seem (o imply a contradiction
to the question of whether u(x, t) depends upon displacement 0 § (see (242))
or traction {see (2.43)) ot both (see (2.41)). But since traction and displacement
cannot be specified independently on the surface of an elastic medium, there is
na contradiction.

The surface on which values of traction {or displacement) are explicitly
required has been taken, in this chapter, as external to the volume V. Tt is often
useful to take this surface to include two adjacent internal surfaces, being the
opposite faces of a buried fault. Specialized forms of the representation theorem
can then be developed, which enable one 10 analyze the carthquakes set up by
activity on a buried fault. This subject is central 1o earthquake source theory,
and is taken up in the following chapter.

Sa far, we have considered only Cartesian coordinale systems. In practice, the
seismologist is often requited o use different coordinates thal allow Lhe physical

relationship between components of displacement, siress, and strain to be
simplified for the geometry of a particular problem. In parti alar, it is often
found that a boundary condition must be applied on a surface thal can be
chosen as the sutface on which a general curvilinear coordinate is constanl.
Vector operations grad, div, curl, and 92 are derived for general orthogonal
coordinates in many texts, but rather more is needed to analyze the vector
operations required in elasticity.

e
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BOX 5.3

The distinction between kinematics and dynamicy

Kinematics is the branch of mechanics that deals purely with motion, withoul analysing
the underlying forces thal cause or participale in the motion. Dynamics is the branch
of mechanics that deals directly with force systems, and with the energy balance that
governs motion. From these fundamental definitions, two useful conventions have devel-
oped for applying the words “kinematic” and “dynamic”

First, in the analysis of displacements alonc, kinemauc properuies are those that may be
derived from the eskonal equalion (4.41), whereas dynamic propertics are those refated Lo
displacement amplitudes. Thus the existence of particular wavefronts and ray paths is
part of the kincmatics of the problem in hand. As an example of a dynamic problem, we
might ask if a certain approximation 1s adequale for the displacemenis observed at a given
receiver al some given distanoe from a localized source

Second, in those problems in which we have a direct interest both in the displacement
and the associated system of stresses, then kinematic properties are properties ol the
displacement field and dynamic properties are related to the stresses. For example, il the
relative displacement between opposite faces of a fault surface is known as a function of
space and time, we say that we have a kinematic deseription of the fault motion. If the
stresses {ie., traction components) are known on the fault surface, we have a dynamc
description. As another example, one refers (o boundary conditions as being kinematic or
dynamic, in the sense developed in the present section
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THE BOUNDARY-INTEGRAL EQUATION
METHOD

5.1 Representation relations

In order to reduce the earthquake source problem to the solution
of a boundary-integral equation, it is necessary first to represent the
stress and displacement fields throughout the medium in terms of the
displaceinent discontinuity or the traction perturbations on the fault
plane. In the case of the kinematic description of the earthquake source
(“dislocation” model), such representation redations provide an explicit
solution, as we saw in Section 3.2. However, as we shall show later, the
boundary conditions for the dynamically described source (“crack”
model) are of mixed type, and such representation relations do not give
the required solution explicitly; instead, they relate the boundary values
ol the traction perturbations and slip, neither of which are known on the
entire boundary (fault plane). Together with boundary conditions, these
relations comprise the integral equations. When these integral equations
are solved, the displacement and stress fields inside the body can be
obiained using the same representation relations.

The geometry of the problem is shown in Figure 5.1, The plane X, =0
is laken as the crack plane and denoted by §. Let S(r) be that portion of
the X, = ( plane where ship i1s nonvanishing at time ¢ and let S(1) be its
complement: § = ${(1) + 5(1). Generally (¢} is unknown and is to he
determined as part of the solution. The relation between the displace-
ment u#,(X, 1) at any point (X, 1) in the medium and the displacement
discontinuity a,(X', ") across § was given by equalion (3.29). For 2
homogeneous, isotropic medium and the case of a planar shear crack,
this relzation becomes (with slightly different notation for convenience)

u (X, 1) = L’d{'[su.lkm(x =Xt = r)a (X, ) dS (5.1.0)

174
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4%

Sit)

5
Xz
S: X3t O plane
S=5it + 5ih

51 The geometry of the problem. S(1) is the cracked portion of the X, = 0

plane

where Latin subscripts take values 1, 2, 3 and Cireek ones the values 1. 2.
K. b5 given by

au,, au,:.) (512

Koul(X. 1) = "#(TXH + ix,
where the Einstein summation convention is assumed and U/, 15 given by
(3.3.1). Equation (5.1.1) gives the representation relation throughout the
medium. To express the traction perturbation on the fault piane in terms
of the ship on it, we evaluate the traction perturbation components 1,, by
differentiating (5.1.1) and taking the limit as X, — [} 1o obtain

(X, 1) = f’d:'f ToalX = X't = £ag(X. 0V dS  (5.1.3)
) S’y
where X and X’ are now the two-dimensional vectors on the fault plane
S. The kernel T_g4, obtained by differentiating X ;, . is given by
3y, ER I a, a’Uj,

Tp= — + + + -5 514
w5 TRax,ax,  9X,3x,  axex, X, 5.1.4)

Kernel 7., has strong singularities, so the integral in (5.1.3) must be
considered to be a principal value. Hence, the solution of (5.1.3} 15
unique only under additional conditions, Usually, it is sufficier t to
assume that the slip ¢, is smooth everywhere except at the crack cdge,
where i1 must be finite. Thus implies the square-root behavior of the slip
a, near the crack edge (see Section 2.3).

An alternative representation relation is obtained by exploiting the
symmetries in the problem. For planar shear cracks, the solution can be
shown to be antisymmetric in X,. That is, the displacement components
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u, and traction perturbation ;, are odd in X,, whereas uy and 7, are
even in X,, and it is sufficient to solve the problem for‘the upper
half-space X, = 0. Furthermore, from the continuity of traclions across
X, = 0 [equation (1.3.29)] 1t follows that Ty, = 0 everywhere on X, = 0.
To obtain the required representation relation, let us first repraduce the
Green- Volterra formula (3.1.5) after replacing ¢ by ¢ and f by ¢ for
notational convenience. Then we have

L'dr'fs(o”u,’ - alu)n, dS + L'dr’fvp(f, Y

|
+ folui — i) dlﬂ =0 (515)
¥ r -0

Let us choose as u; the three salutions corresponding to the three

concentrated unit forces £ directed along the X, X;, and X, axes and

given by )

Jr=8,8(X - X)y&(e~r) for X;>0, X520
(5.1.6)

where 8§, is the Kronecker delta and 8(X) and 8(r) represent the Dirac
delta function, and with the initial and boundary conditions

wo=a/ =0 for ts1 ey=0 at Xy= +0 (5171

Let us denote the solution #; by G,. Then m (5.1.5) the last term
vanishes due to initial conditions, and the terms containing f, and o
vanish due to the absence of body forces f, and by (5.1.7), respectively.
Taking g,, as the stress perturbation tensor 7, and evaluating the term

with the § function, we get
(X, 1) = f’d.v'f(;,(_(x SNt - )X ) dS {518)
v /s

Letting X, — 0 and accounting for the symmetry of the displacement
components, we obtain the required alternative representation relation as

a X, 1) = 2]'4:*]6_,(7( Xt - Yg(XL 1) dS (5.19)
@ s
where X and X’ are now two-dimensional vectors on §. The required

components of G are the solution to Lamb's problem and can be
expressed in terms of elementary functions. The expressions for G4 for
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the two- and three-dimensional cases are given in Appendix 1. The
kemel G, possesses only weak singularities and can be directly dis-
cretized for numerical computation, as we shall discuss in Secuion 5.2

Thus, we have obtained two represeniation relations, (5.1.3) and
(5.1.9), both of which relate the slip on the crack plane to the tracticn
perturbation on this plane. These relations comprise a set of mutually
inverse integral transfosms. If cither the slip a, or the traction perturba-
tion T,, were known everywhere on $, the other of these two quantities
could be obtained using (5.1.3) or (5.1.9), respectively. But in a dynami-
cally descnibed source (crack) problem, neither one of them is known
everywhere on S. The systems (5.1.3) and (5.1.9) thus simply provide
relationships between @, and 7,,. Some additional relations between a,
and 71, on the crack plane are needed to provide the required
boundary-integral equations. These relations can be obtained from the
conslitutive relations on S, as we shall discuss in Section 5.2,

Relations (5.1.3) and (5.1.9) are equivalent in that either of them can
be used together with the constitutive relations to solve the crack
problem. The variables X and X in (5.1.3) are confined 1o S(r) since 2,
vanishes outside the crack. On the other hand, the integration domain in
(5.1.9) covers all points influenced by disturbances that propagate with
the fastest wave velocity of the problem (c.g., the compressional wave
speed of the medium for general three-dimensional problems). Therefore.
one of these two relations may be more efficient than the other for a
given problem. For'problems in which S(r) is much smaller than S, for
example, “interior” crack problems, it is more advantageous lo use
(5.1.3). For some “exterior” crack problems, the region of traction
perturbations is limited, and then (5.1.9} 15 the more efficient refation. Of
course, the domains of integration may coincide for some particular
situations — for example, for the case of a self-similar crack propagating
with the fastest wave speed of the medium. The domains nf integration
for the two representation relations are shown in Figure 5.2 for two cases
of the interior crack problem. The domain of integration for the cxterior
problem will be discussed in detail in Section 5.6 under “A circular
asperity on an infinite fault plane.”

The relation (5.1.3) was essentially formulated by Budiansky and Rice
(1979). Burridge (1969) used its two-dimensional form, and Burridge and
Moon (1981} its three-dimensional scalar form. The two-dimensional
form of (5.1.9) was first used by Kostrov (1966) for dynamic clastic
problems and by Das (1976, 1980) for general three-dimensional prob-
lems,

o
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FOR [5.1.9) FOR (5.1.3)

3.2 Cross secticns of the domains of integration in the { Xy, - 1) plane for the
telations (5.1.3) and {5.1.9) for (a) a propagaling “interior” crack and (b) a
stationary “interior” crack The crack regions are suppled. The siriped aress are
the domains of integration for determinng the slip at some representalive point
A, say, within the crack,

In the next section, we discuss the discretization of the representation
relations developed here.

5.2 Discrete representations
Let u first discuss the method of discretization of retation
(5.1.9) We introduce a regular network of grids centered at the points

X, =iAX, i=~oo, ., —-1,001,. .00
X, =jAX, J= oo, 10 e (521)
r=(k+4)ar, k=01, &

[n each element of the network, we replace the tractions by their average
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values over the gnd given by (the subscript 3 for the ,’s being implicit
from now on)

1
Teit = N AXE
AX/2
A,
xf "dr !f LAX + &, JAX + £, kAt + 1) dE, dE,
o -3%s2

{5.2.2}
We replace the siip a, by its value at a point within the grid,
Bopp = @ TAK, JAX ks + 8), 0= 8t < Ar {5.2.3)

and we replace the discrete Green function F.q by
. A rAX
Foali, jok) = =2 dr
eatln '[ﬂ I—AX/I

XG(idX + &, jAx+ ¢, kAt + 80— 1) d, d¢,
{5.2.4)
Since G, possesses integrable singularities, F,p 15 easily evaluated using
(3.2.4). The properties of F,a are discussed in detail in Appendix 1. The
Green function £,y vanishes outside the region vlr® = X7 + X2, In
particelar, if v,{4r - 8t) < AX/2, Fog(e, 1,0 is nonvanishing only for
¢ =0 = j This value is

8 7
Fp{0,0,0) = —2fu dr ff Goale, £, 7} dE, &8, (5.2.5)
or, taking inte account the homogeneity and symmetry properties of
Gog-
Fp(0,0.0) = F8,, 8¢ (5.2.6)

where

Fom =2flur ff Gty b r) ag, at, (527

Here Fy is a positive constant [the minus Sign in equations (5.2.4} and
(5.2.7) was included to make F, positive] independent of the grid size
and §_4 is the Kronecker delta. The constant fy is the largest element in
absolute value of the matrix £op- Substituting the discrete forms of
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a,,and G 4 inlo (5.1.9), we obtain

& o0 o
Aoy = 7 E E E Fa_a(‘ - j-F k- kl)"’g.','r
o

P
+ approximation error (5.2.8)

In this expression, with the same order of approximation, the constant
F, can be replaced by some other positive constant Gy, say, independent
of the grid size, which is to be chosen on the basis of stability considera-
tns.

Accordingly, (5.2.8) can be rewntten as

k-1
Qo+ BIGGT = vOX Fali-iej-rik- Ky, 0

k=0, yesh,
for i,je58% (529

where S, is the union of all grids influenced by disturbances at time
k At. The stability and approximation error of (5.2.9) are discussed in
Appendix 2, where il is shown that

0 < LR (5.2.10)
Gy

is a necessary condition for stability. Relation (5.2.9) is the required
discrete form of the representation relation (5.1.9). For a given k, the
right side of (5.2.9) depends only on the solution at previous times
{k < k'yand (5.2.9) is an explicit scheme.

Successful discretization of equation {5.1.3), which would lead to a
convenient numerical scheme, has not been achieved. Some possible
approaches are discussed by Burridge (1969) and by Burridge and Moon
(1981). Instead of discretizing (5.1.3), we shall use the fact that (51.3) 15
an integral transform, inverse 10 (5.1.9). and construct an inverse of the
discrete transform (5.2.8). This inverse transform, like the direct trans-
form: (5.2.8), must be a discrete convolution transform; that is, its kernel
will depend only on differences:

k o [
T ™ ~ T L X Ssali-irj-iik- kYag
k'=0i'=-80 j=~-a

(5.211)

Then. application of transform (5.2.8) 10 this kernel must give the unil
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kernel:
i « x
Y E Fali=i j=fk-k)
Km0 m—m =
XS,G\-(':' _ ‘-M‘jp 4_‘}'!1. k" — k“)
=8,,8,8, 8, (5.2.12)

To determine S5, we obtain the explicit numerical scheme from (5.2.12)

k=1 o oy
a6, ky==- L X L Eli-fy-jk-k)

k=0 'm0 )=

xSBT(:",J',k') +8,.8,8

ay “0 0

Equation (5,2.11) can be written in a form similar to (5.2.9) as

k-1
Tapk T Soam,'k = = Z E Sqe(' ~E ik k')%r;r
k=0 v ey,

for i, j€85,, (5213}

where 5,;, is the union of all grids with nonvanishing slip and the lip
element 5, = §,,(0,0,0) = 1/{A1G,) and is a positive constant. (The
sign of Fy, Gy, and §, becomes important in problems where friction
acts on the fault faces.) Note that using (5.2.9) is exactly equivalent 1o
using (5.2.13) for &’ particular problem; that is, the solutions using the
two algorithms must coincide, aparl from different rounding error accu-
mulation, The properties of §,, are discussed in Appendix 2.

The approach of discretizing 7, by inverting F,, has two advantages.
First, one can us¢ the simple discrete representations of 7, and a,, that
is, (5.2.2) and (5.2.3), which can be shown to be good approximations by
comparing the results with analytical solutions of simple problems {an
example of which is given in the next section). Direct discretization of
T, may require some different representation for 7, aud a,. Second,
and more important from the practical point of view, F,q is a well-
behaved matrix and can be inverted without reservation. Furthermore,
since F,, is quite sparse, one does not actually have to invert a very large
matrix [F,, will consist of (NIT)* clements if N? is the number of
perturbed spatial grids on the fault plane and T the maximum time level
for which S,z is desired] but may determine S,p by an explicit time-step-
ping procedure.

It was mentioned in Scction 5.1 that representation (5.2.13) is more
economical than representation (5.2.9) for “imterior” crack problems,

i
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whereas the situation is reversed for “exterior” crack problems. Lei us
quantify this efficiency for the numerical solution of a stationary crack —
that is, a finite ¢rack that slips without growing. In general, in seismology
one is interested only in the slip distribution on the crack, because it
compietely determines the radiation from the crack through the asymp-
1otic form of {5.1.3), that is, equation (3.2.11). The traction distribution
cutside the crack, in this context, is of interest at most in the vicinity of
the crack edge. The number of grid values that are relevant at a fixed
time step is proportional to the crack area in this case, whereas the
number of traction values involved in algorithm (5.2.9) is proportionaf to
the square of time. The number of arithmetic operations necessary to
obtain the solution at the kth time step is proportional to k%, and the
necessary storage is proportional to k%, when using (5.2.9). So every
doubling of the number of time steps requires eight times more storage
and sixty-four times longer compulation time. For the stationary crack
problem under discussion here, the number of slip values is proportional
1o k and the number of arithmetic operations when using (5.2.13) s
proportional to k?, and the storage required is proportional to k. Thus,
for this problem, using (5.2.13) would be k* times fasier and require k7
less storage. Since the twe algorithms are equally efficient for a sell-
similar crack propagating at the fastest wave speed of the medium, the
economy in using {5.2.13) over (5.2.9) for interior problems increases
with slower and slower crack speeds. Similar comparisons of efficiency
can be made for exterior problems, with the above considerations
applying in reverse. Algorithm (5.2.9) was first used by Hamano (1974)
for two-dimensional crack problems and by Das (1980) for three-dimen-
sional problems.

We shall now proceed to apply the algorithms developed here to some
specific dynamic crack problems. In general, we shall consider only
three-cimensional cases except when appropriate solutions do not exist,
in whi 1 case a two-dimensional illustration will be used.

5.3 The circular self-similar shear crack

We consider the three-dimensionat problem of a self-similar
circular shear crack, which is initiated at a point and propagates at a
known constant velocity, v say. The assumption of a censtant fracture
speed is rather unphysical, because it violates principles of fracture
mechanics. A stress singularity that grows in time, as the stress singular-
ity at the growing crack edge does, is unlikely to result in a constant
fracture speed under any of the fracture criteria discussed in Chapter 2,

3.3 The circular self-similar shear crack 183

‘ ,
M Sit}

53 Geometry of the self-similar circular shear crack

unless the fracture toughness distribution on the fault plane is rather
pathological. Spontaneous crack problems are more physical, and we
shall devote a large part of this chapter to them. It is instructive.
however, to discuss the self-similar problem since it is the simplest
possible case and is useful for demonstrating the numerical method,
including its accuracy and stability. Historically, more than two decades

ago, this problem was the first dynamic three-dimensional shear problem
to be solved.

The crack region S(¢) is known and given by
S{ey: X1+ X} < oli?
The geometry of the problem is shown in Figure 5.3. We shal? solve the
problem when the stress drop on S(¢} is prescribed to be a constant, Ao,
say.! Without loss of generalily for the circular crack problem, we may

assume that the stress drop is directed in the X, direction. Then we have
the mixed boundary value problem
n=4,1,=0 on S{r); a, =10 on  §(1)

After discretization, we obtain

T = fa, T2 =0

s s fko+ 142 ;
for $.,:({AX) + (44X} .<uzl~' 27) (A1)" (5.3

- k+1y?
Fep =0 for SMJZ(EAX)z-i (]AX)1>U1(—2**)(£)1)J

! " 4 .
The F:rm stress drop™ has traditionally been used in scismology 1 mean
traction drop, and we shall continue to use the term o this sense
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Taken together with (5.2.9) or (5.2.13) this gives the complete formula-
tion of the problem. . _

We first use (5.2.9) to solve the problem. We denote its right side by,
say, L, .4 _1,. thatis,

A-1
Lnu(k S Tl Z Z 'F;B(’ R A S k')"'g.','r
=0 resh,

for i, j€ 8%,
where .S'(';, was defined in the last section. The term £,y dependsl on
the values of 7, at all previous time steps and is thus known at any time
step if the traction history up to the previous time step is known. The
summation in L_ ., _,, extends over the entire cone of dependence of
the grid point (i & X, jAX,(k + %) Ar) except the grid point itsell. Then
we can rewrite (5.2.9) as

oy + B1GyT, = L,

1 gk gtk ~1)
1t follows very simply from this that, under the mixed boundary condi-
tions {5.3.1), the solution is given by

B~ —SydiGydo+ L,y

(5.3.2)
Taips = 8, Ac an  §,,
and by
Loton, =0 5 (5.23)
Tarsh = A:G, > @i i O Iy 3

where 5, is the Kronecker delta. Since the initial L,,;,_,, is 2¢0 by
definition, this is an explicit scheme to determine slip and traction
perturbation everywhere on the crack plane.

Let us now solve the same problem using the discrete representation
(5.2.13). We denote its right side by, say, M., e— 1y that is,

k-1
Mmj(k—l) = - E ): qu(i = = k- k')ag.‘ﬂ‘
k=0 S E Sy,

for i,jE58,,

where 5;, was defined earlier. The term M,, ., _,, depends on the values

of a, at all previous time steps and is thus known at any time step if the
slip history up to the previous time step is known. The summation in
M., 41y extends over the intersection of the cone of dependence of the

point (i A X, kK AX,(k + 1) &r) with the crack area S4; but excluding
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this point itsell, that is, over a smaller region than when (5.2.9) was used.
We can now rewrite (5.2.13) as

Taph + Solap = Moy

The sclution to this under the mixed boundary conditions (5.3.1) is very
simply

gtk - 1)

5,00 + M,
"k LT

Taigh = 6-, Ao, a on S“}

(5.3.4)

This is an explicat scheme for finding Qe 00 Sy since M,y s
known to be zero initially and gives the required slip on the crack. If the
solution for the stress Torse ON S{K) is desired, it can be easily obtained

as
Qo =00 T =M,y (53.5)

It is important 1o note that the solutions for the traction perturbation
and slip are homogeneous functions of zeroth order of the coordinates
and time for self-similar problems (definition of sell-similarity).

We shall now compare the numerical solution using the two forms of
the representation relations with the corresponding analytic seif-similar
solution. Let us consider the case in which the fraclure velocity v = v, /2.
The resulls are shown in Figure 5.4 for the case of a Poisson solid. (In
the remainder of the book all numerical results will be ilustrated for the
Poisson solid only.) The required analytic solution for the slip a, is
obtained by integrating equation (3.4.18) with respect to time and
substituting v = p,/2. The numerical solutions are determined from
{5.3.2), (3.3.3) and from (5.3.4), (5.3.5) for the two forms of the represen-
tation relations. The two numerical methods vield solutions that are
identical except at the last decimal place, as expected. Since the initial
crack in a numerical method cannot be infinitesimal, one cannot in fact
numerically study a self-similar crack. In this example, an initial « -ack of
radius AX is assumed to appear instantaneously and start extending at a
speed of vp/2. In other words, the analytic and numerical solutions are
really solutions of different problems. However, at larger and larger
times, the effect of this mitial difference is expected to become less and
less significant. The normalized half-slip U is plotted in units of
(2040 A X)/3u and the normalized time T is plotied in units of vy/A X,
The analytic solution for the half-slip is shown by the continuous line in
Figure 5.4; its numerically calculated values are shown ! / crosses at

e -——

5
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points along the X, and X, axes and along a line at 45° 10 the two axes.
The numerical solution always lies above, that is, is larger than the
analytic solution owing Lo the above-mentioned initial difference. What
is most important, however, is that the rare of increase of slip with time
is the same for the analytic and numerical solutions except for the first
few time steps of the solution. To ensure stability, Go was taken as 2,
which satisties the necessary criterion for stability given by (5.2.10). We
note that the square-root form of the ship a, is well approximated
numerically. The slip component a, on the crack was always found to be
less than 3 percent of a, ; in other words, it is practically negligible (it is
identically zero in the analytic case). In fact, the maximum values of a,
are concentrated in grids near the crack edge, which in a numericai
scheme is necessarily smeared out, and in the interior of the crack its
values are even smaller. The values of a, can be considered a measure of
the numerical noise in the solution. Thus, the slip is in the direction of
the stress drop on the fault plane for the circular sell-similar crack.
Figure 5.4 also shows that the numerically determined slip is azimuthally
symmetric (as he analytic one is) without the a priori imposition of such
a condition. The three-dimensional self-similar circular shear crack prob-
lem was numerically studied by Madariaga (1976), Archuleta (1976), and
Dras (1980), among others.

So we have used the numerical boundary-integral method in its two
forms 10 study a simple self-similar problem and showed that the results
compare well with its analytic solution for one particular fracture speed.
In a similar way, any crack problem with given stress drop on the fault
plane and crack speed (neither of these need be constant and the speed
need not be the same in all directions) can be solved following the above
development. It includes as a special case the stationary crack problem
studied by Mudariaga (1976) and by Das {1980).

5.4 The finite circular shear crack
Next we consider the problem of a circular shear crack that
initiates at a point, propagates at a preassigned constant velocity v, say,
and stops when it reaches some finite radius #, say. Let the stress drop on
the crack be assigned a constant, Ao, say, and directed in the X,
direction. The crack region S(t) is defined by

S(): xF+ X2 sv¥?  for <
() X!+ X (5.4.0)

X+ Xi=r for ot>r
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Then we have the mixed boundary value problem
n=be,7,=0 on S(t); a,=0 on S(:)

(5.4.2)
This problem can be solved numencally following the procedure outlined

in detail in the last section, the discrele crack area §,, now being
defined as

(axy + (jax) <ok + 1) (ary
S for  wlk+L)ar<r
(iaxy+(jax)y=r? for  w(k+1)ar>r

Even this relatively simple problem of a finite dynamic crack cannot be
solved analytically, though a kinematic description using the resuits of
the self-similar problem was considered by Sato and Hirasawa (1973).

Let us apply the numerical algorithm (5.2.13) 10 this problem. We
consider an instantancously appearing crack of diameter 3A X, which
grows Lo a final diameter of 41 A X at a speed v = vy /2. We shall allow
backslip 10 occur on the crack in this example. The hall-slip a,/2 is
plotted against time in Figure 5.5 and is normalized by (rda}/3u for
this problem. The shp on the crack 13 found to be essentially in the
direction of the stress drop even after the crack has stopped, and it
coincides with the solution of the corresponding self-similar problem
until the first diffracted waves [rom the crack edpe arrive and decrease
the slip rate. The rise time and slip a1 the center are larger than at the
crack edge. The dynamic slip is found 10 overshoot the static value, but
when backslip is allowed on the crack, as it is here, it decreases from its
maximum value and approaches the static value.

From some simple geometric considerations, it is possible (o obtain a
rough estimate of the dynamic overshoot expected at a point with'a the
crack. A point on the crack continues slipping until some (diffracted)
wave from the crack edge returns to it. Let this wave have velocity vy,
Then the displacement expected at a point on the crack is given by
the solution of the dynamic self-similar circular crack propagating at the
speed o, The overshoot OV on the crack varies with position on the
crack, being largest at the center and smallest at the edge. A the center,
the overshoot is given by
A{v) (1 v

Ale)g v
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where A(v}/A(0) was plotted in Figure 3.6 as a function of v. For
v = vp/2, this overshoot is 0.85(1 + vp/2uy) — 1. A lower bound of
this overshoot would be obtained for vy = vp, that is, if the wave that
stops the slip is the P wave. This lower bound at the center of the crack
is ~ 28 percent above the corresponding static slip from the ahove
formula. Figure 5.5 shows that the maximum slip is reached at or soon
after the time when the Rayleigh wave arrives from the crack edge. Then,
taking ¢y = vy, the Rayleigh wave velocity, one obtains a very tough
estimate of the upper bound of the overshoot at the crack center as
~ 65 percent. This is a very rough estimate since it assurnes that the P
and /or S waves from the crack edge did not modify the slip determined
by the dynamic self-similar solution {an assumption that is seen from
Figure 5.5 to be not quile vahd"). At the crack edge the avershoot is

oV = (0} fl + u/v“ =1

so that for vy = vp, the edge overshoot s ~ 4 percent, and for

u = tg.itis — 18 percent of its static value. The static values of [/ are
shown in Figure 5.5, and the central overshoot in the numerical case was
found to be - 36 percent. Estimates of thus overshoot, oblained by
Madariaga (1976), Archuleta (1976), Das (19R0), and others using differ-
ent numerical methods and /or different grid sizes and without allowing
backslip were found to lie between 20 and 27 percent. The dynammc
overshoot of slip in the interior of the crack may, of course, be inter-
preted as the overshoot of the static stress drop there. The ahove
formulas also show that the dynamic overshoot increases with increasing
crack speed ©v. Obviously for a given problem (solved hy the same
method and using the same discretization of the problem), the overshoot
must be greater when backslip is disallowed on the fault. Hence, 1n
obtaining an estimate of the static solution, allowing backslip would give
a better estimate than disallowing it.
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For a self-similar, circular shear crack with constant
stress drop Ao, the slip rate distribution is (Kostrov, 1964)

G = S for x,x, < t%? {3.4.18)
1 1yi72 '
(7 = xx,/07)

Here, v is the constant fracture velocity, which is < vy, the Rayleigh
wave velocity, and A is given by

440

- (3.4.19)
pl(v)

A
where J{v) i5 a smooth function of v given by
o o 2 2 171 172
o)== a1 —a(yi+ 0} 0 e) 14
@3
dv

* ll + v(uz/ug)]z(l + )2

4

-

(3.4.20)
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16 A /v, normalized by iss static value, versus fracture speed v.

and y = v /vp.! Here A /v gives the ratio of slip versus crack radius and
is plotted against v in Figure 1.6, its value being normalized by the static
value 24 &g /Trp,

i i as
! performing the inegration in (3.4.20), we can write J{v) ih closcd form
er
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ErtsPTicALl cRACK

Burridge and Willis (1969) solved a more general problem, in which
the fracture velocity depended on the direction, so that the crack at all
times had an elliptical shape, given by

=Py (3.429)
6 ol 4.

where v, and v; are the fracture speeds in the x; and x, directions,
respectively. It was found that the slip direction coincides with the
direction of siress drop, when it is parallel to one of the axes of the
ellipse. The distribution of slip rate magnitude is
H(x. ) “ (3425)
d{x, 1) = 7 4,
(¢ = xisol ~ xi/ol)
where 4 is proportional 1o the stress drop Ae. The expression for 4 has
the form of 2 complicated surface integral, which depends on the
velocities v, and o,.
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6.3 The heterogeneous faulting process

We saw in the last chapter that the fracture process depends on
the initial stress distribution on the fault and on the physical properties
of the fault such as its strength and its static and dynamic friction levels.
Variations in any one of these parameters over the crack plane would
produce variations in the fracture velocity, slip rate, and stress drop
distribution over the fault. This heterogeneity would be manifested in the
complexity of the radiated pulse shapes. Such observations of “multiple

shocks™ led 1o the introduction and subsequent acceptance of models
with heterogeneous stress drop and strength over the fault plane. Two
idealizations of this situation have been considered in the past decade. In
one, known as the “barrier” model, the stress drop on the fractured part
of the fault plane is essentially uniform and the critical stress level has
large variations. In the other, known as the “asperity” model, the stress
drop is highly variable over the fault. Obviously, every conceivable
variation and combination of these two extreme cases is plausible in
reality. Also, instead of one unique crack edge, there may be multiple
crack edges due to the locking of regions behind the main crack edge.
The stress drop in this case becomes inhomogeneous not only in space
but in time as well. A problem of random variation of stress drop
and strength over the fault was studied numerically by Mikumo and
Miyatake (1979), though with a somewhat simplified model. The fracture
process was found to be quite chaotic, with no clearly distinguishable
fracture front. In such cases, a stochastic or a fractal approach may be
instrumental.

[t is now well known that some aftershocks occur off the main fault
plane. Obviously, a complex seismic event may be accompanied by such
shocks, occurring during the main earthquake rather than after it. This
implies that at least part of the complexity of seismic radiation cannot be
assigned to the main faull plane as is assumed in the models mentioned
here. This is especially true when cone is considering the high-frequency
radiation from an earthquake.

In this section, we shall consider only some simple examples of these
variations confined 10 the fault plane and determine the far-feld seismic
radiation due to fracture propagation on such a plane.

The barrier model

A barrier may be characierized by some measure of its areal
extent and some measure of its strength. We may use the parameter §,
defined in Section 5.6, 10 denote the relative strength of the barrier. If the
areal extent of the barrier is large, the crack edge propagation will be
arrested. But if its areal extent is small compared with the instantaneous
crack dimension at the time it is encountered by the crack edge, the
crack edge and the barrier wilt interact in the three different ways,
depending on the value of §:

116 S is small, the barrier will be broken as the crack edge
encounters it. ’

s
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2. 1f $ is very large, the crack edge will propagate around it,
leaving behind an unbroken region.

3. If § has some intermediate value, the barrier will not be broken
the first time it is encountered by the crack front but will
eventually break due to the subsequent concentration of stress
on it during the dynamic growth and slip of the surrounding
areas.

The presence of such barriers on the fault will intreduce diverse slip
fi-actions over the fault, which in urn will be scen as complexity in the
raciated seismic wave forms and will modify the seismic moment of the
carthquake. This problem was first studied two dimensionally by Das
and Aki (1977b) and by Das (1985} for the three-dimensional case. Since
the two-dimensional results are very complete and are now well known,
we shall include only these results here. The three-dimensional calcula-
tions show that the two-dimensional resuits correctly predict the com-
plexity of the far-field waveforms for a fault with barriers.

Let us confine our discussion to the unilatgral propagation of an
inplane crack. The four cases studied are listed below. The total crack
length is taken as 104 X and § = 0 in the arcas without barriers for all
the cases. The latter parameter value means that a critical crack length of
zero i< needed for dynamic propagation, which makes the calculations
very «conomical. Backslip will nol be allowed in all cases so that
@, g > @ups Where ki > k. Hence AR uu(k Ar,m) is positive for all
time and the maximum value of the amplitude spectrum is at zero
[requency.

Case P-SV-0: There are no barriers on the fault, this case being
included purely for the purpose of comparison. The crack exiends at a
speed close to v due to § being chosen as zero. The distribution of §
and the resulting slip on the falt are shown in Figure 6.3. The far-field P
pulse shape determined from equation (6.1.4) and the corresponding
amplitude spectra are given in Figure 6.4. '

Case P-SV-1: One strong bammer exists on the fault, and it
remains unbroken when the dynamic fracture process on the fault is
completed. The distribution of S and the slip on the fault arc shown in
Figure 6.5, and the far-field radiated field is plotted in Figure 6.6. The
spectra for the case P-SV-0 is indicated in the latter figure by dashed
lines.
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63 D,stﬁhutiod of the parameter § and “snapshots™ of the distribution of th
nomw halt-slip a, /2 over the fault length for case P-5V-0. The hall—s?' i
mmw by Laa/3u, where L is the fault length and the integer next tulrp l;
curve indiczies the time measured in units of SL/ve . { From Dar und *
19775, © Am. Geophys. Umon.) .

e 6.9 Case .P-SV-Z: Two unbreakable barriers exist on the fault. Fig-
-7 and Figure 6.8 show the corresponding S, the slip on the fault

and the far-field radiati i in gi
o radiation. The dashed lines again give the P-SV.0

5 vl Case P-SV.3; The two !Jﬂ.lTiCl’S on the faull, having intermediate
> m; u':, do not break at the initial passage of the fracture front but
fore the completion of the dynamic fracture and slipping pro-

cess is completed. The related paramete i
Froures 69 e | p rs and results are shown in
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=3d
The major conclusions drawn from this example can be summarized as

follows: s

1. The smooth fault P-SV-0 and the P-5V-3 fault result in single
;arthqua‘kes, wh‘ereas the heterogeneous faults P-SV-1 and P-SV- g | B,

resuit in multiple shocks.

2. The time history of slip on the fault and the resulting far-field ‘-0 \
radiation are mos! complicated in the case when the initially
unbreakable barrier eventually breaks (P-SV-3). [n this case the
duration of the fracture and slipping process are longer than in L B T T
the other cases for the same fault length.

3. The final slip on the fault and hence the seismic moment are
largest for the smooth crack (P-SV-0) and smallest for the case
of the fault with two unbroken barriers (P-5V-2). In the case of
the barrier that eventually breaks, the final slip and moment are
almost as large as those for the smooth fault. The slip for the
fautt with two unbreakable barmiers has the most vniform value
over the faull, whereas the fault with no barriers at the end of
the fracture process (P-5V-0 and P-SV-3) shows the largest
amount of vanation in slip distribution over the fault! This may
explain why the uniform dislocation model (Haskell, 1964) has
often been able to explain observed overali features of seismo-
grams satisfactorily.

4, Clear directivity effects in the seismic radiation are seen in all
cases, these effects being stronger for the fault with unbreakable
barriers than for the smooth fault. However, when the barriers
eventually break the directivity effect is even weaker than that
for the smooth fault.

. The time domain pulses are more sensitive to the complexity of
the fracture process than the spectral shapes. In parucular, when
the barriess eventually break the pulses show complexety m all
directions from the source, but the spectra are not particularly
revealing. .

6. When the barriers remain unbroken, the spectra at the highest

frequencies for which the numerical results are meaningful (this

.

N

NOAMALIZED AMPLITUOE SPECTRUM

FaMEELD SEISMIC PULSE SHAPES

m
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64 Farficld Powave displacement pulse shape and amplitude specira for
various directions [rom the fault for case P-5V-0. The angle # 15 measured from
the normal to the tault, The arrows indicate the arrival of the Brst diffracied
wave when the crack tip stops. For # = 0* the P- and S-wave pulse shapes
coincide. The amplitude spectra are normalized by their value a1 zero frequency
( From Bas and Aki, 19776, © Am Geophys. Union.)
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6.5 Same as Figure 6.3 but for case P-§V-1. There is now ane barrier on the
fault that remains unbroken a¢ the completion of the dynamic fracture of the
fault (From Das and Aki, 19776, © Am. Geophys. Umion )

limit can be obtained by comparing the numerical solution for
some simple case with an analytic solution, the spectra in ail the
cases plotted in this example being shown only up to the
frequency where the numerical results are valid) have more
energy than that for the smooth fault.

7. The corner frequency averaged over all directions from the
source is unaffected by the presence of unbreakable barriers.

8. The stress drop averaged over the total fauli length (including
the barriers) is lower for the case with unbroken barriers than
the other cases. In fact, there is a stress increase on these
unbroken regions due to the earthquake. Thus, a complex carth-
quake with lower average stress drop can generate waves of
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6.6 Same as Figure 6.4 but for the case P-SV-1. The dashed lines on the spectra
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comparison. { From Das and Aki, 1977, © Am. Geophys. Union.)
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PSV-2
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6.7 Same as Figure 6.3 but for case P-§V-2. The two barriers on Ihe faull
remain unbroken. ( From Das and Aki, 1977h. @ Am. Geophys. Umion.)

relatively higher frequency than a simple earthquake with rela-
tively higher stress drop.
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6.8 Same as Figure 6.4 bul for the cage P-SV-2. The dashed lines give the curve
{or the case P-SV-0. { From Das and Aki, 1977b. © Am. Geophys Union )
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6.9 Same as Figure 6. but for case P-5V-3. The two barricrs on the fault are of

intermediale gth and ev lly break while dynamic fraciuring of other
parts of the fault is continuing. { From Das and Aki, 1977b. € Am. Geophys
Union )
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The observational support for complex faulting models came from
both seismology and geology. Observations of multiple shocks on seis-
mograms were mentioned at the beginning of this section. The measured .

surface slip after large earthquakes often shows a form similar to the
fault slip found for P-8V-1 and P-SV-2. Direct evidence from (ractures
on mine faces showed that faults are usually very complex, with side
steps and highly deformed but unbroken ligaments in the stepover
regions {Spottiswoode and McGarr, 1975; McGarr et al, 1979). The
impact of this model, in spite of its idealizations, on the understanding
of the earthquake faulting process was significant. {1 led to the char-
acterization of barriers as being material {large §) or geometnc (when
the fault plane deviated from planarity) by Aki (1979). It alsc led 1o the
identification of barriers in the field by structural geologists and by
seismologists in various locations around the world (Lindh and Boore,
1981; King and Yielding, 1984; Nabelek and King, 1985; Sibson, 1986,
Barka and Kadinsky-Cade, in press; Bruhn, Gibler, and Parry, 1987, 1o
name only a few). Major projects are under way in many countries {o
identify barriers along faults and 1o try to understand the ongin and
geochemical characteristics of barriers. The primary reason for this
general interest is that carthquakes often nucleate and terminate at
barriers.

Since the unbroken barrer with its high residual stress concentration
can become the “asperity” of a future earthquake on the same fault, it is
important to consider the radiation due to the fracturing of such an
unbroken barrier. In Section 5.6, we studied the dynamic fracture of
isolated asperities of different shapes on infinite faults. In the next
subsection, we will look at the far-field radiation generated by such a
model.

Radiation due to the failure of an isolated asperity

The far-field displacement pulse shapes can be conveniently
calculated for this case using (5.1.5). The corresponding radiation pat-
terns were given in Section 4.6. Let us consider the far-field pulse shape
for the circular asperity along the direction of the normal to the fault. In
this direction, the P- and the S.wave pulses coincide. The pulses are
given by the term

Z T gk
i jeZ,
of {6.1.5) and plotled in Figure 6.12. The normalized Lime in the figure is
vpt/A X, and it is measured from the time of arrival of the first wave at
the receiver. The most stiking feature of this pulse is that there 15 a
permanent offset, in contrast to what we saw in the previous examples in
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612 Far-feld displacement pulse shape for the P and § waves along the normal
to the asperity, duc lo the fractunng of a circular aspenty {Figure 5.18). The
bracket and brace are explained in the text. ( From Das and Kostroo, 1983 © Am
Geophys. Union}

this chapter for the conventional crack model. This is not surprising
when we recall that the problem was formulated such that the two
half-spaces on either side of the faull plane remain permanently shifted
after the asperity has fractused and disappeared. The rsc ume of the
displacement from zero 1o this final value is the time required for the
asperity to fracture. The brace in the figure indicates the time when
the number of grids broken per unit time is the highest. The fracture
process for this casg (Figure 5.18) shows that this indeed took place
toward the end of the breaking process. The square bracket indicates the
period when the breaking rate is high but the displacement does not
increase. This is because, although the number of grids breaking per unit
time is large, these points are situated far from one another on the
asperity; also, they do not have large stress drops associated with them
and hence do not contribute significantly to the increase in the far-ficld
displacement. If we looked at the acceleration pulse shape {obtamed
simply by twice differentiating the displacement pulse jn Figure 6.12), v -
would find that the high accelerations correspond in time to the (relative)
times when the breaking rate of grids on the asperity is the hughest. Thus,
the far-field displacements are very sensitive to the location of fracturing
points on the asperity, whereas the accelerations are sensitive to the rate
of increase of the broken area but not to its distribution over the fault.
The pulse shapes in other directions from the source have essenuially
similar characteristics, the ris¢ times being shortest in the (general)
direction of fracture propagation and longest in the opposite direction.
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613 Geometry of the problern of failure of an isclated asperity on a finite
Tault

The pulses for elliptical asperity {racture (Das and Kostrov, 1985) are
similar and are not included here.

The asperity model

The basic idea of this model was suggested by Madariaga (1979)

and by Rudnicki and Kanamori (1981). According to the model, an
earthquake is caused by the failure of isolated, highly stressed regions of
the fault, the rest of the fault having little or no resistance to slip {being
partially broken and preslipped, say} and contributing little or no stress
drop to the earthquake process. This results in a nonuniform stress drop
over the fault. Since the regions without slip are able to withstand the
high stresses concentrated on it until the moment the earthquake begins,
it must be assumed that the parameter ¥ for these regions is higher than
that for the rest of the fault. The spontaneous, dynamic fracturing of one
or more such isolated asperities of general shape and size on a finite faull
has not yet been studied. The simpler problem of radiation from the
fracturing of a circular asperity at the center of a circular fault was
studied by Das and Kostrov (1986), and we shal! discuss the result here.
In this model, 2 circular crack of radius R, say, has a circular asperity
of radius r, say, at ils center (Figure 6.13). The annular region between
the crack and the asperity is broken and assumed to be at or very close
to the kinetic frictional level. When the central asperity breaks, this
annular region cxhibits no (or littlc) dynamic stress drop. It also has little
or no resistance to slip. For the numerical calculations, r/R is wken as

Lo
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6.14  Far-ficld S-wave displacermnen| pulse shape due to the failure of the
isolated asperity shawn in Figure 6.12. Inset shows details of pulse shape in
stippled region. ( From Das and Kostrov, 1986, © Am. Geophys. Union.)

-1 and the asperity is taken as a single spatial grid, The asperity is
released, and the ensuing dynamic slip is allowed to spread out over the
entire circular fauit. The slip is calculated using algorithm (5.2.13) and
the P- and S-wave pulse shapes in different directions from the source
are found using (6.1.4). The normalized S-wave displacement pulse shape
looking down at the fault along the normal as a function of normalized
time vpt/AX is'shown in Figure 6.14 as a representative example. The
displacement pulse immediately reaches its maximum value and remains
flat und! the first diffracted waves from the crack edge amive at the
observer at time T, = R/vg, measured from the time of arrival of the
first S wave. The displacement then starts decreasing and finally reaches
zero al time = 27, (= 2R/vg). The minor oscillations following this
that occur due to backslip being permitted on the fault are ignored in
this figure. The duration of the fat part of the pulse is thus conrolled by
the size of the large crack of radius R. Since the asperity wa. released
instantaneously in this problem, this picture doss not represent the rising
part of the pulse correctly. But this was calculated in the last subsection,
and using those results and adjusting the time scale, we obiain the pulse
shape in the stippled region of Figure 6.14, as shown in the inset of this
figure. The rise time for the failure of a single asperity was shown in the
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6.15 Schematic representation of the far-field displacement pulse due (o the
failure of an asperity on & finite fault and duc to & propagating crack. { From Das
and Kostrov, 1986, © Am. Geophys, Union.)

last subsection to be controlled by the aspenty size and is given by
tg=r/8.

Since th Jetails of the pulses of Figure 6.14 depend on the parameters
of the particular problem {crack and asperity size and shape, fracture
velocity, etc), one may neglect the details and construct a schematic
representation of the pulse shape duc o the fracture of an isolated
asperity on a finite fault, as shown in Figure 6.15. The main features of
this pulse are a steeply rising part followed by a flat portion of long
duration and then a gradual return of the displacement pulse to zero.
The triangular pulse from a circular crack (Figure 6.1) is also showm in
the figur- for comparison. If this circular crack is taken to be the same
size as the asperity of the model under discussion here, then the pulse
shape would have the same rise time as the asperity model. However,
once the maximum amplitude is reached, the two pulses become very
different in character, the crack pulse immediately starting to decrease
toward zero and reaching zero at time about twice the rise time, as we
saw earlier in this chapter.

Thus, the asperity pulse has an anomalously large seismic moment
(area under the pulse) and anomalously large duration compared with a
crack pulse for a crack of radius r. Such earthquakes have been called
“slow” or “weak” earthquakes (Kanamori and Cipar, 1974; Kuznetsova
et al., 1976). The spectrum of the pulse shown in Figure 6.14 was found
to have th~ same general form as that for the conventional crack model
(Figure 6.1).

It must be pointed out here that this model is not the only possible
madel for slow earthquakes. Clearly, such carthquakes could also be
modeled as a very slowly propagating crack, due, for example, to very
low stress drop.
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Inversion for Seismic Slip Rate History and Distribution
With Stabilizing Constraints:
Application to the 1986 Andreanof IslandsEarthquake

SHAMITA Das!

Lamont-Doherty Geological Observatory of Columba University, Palisades, New York

B. V. KosTROV

Institute of Physncs of the Earth, Academy of Scrences, Moscow, USSR

‘We develop and present a

hod of inverting

ams, including their absok ampli-

tudes, to obtain the complete seismic alip time history and distribution, using the method of
linear prc . amming. A rectangulss fault is discretiged into cells and the source duration into
time atepa. The inversion for the slip rate distribution on the fault as & function of time reduces
to the solution of & system of linear equations. The influence on the solution of constraining
different source parametera such as the sign of the alip rate and the seismic moment ia invea-
tigated. It is found that the constraint of positiveness of slip rate and the constraint that the
seismic moment determined from the solution should be close to that obtained from the cen-
troid moment tensor (CMT) sclution are very strong constraints and are sssential to abtaining a

physically reasonable solution. Since the inverse p

several

1 bl

d of pt ing ounly

ia
equally well fitting the dats for all practical

one particular sol

we
purposes. We find tbat when both constraints sre applied the solution becomes quite stable. The

method'ulpplied!.oldmmcmuiningofthe vertical P

of available digitally recorded

teleseismic P waves at stations within a chosen distance window for the 1986 Andrexnof [slands
earthquake {M,, = 8.0). The preferred sclution ia the one in which the slip rate is constrained to
be positive and the moment is set to the CMT value. The average rapture spesd in the 80-km
segment Lo the east of the hypocenter wes R 3.2 km/s and in the 190-km section to the west was
#5 2 km/s. The maximum slip in the area of large moment release to the west was & 5 m and the
maxkmam slip rate, which occurs In the sume place a2 the maximum alip, wes = 6.5 m/s. The
slip distributic: on the fault shows a corrugated pattern with the long axis in the direction of
the plate convergence, rather than nocmal to the arc, which was the alip vector direction for the
earthquake, with most of the slip occurring on a region of the fault to the waat of the rupture
sucleation gone. This region continued to slip for about 55 &, the total source duration being
about 80 5. The results of this analywis suggest that the long-term motion on thia portion of the
Aleutian arc is indeed in the direction of plate convergence.

INTRODUCTION

During the last decade several attempts were undertaken
to solve the inverse problem for the source of particular
earthquakes, that is, to determine the apatial and temporal
distribution of slip (or alip rate) over the fault ares, using
teleseismic an well as near-field waves. From a very exten-
sive literature on this subject, we refer hare only to papers
which dedcribe & method for a true inversion for areal as
well s temporal distribution of slip or moment on the fault
area, namely, Olson and Apsel (1982, Hartzell and Heaton
[1983), Kikuchi and Fukao [1985], and Beroza and Spudich
[1588]. In addition, much work bas been dope on determin-

L Now at Department of Earth Sciences, University of Oxford,
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Paper sumber 90JBOOT0L.
0148-227/90/90]B-00701805.00

ing the source time function for specific earthquakes and the
result interpreted in terms of spatial moment release using a
constant rupture velocity as well as on inversion considering
the source as a line source. In these categories, one may
consider the papers of Kikuchi and Kanamon (1982}, Ruff
[1983], Ekstrom [1087, 1089}, and Boyd and Nabelek [i988].
Finally, the inverne problem for the static case, namely, the
determination of the final slip distribution on the fault us-
ing geodetic dats, has been studied by Ward and Barrientos
[19863.

The solution of all these problems are far from trivial. It
is well known that this inverse problem is unstable, even in
the imaginary case of inuous distribution of seismic sta-
tiona over the surface of Earth and ita stability and unique-
ness properties liave been discussed extensively by Kostrov
and Das [1988]. From the computational point of view, this
instability is equivalent to Lni of the solution.
The real situstion is even worse because the number of sta-
tions with appropriate records is very limited (about 10-
20 global stations, at present). Consequently, to obtsin &
definite solution of such a problem, one noeds some phys-
ical constraints on the source process, in addition to the
requirement of fitting the observed seismograms. In prin-
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ciple, these constraints should be inferred from the physics
of faulting during the earthquakes, that is, from fracture
and frictional mechanics. Unfortunately, our knowledge of
the physica of the earthquake process is still rather limited
and the only comparatively well-established constraiot is the
limitation on the fracture propagation speed. This is 5 weak
constraint because the durstion of the earthquake process is
greater than the seismic wave propaghtion time across the
fault whereas the limiting fracture speed is comparable to
the seismic wave velocities. To implement this constraint
pumerically, one requires very fine spatial gridding on the
fault. A less physically founded constraint would be the
requirement that the slip rate vector be directed in accor-
dance with the average stress drop direction (inferred from
the fault plane salution), that is, the projection of the alip
rate vector in the stress drop direction must be positive.
While. in principle, stip in the opposite direction is possible
due to interference of waves on the fault, it does not seem
likely and experience from three-dimensional forward mod-
ellipg shows that the slip ditection almost coincides with
that of the stress drop [Das, 1981]. This suggests that with
sufficient practical accuracy, one may assume the alip direc-
tion to be constant over the fault during the process and
coincide with the stress drop direction and the only com-
ponent of the slip rate vector to be nonnegative. This con-
straint has been used by Hartzell and Heaton [1983], Kikucht
and Fukao [1985], Ward and Barrientos [1986], and Ekstrom
[1987. 1989}, among others. In what fallows, we shall refer
10 this conatraint as the “no backslip” constraint. As we
shall see later in the paper, other possible constraints may
be considered. For example, one may tequire the solution to
be in agreement with the seismic moment obtained from the
centreid moment tensor solution ot from geodetic measure-
ments. Or one may require the maximum slip rate on the
fault to be limited by some considerations from fracture me-
chanics. Hartrell and H {1983) minimized the
moment, which is snother possible constraint on the solu-
tion. We ahall investigate the effect of different constraints
on the inversion process, in this paper.

To invert for the three-dimensional alip rate distribution
(two spatial dimensions on the fault and time) is & computa-
tionally difficult task. With sufficiently fine gridding of the
fault, it is akmoat impracticable in & regular way, even on ex-
isting supercomputers. Not surprisingly, simplified methods
of solving the problem have been used. Basically, such sim-
plifications are always a version of trial and error fitting. In
any case, the method of the solution imposes some implicit
constraints. Then, when one obtains & unique solution, it ia
not clear if it is unique due to the explicitly formulated con-
straints or as & reault of the method used in the inversion.
As an example, the generalized inverse (or pseudoinverse)
leads to a unique solution which minimizea the root mean
square residual even without sdditional constraints. In that
case the implicit constraint of the requi t that

only natural, but this interpretation as being the only anc -

unique interpretation is not supported by the data becaus’
it was implicitly imposed by the method, and the questiol
whether there exists another, tnore smoothly distributed so
lution, equally well fitting the data for ail practical purpose
and satisfying ti ¢ no backslip constraint, remains open.

The problem for inversion for spatial and temporal dis”
wribution of seistic slip was first formally sclved by Olso
and Apsel [1982(, and their paper deserves detailed discus
sion here. In that paper, the need for additional constraint
apart from observatio a is most explicitly discuased and th
mathematical aspects of the inverse problem are extensivel:
presented. To quote from them: [Olsen and Apsel, 1982
p.1969]

In order for a particular skip distribution to be an acceptabh

solution to the inverse problem it must satisfy the following thre,

conditions. :
1. The solution muat explain the data.

2. The solution must be physicaliy reasonable (consiaten -

with independent constraints). .

3. 1f more than one solution fita the data equally well, ad
ditional information musat be supplied to uniquely define whic
solution is being obtained.

The third condition means that the physical constraint-
may be insufficient to specify an unique solution of the prol
lem and they proposed to include some additional nonphys
cal agsumptions to make the solution unique. In their pape
they used the requi t that the sol has minimu:
norm. We suggest in this paper that & more reasonable af
proach to this difficulty would be to describe the whole s
of equally acceptable solutions by obtaining some extrem
representatives of this set, say.

For physical constraints, Olaon and Apsel (1982] used
form of the no-backalip conatraints as well as limiting of th
rupture propagation speed. Additionally, they required slip -
ping to be confined to grids intersecting the rupture fror .
and limited the number of times sach grid could slip. E; |
fectively, their model included two preassigned fronts, tt
rupture front and the healing one between which the whe
slip process was confined. This last assumption permitte
drastic reduction of the number of unknowns in the mod¢
Numerical solutions of the forward problem show, howeve,
that with ah inhomogeneous strength and friction on ti
fault, the rupture front can become very distinct from a sh
gle line and sul.sequent slip behind the main rupture front
frequently obtained {Das and Aki, 1977; Mikumo and Mi:
atake, 1979]. Aa we shall see later, such realipping of pr
viously slipped regions on the fault ia found in this stad
C quently, this jon can be idered only .
another example of the sbove menticned simplification
the problem. Hartzeli and Heaton [1983] and Beroza ar
Spudich [1968] also included this simplification in their it
i thus decreasing the size of the problem. In th |

the solution has the minimum norm. Or, in the method
of Kikuchi and Fukao {1985} the no backslip conatraint waa
explicitly imposed, but the method consisted of succesaive
reduction of the root mean square residual by fitting a se-
ries of inlly instant point . Thia again
imp st implicit requi that the solution must be
concentrated in as small & number of discrete patches on
the fault, as possible. The interpretation of the solution
obtained in this manner in terms of the asperity model is

Sh

paper, we shall not confine the slippage to a region near o
rupture front, nor shall we & priori assign the number ,
times each grid can alip but shall determine the entire sl b
time history at every spatial grid on the fault. ‘
The di ion of the problem can itself imply u
wanted constraints on the solution. Namely, with s coa
grid the number of unknowns can be reduced so much
to make the corresponding numerical problem atable, th*
is, well conditioned, without additional physical constrain

»
>
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the extreme cases being point source fitting, and fitting the
source to a rectangular dislocation with constant slip and
constant alip rate.

The main purpose of this paper is to develop and test
a method for determining the complete slip time history on
a fault during an earthquake and to examine the stability
of such a solution by examining not only & “best fitting”
solution but also solutions close to it in data space.

FORMULATION OF THE DISCRETE PROBLEM

We briefly summarize the formulation of the discrete
problem under study for completeness and clarity, partic-
ularly of the notations used in thia paper. Using the repre-
sentation theorem {e.g., equation (3.2} of Aki and Richands
[1980); equation (3.2.18) of Kostrov and Das [1988}) the dis-
placement record at a station located at a point x, on the
earth's surface can be expressed in termn of the slip distri-
bution over a fault I as

uk(xl,t1)=[;tﬂl{u(x:.t,h.t)a.(x,t}ds (n
a T

where 1,k = 1,2, 3, ux(x1. 1) are the components of the dis-
placement vector, a;(x, t) are ihe components of the slip and
Kire{x1,.%,4,,t) are the components of the impulse response
of the medium at {x;,t;), due to a dislocation point source
at (x,t). The observed seismograms d¢ not represent the
displacement vector u itself but are filtered by the instru-
ment. Convolving both sides of (1) with the imstrumeat
reaponse for & given station and assuming the alip direction
to be constant, we obiuin, after some transformations:

;1) :/ Idtj W& 4 — t)a(£, 0)dS (2)
o £

where 7 identifies the station and componenta of the seis-
mogram S(t(), W,(£,¢) is the impulse response at (£,1)
corresponding to & fixed glip direction and convoived with
the instrument response, a{£,¢) in the slip rate, the two-
dimensional vector £ gives the position on the fault rela-
tive to some reference point (for example, the earthquake
hypocenter) and ¢ it the time measured from the origin Lume
of the earthquake. With a continuous distribution of sta-
tiona, equation (2) would represent an integral equation of
the first kind. Such equationr are known to be unstable.

In this paper we shall cor ider the effect of the following
sdditional constraints:

af€.0) 2 0 for alt (£,1) (3a)
a(£.t) = 0 for ¢ < T(E) (38)

where, ¢ = T(£) gives the boundary of the area where slip
is permitted {due to a causality condition) at time ¢,

ju Tt f f: HEIB(E.0dS = Mo (3¢}

where M, is the seismic moment and p is the modulus of
rigidity of the medium, together with other constraints to
be discussed later in the paper. The constraint (Ja) is the
“no-backslip constraint,” the constraint {35) ia the “causal-
ity constraint” and the constraint (3c) is the “seismic mo-
ment constraint.” Note that [{(£) as defined above is not
the usual rupture front, but in what follows we shall refer to

4
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this boundary as the “rupture front” to distinguish it from
the usual definition.

We restrict ourselves to long-period body waves at tele-
seiamic distances in this paper because they are relatively
insensitive 1o the details of earth structure [Hwang, 1985).
The functions W; can then be easily calculated using the
ray approximation and the Thomson-Haskell technique to
account for the layered structure at the source and the sta-
tion. We follow the procedure described by Nabelek [1984] to
determine the source and atation crustal responses and fol-
low Ekatrom [1987) to construct the synthetic seismograms
by accounting for the geometrical spreading and attenuation
factors.

For the numerical solution, the integrals in (2) must be
discretized. We divide the fault area X into & number of
rectangular cells and approximate & within each cell by lin-
ear functions in time and along strike and by a constant
slong dip. W, is then integrated over each cell analytically,
and the integrals over the fault are replaced by sums. The
time at the source is discretized by taking a fixed time step,
At say, and assuming that the slip rate a during the time
step varies linearly with time. Since we use only long-period
body wave records, we may use comparatively large At, this
being desirable to reduce the number of unknowns. Strictly
speaking, both the fault area and the total source duration
should be determined as part of the inversion process. Due
to limited computer power, however, we shall assume a fi-
nite fault size and a finite source duration which cannot be
longer than the longest record used and cannot be much
shorter than that obtained from the centroid moment ten-
sor solution. The seismograms 5; are sampled with & time
step Aty, say, usually 1 s for Jong periods. This value might
seem redundant, but it is worth keeping to obtain better
control of noise, if of couras the compuier power allows it.
Let us renumber the observations in a one-dimensional way,
ordering them by component, station number and time. De-
note the value of 5;{t1) by by, say, k being the index in the
crdering adopted. Similarly, let us renumber the vaives of a
by cell number and time, denoting the vector by z,, say. In
addition, to allew for the poasibility of weighting the differ-
ent gtatiohs and components differently in the inversion. let
us include this weighting into equation (2). Then equation
(2) takes the form

Axx=b (4)
where A is the matrix obtained by integration of W,, each
column of A being & set of synthetic seismograms for all
stations corresponding to different cells and time instants of
the source duration, ordered in the same way as the observed
seismograma and A and b are appropriately weighted This
arrangement of the system of linear equations is very similar
te that used by Hartzell and Heaton [1985, Figure 11]. The
condition (3a) then becomes:

x>0 (5a)

the inequality meaning that every composent of x is non-
negative. The condition (3b) can be replaced by

=90 (56}

for those i corresponding to cells and time aamples outside
the “rupture front™ and the condition (3c) becomes:

Loz, == My (5¢)
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where c; is time-independent and for each cell is equal to the
product of the average rigidity times the area of the cell. So,
the inverse problem has been reduced to the solution of the
linear system (4) under one or more of the constraiots (5).
In the system (4}, the number of equations m is equal o the
total number of samples taken from all the records involved
and the number of unknowns n is equal to the number of
cells times the number of time steps at the source. We shall
take m greater than n to reduce the influence of the noise
contained in the observations b on the solution. Then, the
system {4) is overdetermined and we can only obtain a so-
ution x which provides a best fit to the observations, under
copatraints (5).

It is weli known that the matrix A4 is ill conditioned
which implies that the system (4) admits more than one so-
lution, equally well fitting the observations. The constraints
{5) are introduced just for the purpose of reducing the set
of permissible (feasible} solutions. It i o be investigated il
these conditiona are sufficient to make the solution unique.
If not, then we have to obtain some description of the set
of permissitle solutions of the problem. In any case, even
if an unique solution does exist, there may be many other
solutions that aimost satiafy the squations. Since the data
used in geophysical applications often contains experimental
noise and the models used are themeselves approximations to
reality, solutions almost salisfying the data are also of great
interest.

The aystem of equations (4) together with the constraints
(5) do not yet comprise a complete mathematical problem.
It remains to formulate in exact form what the “hest Hi”
to observations means. In the next section, we only include
constraint (5a) in the mathematical formulation for the sake
of simplicity, the inclusion (58) being trivial and the inclu-
sion of (5¢) will be discussed later. We have to minimize the
vector of residuals:

r=b- Ax (8)
For this purpose, some norm of the vector r must be adopted
Usually in such problems one may choose to minimize the iy,
the {3 or the I, norm [Noble and Daniel, 1977; Taruntola,
1987], all three being equivalent in the sense that they vend
to zero simultanecusly. In this paper we shall use the linear
programming method to solve the system {4} and minimize
the I} norm subject to the condition {54}, but we shall also
evaluate the other two norma of the solution to investigate
how they behave.

LiNEAR MINIMIZATION PROBLEM

To express the {; minimization problem in the atandard
form of linear programming, we represent the residual vector
r aa the difference of two vectors with nonnegative compo-
nents:

Then
Tirl < E(y* +y7)

Obviously
minE[r| = minZ(y* +y7)

Introducing additional unknowus as

— ot
Tose =W } for i=1,2,....m

Tntmei = Y

the problem can be rewritten as follows:

minimize f = (1/m} Z Zi (7

=nl
subject to the constraints:
n
Za.,;r)-rn+|+:n+m+. =bh, 1=12,..,m (8)

y=1
20 t=12.,r42m (9)

In equation (7}, f is the mean absolute residual.

The constraints (8) and (9) define a convex polytope in
{n + 2m) dimensions, each point of which represents a fea-
sible solution. In general, the feasible set is a continuum
containing an infinite number of feasible solutions. It is well
known [Franklin, 1980] that the feasible salution whicl gives
the minimum (7) corresponds to a vertex of the polytope.
We use the simplex method of solving the linear program-
ming problem [Preas et al., L986).

OBSERVATIONAL DATA. THE 1986 ANDREANOF
ISLANDS EARTHQUAKE

To illuatrate the jdeas and the method of inversion de-
veloped in this paper, we select a recent earthquake, namely
the May 7, 1986, Andreanof Islands earthquake {M,, = 8.0;
origin time = 2247), for which digital data were available for
a several stations in the required epicentral distance range
This was the largest earthquake to have occurred in the
central Aleutians since the March 9, 1957, Aleutian Islands
earthquake. The along-arc rupture length of 280 km for
this earthquake was contained entitely within the 115¢ km
long rupture of the 1957 event. Thus a second great event
occurred only 29 years later on a plate boundary whichk is
believed to have a much larger repeat time [Sykes et al,
1981}. This earthquake has been studied by several au-
thors using teleseismic date [Huwang and Kanamori, 1986;
Ekstrom, 1987; Boypd and Nabelek, 1988; Houston and En-
gdak{, 1988, 1989] and the centroid moment tensor (CMT)
solution has been published [Dzewonski ef al., 1987 The
tectonic setting of the earthquake and its two-week after-
shock distribution along with the focal mechanism obtained
by Boyd and Nabelek [988) is shown in Figure |. The earlier
studies of this esrthquake auggest that nenuniform along arc
moment release occurred during this event, which partially
motivated our choice of this event for detailed analysis.

In this paper, we shail consider only the vertical com-
ponent of P waves recorded by long-period stations with
epicentral distances between A = 33° and A = 75° The
upper bound of the range waa chosen because beyond this
distance other unmodelled phases may influence the seis-
mograms. The lower bound was chosen because at epicen-
tral distances shorter than this the uncertainties in crastal
structure may have gignificant effect. Several Global Digital
Seiamic Network (GDSN) stationa in this range were found
but on close examination of the seismograms only 10 ata-
tions had usable P wave records. This is because records
were either clipped or the instrument response was found to
be obviously nonlinear. We also examined digital data from
Network of Autonomously Recording Stations (NARS) op-
erated by the Dutch and from GEQSCOPE operated by the
French. Data from neither of these networks were used ei-
ther because the few stations which did record this event
were located close to GI SN stations used (for example,
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ig. 1. Tectonic setting of the 1986 Andreanof islands earthquake (M,, =8 ersh
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aqunre-) are also shown. The shaded tegion indicates the L-day aftershock ares. (Modified from Boyd and Nabele

[1988] )

Scandinavia and northeastern United States, where several
GDSN stations were available in each region) or because the
stations were well beyond our chosen distance windou:'. In
particular, no GEQOSCOPE stations were then operational
in the southern Pacific, which is aiso the quadrant in which
no other stations were available (see Figure 2). We consider
100 & of the seismogram from the arrival of the P wave.
Though the seismogram at GDH was clipped 25 5 after the
P wave arcival, it was retained to improve azimuthal cover-
sge and the length of the record used was 25 8. It must be
noted that though many stations had to be rejected frc_:m
the P wave analysis in this paper, these tations llong with
stations at distances larger than A = 75° were used in the
CMT solution, & detailed log of which was examined by uva.
The CMT solution used 150-8 waves at 22 stations, with
distances between A = T° and A = 123° and azimuths be-
tween 7° and 357° for this particular event. Instruments
which became nonlinear during the body wave arrinh. of-
ten recovered before the mantle waves arrived so stations

which had to be excluded from the body wave analysis were
included into the CMT analysis, Thus this solution had very
good agimuthal coverage and the fit between synthetics and
records for the mantle waves was also good. Fioally, the
fact that the strike, dip and rake of the CMT solution gen-
erally agrees with that cbteined by Boyd and Nabelek [1988]
from the analysis of both P and SH waves suggests thfat
the well-Xnown ambiguities of the CMT moment due to in-
stability of the sclution for M. and My, for shallow depth
earthquakes [Driewonski and Woodhouse, 1983] are not a
problem and the CMT solution together with ita mome.nt
is reliable for this earthquake. Figure 2 shows all the peid-
mograms used plotted around the CMT solution, and it is
seen, that the azimuthal coverage is not uniform around the
epicenter. The work of Hortzell and Heoton [1983], Hwang
{1985, sad Mendaza and Harteell [1988, 198%) shaws that
reascnable sstimates of the elip history aud distribution on
2 fault can be obtained with nonuniform asimuthal coverage.
In particulsr, Hartsell and Heaton [1883] aud Mendoza and
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Fig. 2. The focal mechaniem, obtained by Boyd and Nabelek [1988], together with the long-period seismograms
ustd in the inversion for the 10 GDSN atations. Only the portion of the seismogram used in the inversion is

piotted. The temces are adjusted for instrument if

ion and nor|

atations, correctly representing the relative ground motion at the stations.

Hartzelt [1988, 1989) studied the 1979 Imperial Valley earth-
quake and the 1985 Michoacan earthquake, respectively, us-
ing both teleseismic P waves with poor azimuthal coverage
and strong ground motion dats and in both cases found that
the P wave solytion was in remarkable agreement with the
strong motion solution, apart from some details. This sug-
gests that the nonuniformity of azimuthal coverage is not a
major obetacle for our purpose. The seismograms were lined
up by the arrival time of the short-period P wave on the ver-
tical component, when available or by using the expected P
wave arrival times according to the PREM when the short
period data for the particular station was not available. Ta-
ble 1 lists the station codes for these ten stations, the type
of instrument, the epicentral distances A, the forward and
back azimuths Az and Az’ and the arrival times picked. The
cruatal structure at the source and receiver are the same az
that used by Boud and Nabelek [1983]. At the source, the
crust is approximated by s half-space overlain by a water

TABLE 1. List of Stations

Station  Instrument  A® Ar® Az Arival Time

“GhH TWWEEN 519 %24 3ita 225608
RSNT RSTN 332 46.9 279.4 2253:49
RSNY  RSTN 619 522 3160  2257:30
RSON  RSTN 481 565 3043 225581
SCP DWWSSN 630 572 3160  2257:37
RSCP RSTN 824 86.0 ats.2 22570
RSSD  RSTN 42 894 3053  2256:36
GUMO  SRO 498 12360 3L 228550
MAJO  ASRO 382 2641 508 225412
KORQ  ASRO 888 3573 34 325835

lited by the maximum value among al}

layer of thickness 1.5 km. The P and § wave velocities of
the half-space, vp and vs, are 6.6 and 3.8 km/s, respectively
and the density is 2.9 g/fcm®. The water layer is taken to
have a compressional wave speed of 1.45 km/s and a density
of 1.02 g/em®.. The receiver structure is taken as a half-
space with vp and vs of 8.0 and 3.5 km/s and a density of
2.8 g/em®.

Note that the PcP phase arrives at some stations within
the 100-s data window used here but at all the stations

PP arrives outside this window. A simple calculation using

PREM shows that the expected PcP amplitudes are only a
few percent of the P wave amplitude for the source-atation
distances used in this analysis and we may therefore neglect
it. Body wave inversions often use time windows which do
not exclude large unmode''ed phases and use source-station
distance up to the P wav. shadow zone but still model the
body wave synthetics used in the inversion only as the P
group (P + pP + sP). This maps unmodelled effects into
the solution and contaminates it. To avoid this problem, we
restricted our choice of source-station distance range and
time window. In any case, no usable stations exist between
A =757 and 90° and using atations beyond 90° introduces
problems of unreliability in Earth models [Ekatrom, 1987].

DISCRETIZATION OF THE FauLr
A 280 km x 100 km section of the fault is divided into
20 km x 20 km cells with 14 cells along the fault strike
and 5 cells along *he fault width. The top of the fault is
located st & dept
Iayer. The distribution of the seventy cells on the fault in
shown in Figure 3. The strike, dip and rake of the fault, also

7.8 km balow the bottom of the water -

FY
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DISCRETIZED FAULT GEOMETRY

Fig. 3. (Left) Distribution of the seventy 20 km x 20 km cells on the fault, oriented ma in Fig. 1. E and W denote
the easterly and weaterly directions, along the arc. The cell within which rupture nucleated is shaded. (Right)
Side view of discretized fault. The top of the fault ia located at a depth of 7.8 km belew the battom of the water

layer.

shown in Figure 3, are taken from the analysis of Boyd and
Nabelek {1988], who used bo'h ¥ and SH waves to constrain
the source mechanism. Bas.d on their solution, we take the
source duration as 80 s and sample it at 5-s intervals using a
linear approximation to obtain 16 time steps in the discrete
source duration. [deally, one should consider a fault size
much larger than the fault size expected, for example, from
aftershock studies and source duration as long as the longest
seismogram duration and determine the actual source dura-
tion as part of the solution but to reduce computation time,
we do not use this approach. The grid size of 20 km ia = 1/6
of the P wavelength and 2 1/4 of the S wavelength.

We now include a furtbar, rather weak, constraint into
the problem. Namely, we sssume that the slip rate at any
cell and time step which would produce a aignal before the
firat arrival at any station in zero. Then the number of
unknowns n = 909 and the number of equations m = 925,
for this case.

RESULTS

We solve the linear minimization problem, that is, we
solve equation (4) subject to conditions (5a) and (54). In
the simplex method of linear programming, the size of the
matrix involved is n x (n +m) and the problem must gener-
ally be solved using & supercr ‘qputer. Both sides of (4) are
divided by the maximum valu of the instrument response at
the corresponding station to adjust for different instrument
magnifications and all stations are uniformly weighted. We
determine the complete slip rate time history and distribu-
tion which occurs during the faulting process. The moment
and moment rate distributions as a function of time are de-
rived from the calculated slip rates. Figure 4 shows the
moment rate versua time {source time function) and Fig-
ure 5 shows the comparison of the data with the solution.
Let us define the misfit in the I; sense as the ratio of the
mean absolute error of fit 1o the mean absclute amplitude
of the data. Similarly, the misfit in the {; sense would be
the ratio of the rma error of fit to the rms amplitude of the
data, and 80 on. (Note that our definition of the & misfit is
the square root of the misfit usually used by other authors,
for example, Boyd and Nabelek [1988] or Kikuchi and Fukao
[1985].) For this case, the I miafit is found to be rs 0.04, the
{2 minfit is 7~z (.08 and the {,, misfit is == 25 Thus our fi
in both the ! and {; sense are better than that obtained by

1. *10*+20 T T T T T
B M0=2.9%19**21 N m 1
-
M(t)
N m/s
0.

Time(s) &o.

Fig. 4. Discrete source time function for the 1986 Andreanct
Islands earthquake with positiveness constraint on slip rate. M,
denotes the seiamic moment obusined for this solution

Boyd end Nabelek [1988], who are the only ones who have
published their results for thia earthquake in sufficient de-
tail as yet 6o as to make such & comparison. Since we use a
larger number of parameters in our fit than these authors,
it 18 not at all unexpected that the fit is better. The seis-
mic mement obtained from this solution is 2.9 x 107! N m,
which is larger than the CMT moment of 1. x 10?* N m and
the centroid depth determined as part of the solution is 22
km, that obtnined for the CMT solution being 31 km. This
indicates that inspite of the good fit the solution may not be

physically meaningful and further examination of this point
i8 carTied out next

Investigatron of Stability of Seismic Moment

The minimum value ¢, say, of (7} estimates the level of
noise in the observations snd/or errom in the model. Ob-
viously, sl the sclutions which give misfit close to ¢ are ns
acceptable as the solution of (1)-(9}. Let us take & value
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Sikw
1.9mic.

Fig. 5. Comparison of the data (solid lines) with the synthetica (dashed lines) for the solution of Figure 4. All
traces are normalized by the maximum value of the data among all stations, plotted on the same scales as in

Figure 2.

€1 > ¢ (63 = 1.5¢ or 2¢, for example). Assuming that the
solutions with mean abeolute minfit not greater than & are
as reliable a8 the minimum residual solution, it is possible to
investigate how different they can be. The inequality f < ¢
reduces the set of feasible solutions to a slice around the
previots optimal vertex. This new feasible set is also a con-
tinuous set. Let us gelect a norm of a feasible solution and
find a solution giving, for example, the minimum or maxi-
mum of this norm. The seismic moment Mg of the event is
a linear combination of slip rate variables z,, 1 = 1,. ,n
with positive coefficients and can be chosen as such & norm
Denoting these coefficients as ¢, i =1, ..n, we have

n
My = Zc.r.

i=1
wnd we arrive at two new linear programming problems, one
of which is to
n
minimize Mg = Zc.:.
=1
subject 19 the constraints
Enuij ~ Tnts +Tnsmis =6, 1=1,2,...m {14}
=1
Avdm
I, < gm (n
mnel

and the positivily constraints (9), and the other problem
consists of maximizing My under the same set of constraints.
Selving either of these two problems, we could obtain the
maximum or migimum values of moment

with the data within the given tclerance (¢, - ¢). Since
the seismograms contain no information on the very low
frequency radiation from the fault, we should expect the
difference between the previous solution and either of these
two solutions to be large, even for small tolerance of misfit

Let us consider a tolerance of 100%, that is, ¢; = 2¢
and investigate only the minimum Mg sclution. Figure 6

1owgoseo [T ONTTT LML R B
I MO~ _g*10¢*3] N m
+ 4
Mit) | —
N m/s

T
L

r
"

T
L

T
L

A N ST
a. Time(s) 80,

Fig. 6. Same sa Figure 4 but for the solution with positiveness
conatraint on alip rate and mament minimized within 100% tol-
erance of misfit (that is, [; misfit == 0.08).
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shows the correspanding source time function and Figure 7
the comparison of the data with the solution. The {; wisfit
i8 twice as large as before as required by the problem, that is
2 (.09 and the [; and | misfits are = .12 anhd =z .19, respec-
tively. Imposing additional constraints has deteriorated the
!y and 3 fits but the moment and centroid depth are now
0.9 x 102" N m and 29 km, which are closer to the CMT
solution.

As mentioned earlier, the long-period data used in this
paper do not constrain the seisnuc moment well. The CMT
eatimate for the seismic moment is more reliable for it is
obtained using longer period waves and the procedure in-
cludes extrapolation to zero frequency. {The ideal value of
Mo would be obtained from geodetic data, provided mes-
surements are made immediately following the event s0 as
not to be contaminated by post-seismic processes.} Con-
sequently, it appears to ¢ important 1o use some reliable
value of seismic moment as an additional constraint on the
invergion, and in this paper, we shall take it to be the CMT
solution. This would reduce the feasible set, and we may
select another norm to investigate the stability of the cor-
responding optimal solution, as we shall discuss in a later
section.

We consider the solution with positiveness constraint
and with moment constrained to be equal to the CMT so-
lution as our preferred solution and we shall discuss it in
detail. Figure 8 shows the evolution of moment and mo-
ment rate distribution on the fault at several time steps, the
fault being oriented in the same way a8 in Figure 1, and
Figure 9 shows the source time function. The compatisen of
the data with the solution is s nilar to that in Figure 7 and
ia not shown. Plots of the along arc and along dip moment
release are shown in Figure 10. [t was found that the opti-
mal solution with proper Mg required a misfit tolerance of
at least 75%, that is, ¢; = 1.75¢. The |, misfit is therefore

~ 0.08, the I3 and ! misfita are found to be .10 and .21,
respectively and the centroid depth iz 27 km

Our sclution can be compared with that of Boyd and
Nabelek (1988}, who modelled the source as a bilaterally
propagating line source with constant speed. Keeping in
mind that our cells are 20 km x20 km in size, we may make
a rough estimate of the rupture speed. It 8 found that
the average speed in the 90-km section of the fault to the
east of the hypocenter ia = 3.2 km/s (0.85vs) and is == 2
km/s (0.5vs) in the 190-km section lying to the west. The
propagstion speed in the eastern direction is about twice
the average speed of 1.5 km/s obtained by these authors
but is closer to their speed in the western direction. Look-
ing at our results in more detail, we find that the rupture
speed through the central region of low moment release was
greater than vs and through the region of higher moment re-
lease to the west was less than 0.5vs, suggesting that these
represent mechanically stronger and weaker regions of the
fault relative to the state of stress on the fault at the earth-
quake origin time. Comparison of the along arc moment
release shows that both solutions obtain a region of large
moment release at the western side of the fault but the re-
gion of somewhat lesser moment found near the hypocenter
by Boyd and Nabelek [1988] is less peaked in our case. Both
solutions however seem to have very low moment relesse
near the middle of the fault. Within the region of highest
moment release, the maximum slip was found to be 5 m and
the maximum slip rate on the fault which also cecurred at
the same place was 6.7 m/s. The maximum slip in Boyd and
Nabelek's |1988] solution also occurred in the western region
of highest moment release and was 4.5 m. Qur solution
shows that most of the activity on the fault was confined to
the region of high moment release in the west and this region
continues to slip from about 25 s after rupture nucleation
till the almost complete cessation of all motion on the fault.

Fig. 7 Seme an Figure 5 but for the solution with pomitivencss constraint on slip rate and moment minimized.
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Fig. 8. Evolution in time of and
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on the fault for *he optimal solution with

positiveness constraint and with the finel moment constrained to the CMT value, The fault view is the name as in

Figure 1. The

ical results are thed by i

with & cosine bell with a half widih equal to the cell

sise of 20 km. The center of the cell within rupture nuclested, obtained by Boyd and Nabelek [1988), is indicated
by & star. The solid arrow indicates the direction of the plate convergence and the broken arrow the direction of

the alip vecior for this earthquake.

In fact, the plots of moment rate in Figure 8 show that the
part of the fault to the east bas little sctivity from 35 s on
after rupture initistion. The shape of the slipping region to
the west is seen t0 be clearly developed 40 s after initiation
time. Figure 8 also shows some regions which have alipped
snd stopped slipping being reactivated but in all cases the

amount of reslip is - nly a few percent of the final slip at that
place. Wa do not compare our results in detail with those of
Houston and Engdahl {1988, 1989] since the moment deter-
mined by them is a factor of 2 lower than the CMT moment,
aiid the reliability of the details of the moment releass pro-
cess obtained by them is therefore in question, but we note

-

-
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Fig. & {continued}

that the regions of highest moment release in our solution
ia not inconsistent with their rolution. The spatial moment
distribution found by Hwang and Kaonsmori [1986] is gen-
erally similar to that obtsne! in thiz paper. The details of
the spatial moment release are discussed next.

The final moment distribution shows a corrugated pat-
tern with two regions of higher moment release on the eant-

ern and western parts of the fault and a region of low mo-
ment release in between. The convergence vector obtained
by Minster and Jordan [1978] for this plate boundary at the
epicenter is indicated by the solid arrow and the slip vector
for this earthquake is indicated by the broken arrow. The
trenda of the regions of higher moment along the downdip
direction hoth in the ¢astern and western parts of the fault
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Fig. 9. Discrete source time function corresponding to the opti-
mal solution shown in Figure 8.

and the region of low moment release in between are aligned
with the plate convergence direction but not with the direc-
tion of the slip vector for this earthquake. The hypocenter of
the great earthquake that occurred in this regicn on March
9, 1957 (M, = 8.6), falla in the central region of low mo-
ment release. It is interesting to note that the region of
seismic quiescence obeerved by Kisslinger [1988] before this
earthquake overlaps in large part the region of high moment
release to the west, but the earthquake did not nucleate in
this region. Instead it nucleated 90 km to the east at a re.
gion which was not the region of highest moment release on
the fault but was adjacent to a local maximum in moment

release in the eastern part of the fault. Thus quiescence
correctly identified the region of high moment release of the
future earthquake but not the zone of rupture initiation.

The general results of this study can also be compared
with those of Mendoza and Hartzell [1988, 1989}, who stud.
ied the 1985 Michoacan earthquake, which is another large
subduction zone earthquake which occurred since the instal-
lation of worldwide digital stations. For that event, these
authors identified three regions of large moment release and
the maximum &lip of 5.5 m and the rupture speed of about
0.7vs are not dissimilar to those obtained for the Andreanof
Islands event.

‘We do not plot the dynamics of the source process for
the case with moment minimized but the solution shows that
the evolution of moment and moment rate for this case is
very similar to that shown iz Figure 8 for moment set to the
CMT value. The mements in these two solutions are very
ciose, and the source time functions are very similar. This
shows that once the moment is constrained to some chosen
value, the solution is quite stable. Further, it implies that
cur chaice of the CMT moment as a constraint instead of
some other value of moment does not significantly affect the
solution as long as the CMT moment is not incorrect by
a factar of 2 or more, say. In fact, even the first sotution
presented in this paper, namely, the solution with positive-
ness constraint but without any moment constraint has the
feature that there are two main regions of moment in the
eastern and western sectiona of the fault with a region of
Iow moment release in the middle

The abave analysis shows that it is important 1o include
moment as an a priori constraint into the problem to oh.
tain a physically reasonable solution, just as the positiveness
constraint {3a) or {5a) must be imposed on the solution for
the same reason. In fact, experiments without inciuding the
positiveness constraint which are not reported in detail hers,
showed that the sotution ran be very unstable with neigh-
boring cells having large positive and negative values aped
yet fitting the seismograms very well.
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Fig. 10. Plots of slong strike and along dip cioment release for aur preferred solution, with same smoothing as

in Fig. 8.
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Teclonic Implications of the Solution

Transverse physiographic and seismogenic featu.-es of
subduction interfaces are usually thought to be due to sub-
duction of seamounts, aseismic ridges and other festures of
ihe seafloot [Kelicher and McCann, 1976; Vogt et al., 1976;
McCann and Sykes, 1984]. ‘or the corrugation of slip in the
Andreanof lalands earthquake to have resulted from such
a mechanism requires that the net interface slip be in the
direction of relative piate mation, rather than in the arc nor-
mal direction, which is the direction of alip for this earth-
quake. This praperty that the skip vector i8 normal to the
arc rather than in the direction of relative plate motion is a
common leature of zones of oblique subduction lFs!ch. 1972,
Jarrard, 1986]. The generally accepted solution to this co-
sundrum is to hypothesize the existence of a strike-slip zone
behind the trench that supplies the tranaverse component of
motion. The puzzle then remains ot the origin of the trans-
verse component of slip on the fault. The existence of suffi-
ciently large transcurrent movement on the continental side
of 8 subduction zone to provide the transverse component of
motion on the plate intetface has been well established for
some subduction zones, for example, in southwestern Japan
and in western Sunds {Fitch, 1972). A similar hypothesis
has been suggested for the Adak lalands region of Alsska
|Ekstrom and Engdahl, 1989]. However, though there are
strike-slip earthquakes in the back &rc region in this ares,
these may not be large enough (magnitudes are less than
about 6.5) to provide the necessary transverse component
of slip. An alternative bypothesis may be that the trans-
verse component of slip s supplied by sseismic alip on the
interface.

DISCUSSION

One may next investigate how different the distribution
of slip rate in space and time can be. For example, one
may minimize the maximum value of the slip rate produc-
ing a slip rate distribution which is most uniformly spread
over the fault area and over the duration of the event. Con-
versely, one could maximize 1he maximum value cbtaining
the solytion that is most concentrated in space and time.
These two solutions would give an indication of the possi-
bilities of imaging the fault in terms of the asperity model.
The minimizetion problem is ensily formulated as a linear
programming problem aa follows. Introduce a new variable
Zo, say, denoting an upper bound of alip rate value. Then
the problem ia to minimize To subject to (10) and (11), the
additional constraint for seismic moment:

zc.z. = Mo

il

(12)

the constraints T, < Ze, ¥ = 1,..1, and the positivity con-
straints (§). Maxi g the i value of the slip rate
is not esaily formulated as a linear programming problem.
Actually one would have to maximize each one of the z.’s,
i = 1,..n separately {which is a linear programming prob-
lem) and then take the solution corresponding to the great-
est of these maxima. Alternately, ane may limit oneself cnly
to maximizing that variable which has the maximum value
in the previous optimal sclution of the problem deecribed
by (10) and (11), together with the positivenees conatraint
(9) and the fixed moment constraint (12).

FOR 1986 ANDREANOF EARTHQUAKE L

Continuing io this way, one may obtain independent con-
straints on the maximum slip rate value and use it a3 2
constraint and re-solve the problem. For a sufficiently arge
spatial fault grid sice, & reasonable estimate of the upper
bound of the slip rate may be obtained aa the slip rate value
at the centre of & {finite) crack with instantaneous siress
drop, Ao, a8

-

[

where @ s the slip rate, p is the density and v, is the shear

wave speed. For Ao ~ 100 bars, p ~ 2.5 gfem® and v, ~ 3

km/s, this bound is ~100 cm/s. An alternate estimate may

be obtained by averaging the stieas and slip rate near the

edge of a shear crack in an ideally brittle medium, props-

gating st a velocity v (using equation (15.6) and {15.7) of
Aki and Richards [1980]) as

a3

br__v

for Mode I11 cracks @ € —— —==== 14

or e [11 cri U< o T (14)

for Mode 11 cracks < o2 = (15)
= pu, R{v)

where R{v) s the Rayleigh function. [nterpreting Ao in
the above formulae as the strength of rock or fault gouge,
one can oblain the required constraint on the slip rate. The
presence of the velocity factor in (14) and (15) makes it less
useful than (13). Since in our discretization of the fault, it
was assumed that elip can occurt simultaneously over the
entire cell, the constraint that would be applicable in our
case is {13). If, however, the slip is allowed to propagaie
through the cell at speed v, then (14} or (15) should be the
conatraint relevant to that particular case. The slip rate
constraint is important from the point of view of the strong
ground motion occurTing due to an earthquake, since the
faster the fault slipa the grester is the ground acceleration
and the intensity of the earthquake. In fact, the relation
between strong motion acceleration and fault slip rate can
be used to constrain the slip rate on a fault.

Next, if some independent estimate of the final slip on
the fault is available, then the solution could be made con-
sistent with such a constraint, and so on. These types of
constraints can be easily incorporated into the algorithm
but are not carried out in this paper. The above discussions
show how physically menningful constraints can be found
and incorporated into the solution of the inverse problem of
the earthquake source process one by one, sa desired.

CONCLUSIONS

In summary, we suggest that the welt known instability
in the inverse problem of earthquake source can be most
ressonably dealt with by describing the whole set of equally
acceptable solutions and by producing some extreme repre-
sentatives of this set, for example. The linear programming
technique is used in this paper to polve this problem, and
includes additional constraints on the solution. These con-
straints simply fill the void created by the lack of sufficient
data. The advantage of such copstraints ia that they are
stated explicitly. Obviously, instability is sn inherent prop-
erty of the problem and cannot be removed, but whatever is
supplied in place of the data can be made explicit. Stated in

6912

other words, the known bias of the seismologist is preferable
to the unknown bias of some implicit conatraint!

The feature of our solution that the moment release is
cx?ncentrated in two regions on the fault separated by a re-
gion of little or no moment release seems to be quite stable
_\vith respect to the choice of constraints. In fact, exper-
iments with twice as large grids, which are not I:cported
h'ere. also showed this feature, but the details of the downdip
linear features with trend similar to the plate convergence

d:r.ecuun were, however, not as clear in the coarser grid so-
luticn.

An advantage of the linear programming approach is
_that additional constraints can be very easily incorporated
inte l'.he solution at any stage of the problem. Further, since
the mc_lusion of additicnal constraints reduces the m:tmber
of ve.rnces in the hyperspace where the solution lies, the
sclution at each stage is generally arrived at more rl;)idh'
by the simplex method. This is an advantage of the direct
method over alternative iterative methods.

The method developed here can be refined in many obvi-
ous ways. The synthetics used in this paper were very simple
l.fld better crustal responses, particularly at the source re-
gion, which ia cheracterized by a downgoing slab, should be
obtained. Only P waves were used here but the inclusion of
Iater phases into the synthetics would allow longer lengihs
of records to be analyzed. Finer gridding of the fault and
finer sampling of the source duration together with 1 sing
broadband data are also obvious improvements.

The resulis of the study of the 1986 Andreanof lalands
earthquake undertaken in this paper imply that the long
term Plnte motion on this portion of the Aleutian arc is in-
deed in the direction of the plate convergence.
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