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Stress glut moments of total degree 2 according to Backus and
i Mulcahy, 1977 determine the geometry, duration of a seismic source
and the propagation of rupture. Following Backua and Mulcahy, 1978
we will define source region as a region occupled by nonelastic
Workshop on Three-Dimensional Mo delling motion, or region where parti?l derivative of stress glut tensor
ofSeismic Waves Generation . with respect to the tiae T is not identically zero. The
Propagation and their Inversion_ definition of streas glut tensor is described in appendix 1.
We will consider a partial case of a seismic source when the
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. ' stress glut tensor can be expressed by equation
T(x,t) = F(x,tM , (1)
where ZX(x,t} is a nonnegative scalar fupction and M 1ie a
norsalized seismic moment tensor. In this case scurce region can
be defined by the condition that F(x,t}) is not identically zero and
source duration is the time during which unelastic motion occurs
at various pointa within the source region, 1i.e., Fix,t) is
Determination of Spatio-Temporal Characteristics different from zerc. Spatio-temporal characterietics of the source
of a Seismic Source from Surface can be oxpressed by correspondent moments of function Fex, t).
Waves Amplitude Spectra In general came stress glut moments of spatial degree 2 and higher
| are not unequally determined by displacement field. But in the
‘ case when equation (1) is valid such a uneasiness takes place.
_l Following equations express the integral estimates of +the
.- source characteristics in terms of spatio-temporal momenta of
F(x,t) of total degree (both in space and time) 0, 1, and 2.
The moment ™" (q,1) of spatial degree a» and temporal degree
’ a with respsct to point q and instant of time =T i a tensor of
- order » and ia givem by formula {k, saevak =1,2,3)
w
B. G. Bukchin :L:'_"-_ f‘;:q,-;) :I dav, J' mx,t),xk1 - gki)...(ka— qkm)(t-'t)"dt. (2)
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International Institute of Earthquake Prediction Source location is estimated by the spatial centroid q, of the
Theory & Mathematical Geophysics i field F(x,t) defined as
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where M = F'%? jia the mcalar seisaic moment.

In a similar fashion, +the temporal centroid T, is eastimated by

foranla PP

T, =F (ﬂ)/!o . (4)
The source duration is estimated by 2At, where
(At)z =':o,2) (Tc)/ug' . (5)

Let r be a unit vector. The mean source aize along r is estimated
by 21r , Where
1: =r Wr (6)

d
- W= B (), 1

From (7} it followe that a mource region has the lsast wean
size along that elgenvector of W correaponding to the lsast
eigenvalue and the greatest mean eize along that eilgenvector of
the same matrix corresponding to the greatest sigenvalue.

Let v be the mean velocity of the instant spatial centroid (see
Bukchin B.G., 1988). Then

v = wAAT), (8)
where 5 = f""“(qc,-rc)/ln.
The relation between spectrum of displacement fisld u (x,0) and
spatio-temporal momentas of function F(x,t) can be expressed by
formula (see appendix 1)

_ o L -] -1 "F(,m.nl (D o)u » T
u(x,0) = T Egar K 191850
mzo n=o i m
(9)
. a a a
X ()7 — s — — G (T,
ayk a’k o’l ! 7
1 m

(the summation convention for repeated subscripts 1is used).

Here we assume that point y=0 and instant t=0 belong to the source
region and time of the source activity respectively. q § (z,y,9) i=s
the spectrum of Green function for chosen model of wedium and wave
type. Correspondent formulae {see Levshin, 1585) are given in
appendix 2. Since (9) involve infipite eeries, these relations
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cannot be used to compute the moments F ™ ™ However, whenr +th -
displacement function u {x,4) and the Green function G.t_i {(x,¥,0) .
have besn low pass flltered, the terms in (9) start to decreas
with » and n increasing at least as rapidly as (wat)™ " (watel; ‘
At - the source duration) and one wight then restrict onesal .
to considering Tfinite sums only. Representing in this for
spectrus of displacements in surface waves, we can derive a set o
equations for the moments of F of total degree min < N.

Let ua consider a low frequency part of spectrum of i-t
componont of displacemente carried by some Love or BRayleigh wmod:
u fx,o). If frequency « is small (time duration of the source 1 :
such ssaller than period, and size of the source region is muc
smaller than wave length), then we can take into account 1 ic
forsula (8) only the firast terms for m + o < 2. '

Let y = 0 - position of spatial centroid of +the source an
t = D - temporal centroid. Then we have F '** % = p‘% 1’ . g, “
In this case (9) can be written as follows

1 a

ul(x,o) = = NN

o ME — G (xye)l o+

a o L] i
1 . :
+ m ’-mi‘z o) (o’o)ujl_ ——— T (x'y,o)ly - ‘; :

-r'tt,0)x 22 {(x,7,03 _, + h
m » jlay 2y L j v Vs y=0
m 1

a
lo pto, 23 :

= F (D,O)H“o— G (x.y.0} _,

L : 4

P

If all characteristics of medium, depth of the best point sourc .
and selsmic moment tensor are known {determined, for example, uai
spectral domain of longer veriods) the representation (106} give
us a systes of linear equations for moments of function F of totalr':
degree 2. Let us consider a plane source., All moments of F o
total degree 2 can be expressed in this case by formulas (3)-(8 i
in terms of 6 paraseters: At - estimate of source duration, 1 v

ma X

estimate of maximal mean size of the sourcs, ¢, - estimate of th
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angle between the direction of maximal gize and strike axis,
1.~ @8timate of minimal mean aize of the Bsource, v - astimate of
the absolute value of instant centroid velocity v and ¢~ the
angle between v and strike axis.

Using the Bessel inequality for the Boments under discussion we
can obtain following conatrain for parameters considered above
(see appendix 3).

VAL (cos’e © 12 4+ ety . 13 )s1 (11)

Here ¢ - the angle between direction of maximal sise and direction
of v. Assuming that the source ia a plane fault and reprasentation
(1) ie valid let ua consider a rough grid in apace of 6 Parameters
defined above. This parameters have to follow {11). Let models of
media be given and moment tensor be fixed as mell as the depth of
beat point source. Let fault plane {one of two nodal planes) be
ldentified. Using formula (10) we can calculate the amplitude
spectra of surface waves at the points of obaervation for every
posgible combination of values of varying parameters. Comparison
of caleulated and observed amplitude spectra give us reaidual ' *’
for every point of obaervation, every wave and avery frequency «.
Let &'’ (r,u) be any observed value of spectrum, i=3,...,N; ¢''’.
correeponding residual of [J"(r,o)]. We define normalized
amplitude residual by formula )

N ci.)z il i 2 Loz
E(At'lmnx'lmin’pl’v’wv) = [(ifge )/ 2 lu (r,o»] )] - (12) -

ima
Fixing the value of one of varying parameters we will Mt in
correspondence to it a minimal value of residual £ on the set of
all possible values of other parameters. In this way we will
define 6 functionas of residual correspondent to the 8 varying.

parameters: eAl(At), £, (Imox), € _ (lmin). ep (pl), Ev(vﬂ and
max min L

ew (vv). The value of parameter for which the correspondent

v

function of residual attaina its minisum we will Jdefine as
estimate of this parameter. In this same time these functions
characterize the resclution of correspondent parameters.

The technique described above was used for estimation the
characteristics of Georglan oarthquake, 26.04.81. The estimation
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of source parameters was done by using apectra of Love and
Rayleigh fundamental modes in the spectral domain 30 to 80 &. The
distribution of stationa is shown in Figure 1. The star !ndicates
the position of epicenter, the aquares - positions of atations:

1 - Re3B (MARS), 2 - OBR (IRIS) and 3 - ARD (IR1S).

Love and Rayleigh fundamental modes were extracted by using a
frequency-time analysis programs. Analyzing the long period part of
the spectra (periods from 50 to 80 seconds) we determined the
following focal mechaniam of the source: strike 285°, dip 15°

and rake 90. The stereographic projection of nodal planes on the
lower heamisphere is shown in Figure 2 The estimate of selsmic
woment is 4.9-10'°n- 5. The best point acurce depth was found to be
about 6km.

To estimate duration and geometry of the source we have used
ampiitude spectra of fundamental modee of Love and Rayleigh waves
in apectral domain from 30 to 50 seconde. The plane dipping to
the North was identified as a fault plane (by virtue of
aftershocks distribution — see Figure 2). Results of direct +trial
of posaible values of unknown parameters are shown in the Figure 3.
Figure 3a showa the residual £y, as function of duration At.
Sampling intarval of thie function 4ia 2 4. t,, attaina its
minimum at the value of duration equal 18 8. Dependence of
regidual €, on the abaolute value of the instant centroid velocity
v is given in Figure 3b. Sampling interval here is 0.2 kn/8. Value
v = 2 ka/a correaponds to the minimum of £, . Plgures 2c and 24

show reasiduale £ and €, as functions of wxaximal wmean

max min
8ize of the aource 1. and minimal mean size 1 . respectively,
Sizes smampling is 5 kn. These functions Eive us +the following

eatimates lmnx= 35 km and Imin= 20 ka. Punctions swl and EP

defining direction of maximal mean size of the gource and direct;on
of the inatant centroid velocity are given in Figuree 3e and 3f
respectively. The reasiduals were calculated for all possible
values of angles », and ’, while other parametere were fixed equal
to their estimates obtained befores. Angles are measured in the
foot wall of the fault plane clockwise round fromp the strike axis,




9, varies from 0 to 180°, o - from 0" to 360°. The sampling
interval is 20° and near the minimum 5°'. As one can see in Figures
3e and 3f both of these funciions attain there ainimum at thie
sape angle 40°. Note that the coincidence of these directions was
obtained as a result of there independent variation. Comparison of
the values of ‘obtained estimates indicate that a model of
unilateral rupture propagating along the direction of maximal eize
of the source is acceptable. A scheme of such a model is given in
the Figure 4.

-7 -

Appendix 1. Definition of stress glut tensor.
We will start from motion equation

o, .i+ ,f_;.-.pul , t.d m 1,2,

L. (13)

Here u - i-componant of displacements; u\ - 2-nd derivative of .

with respect to the time; o
.

= ()
%ii.i ;5,90 ;/0x,

i slements of aymmetric streass tens ‘.

(the summation convention for repeat

subscripte is umed); p - density; f, - components of external for
The stresses and displacements are connected by Hooke's law :

olj= :\o.lj .+ 2|.lah‘i (in isotropic case), (14)

where & ;= 0.5(uhj+ uj'i) - alements of strain tensor.
We will assume that before ¢=0 there was not any motlon, mo

ipitial conditions are following

for t < 0 . (15)

EKlastic body under consideration is bounded by free surface S ;

It means that homogeneouse boundary oconditions have to b

u=su=20

satinfied: h
o ;m Buz o, (18)
where m - components of the normal to the 8 . :
The solution of the problem (13)-(18) can be expressed by formul:
1
u (x.t)=J¢IQj (x;7; t-1) L, {y,T)d¥ (17)
o 0
l.
or u (x,t)=‘|-er‘qj (x:v:t-‘t)i', {y,t}dv . (18)
.. o O '
) h
Here G - Green function, £ (x;r;t)=Iqj(x;v:T)dr r
-]

and 0 ¢ t ¢ t_- time interval when f is not identically zero.

Seismic disturbances most frequently arise from the action

" of internal sources (earthquakes or explosions) in absence of

any sxternal body forcea. Ons muat then set i'j! 0 in (13}, eo
that the only solution that satisfies the homogeneous initial
(15) and boundary {16) condltions, as well as Hooke s law (14),
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will be Non-zero displacemente cannot arise in the
medium, unless at least one of the above conditions is not true.
Following Backus and Mulcahy (1978), we assume seismic motion to
be caused by a departure from Hooke's law within some volume of
the wedium at some time interval t> £> 0.

Let u (x,t) deseribe the displacementa and 015("t) the
stresses that would have exiated in the medium had Hooke s law
{14) been true everyvhere in it. Let aij(x.t) be the actual
stresses. The difference

Fij(x,t) = oij(x,t)wﬁd.(x.t). (19)
called the stress glut tensor, is not identically zero within
the three-dimensional region 0. That region we define ag
source region. Within, and only within, that region, +the
tengor ﬁlj(x.t) toc is not identically szero.

We shall asaume that lies wholly within the mediua (doex not
come out to the surface) and that, since soms instant of time
t°>0, fij(x.t)zﬂ sverywhare in the medium. The integral of Fij
over 3 is called the seisnic scment tensor (Koatrov, 1870;
Aki and Richards, 1980 }. As the true motion obeys the equation

u =0.
1

s, = oixl', in accordance with (13) (£=0), one derives from (19)
°,.; * & =eu , (20)
& =-r.. ., (21)

where 8, (x, ) we will define as equivalent force.

Then the resulting displacements are given by the same formulas, ___

(17) and (1B), with I, replaced by &€ . Using relation (21} for £
and the Gauee-Ostrogradsky theorem, we finally get
t

-
N L (333 6-0) (y,7)a, | (22)
o 0
or
t .
L
ul(x.t)=JdtJ’Hlj,k(x;y;t—x)r'jk(y.ndvy . (23)
o 0

The G.H. ,H.U. are here differentiated with reapect to AN

" where the pointa y belong to I

If the departure from perfect elasticity ia confined to 8sORe
arbitrary finite area at the inpner surface 5, the
tansor bacomes I"j x (x,t)=n x (x, t)éz(x) .

3
distribution that satisfies

Jezorecxran, - [,
v z

atress glut

where 62 (x) is a

for any function ¢(x). Integration over the volume §

" in {22),(23)
will then reduce to that over the surface I:
L

b (x,¢)= jdt qj_k(x;r;t-r}-j,‘(yﬂ)dy '
a Iz

If the departure from perfaect
olasticity ia defined am a discontinuity in displacement u at z
without a stregs discontinuity, then we have

-, (x, t)=tzq (x) [up (x, t)] g kpgq {(x),
where n is the normal to I, [up] T componenta of the vector of
diacontinuity. For an isotropic medium we shal) have

.“l:k [up]npbjk + |.J.(u.i ["k] + n [uJ]) ;
in the case of tangential {shear) dielocation we have

a, [up] =0 and

njkzu(nj [q‘] + ﬁ[uj]) . (24)
If the departure frop perfect elagticity ia confined to a small}
vicinity of x, (the region n ehrinks to a point), then

Fj x (%, t):.lj y, (B)0 (x—xo)

and the equivalent forces £ take the dipole form

. 3 (x -x,)
& =~ u‘*"—_“——*oﬁ (25)
Such a source excites a field of the form
t
a = J‘-jk(t)qj_k(x;xn;t-t )de, (28)
=]
or
.-
o =J. 'jk(t)a'.j.k‘*“n;t"T }dt, {27)

-}

where the G; i? q j are differentinted with respect to ¥, at the
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point ¥ = x, .

A point center of expanaion (an ideally concentrated explosi-
on}) in an isotropic medium will produce (Aki and Richards, 1980)

LA n(t)bjk . (28)
while for a poeint source of alip we shall have
», = &a(t)¥ om ), _ (29)

where the x are unit vector componenta in the direction of the

discontinuity [u] (slip vector) and m(¢) = ui[u]}. The guantity

®, = lim (%) is called the seismic moment.
L» @

Relations Dbetween displacement field and the stress glut soments.

We are doing to discuss relations that connect obsarved
displacements with the mowents of atress glut tensor and c¢an be
used to estimate the moments.

“{ m, N

The mowent {4,7) of spatial degree = and temporal

degree n with reapect to point g and instant of time T is a tenaor
of order » + 2 and is given by formala
rt:"::k'aq,‘t) =
@ (30)
- Jan [rienm - g n - g 80 0,
0 a 3 1 m m

L'j'kx""'knf i.2,8,

where {1 is a volume outside of which me have I (x,t) = 0. .
Replacing in the expreasion (23) the function qj (x,¥y,2~T) by its
Taylor series in powers of y and in powers of T, we get

® W n
_ -1 < m,
g (x,8) = T _E%ri%rjk:lr...k (0,0) x
m=0 n=p - ™
(31)
F A ] 2
Wm0 .(Z.I.t)i
n (9] ¥=0
at ayk Oyk Gyk

o 1 m

Expanding B i in poweis of v , we assuse the elastic parameters to
be sufficiently smooth. We have for the Fourier transforms u (x,0)
and Elj (x,¥y,¢) froms (31) :
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@ n
-1 <t m, N
a (x,e) = E T L {0,0) X
‘( <) nEa n=o™ al “‘n'ks"‘im
(32) .
2 2 -]
X ()" — — - — H (xye)l
oy Oy ay
ko kl l‘m
Appendix 2. Green function for sedia with ossocoth bhorilzonta.
inbhomogeansity. .

We'1l consider only media with smcoth horj.:ontal inhomogeneity : ‘:
It means that variation of properties is small along any horizontz—:-‘
direction. For this assumption surface waves spectral parametere ;
are locally determined (they depend on horizontal coordinates 2
and y) and are the same as in horizontally homogeneous medium wj.t.h‘
the same structure as under the surface polint (x,y).

In this case function Ghm(r.a.u), Fourier transform of aurface
wave part of Green function, which corresponds to a given Love or

Rayleigh mode can be deacribed by formula

G, (r,8,0) = (LT MY (0,0,0)), N7 0.10)],, X

X axp(-4) ., (33) :
whers r - point of registration; s - radius-vectoer of the source;
x.m = 1,2,3; 1 corresponda to vertical coordinate =z, 2 and 3 - to‘_ip

horisontal coordinates x and y; -
A = /Y87 axp(-in/4)/Y(veD) |, (D), Jo,r) ;¢ = obfv ;
- r

v - phase velocity; c - group veleccity; M marks the medium at the
source region and H,_ - the medium near the statlon;

Iz J':[f » (o,s)]’d: for Love wave (¢ - demsity),
B .

s = > 2 e,m)]? v @,z for Bayleigh wave;
I _[g{[lf (e,z)]" +[ I¢ il }dx or Bay

¢ N ¥ 2’ - vertical and radial components of vector aicenfunction!:

of Bayleigh differential operator; ¥ " - aigenfunction of Lowreil

differential operater; ;=I./J' i{-’, - average phase velocity along the®
L

L; L - the ray froms tor; s = (1,0,0); r - a point on the free

surface; L - the length of the ray L; J - geometrical epreading;
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for Love wave
Y oae) =0, W2 0,2,0) = -1 atap ¥* (0,1,
¥ (o,m0) =1 cosp V" (u,2);
for Bayleigh wave
W2 ,m0) =¥ (0,5, ¥ (0,2,0) = -1 comp ¥ (o,1),
WP (0,5,0)5-1 sing ¥ (o, 2);
¢ - initial azimuth of the ray L.
Derivatives Gim.“ are determined by equations

6, , = (-1 R (0,0,0)], 2N ™ (0, h,0)/25|, %

X exp(-dy) , (34)

qcm,zr 1% cosp q:m ’ q:m,l= 1K ainp q:m *

where E=u/v.

Appendix 3. Proof of the ilnequality (11).
Let us consider a space of auch functions v(x,t) that integral

L ]
J dv;_[ F(x, t)y” (x, t)dt
[¢] ]

exists. Here F(x,t) - function from (1), x = (x;,aa,x;) - apatial
vector and t - time. Let us define for this space a scalar product
of functions pt(x,t) and pj(x.t) by formula

_ 1
(p-‘ ;?J ) - Hn —[
Q
where EL- aelsmic moment.
Let ue conaider a linear span of independent functions L) whare

w
av, [ #x, o, (x, 19, (2, 01 d, (36)
[+]

wk(x.t) = x (x = s,2.8). Let Px,t) - projection of function.
¥{x,t) = t on thim sub space. Then for Plx,t) we have
Mx,t) = GP. = ¢ x= cx=xec . (38)
where ¢, 1ls minimizing a product (q,q) defined by (35) and
q:t—cix.‘:t—cfx. (37)

Taking into account that x=0 and =0 are spatial and temporal
centroids of the source we will obtain following formulae for ¢ and
P(x, t):

c=W'a, (38)
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and Plx,t) = xW'w, (39)
where W and w are defined by formulae (7) and (8).
The Beseel inequality gives ue
(P,Py 2 (¢,¢)
But (t,t) = (&7)°, and for (P,P) we have

[+ ]

(P,P) = 4 I dPI Fix, t)w W' xx "W wdt =
o »
9] a
=W W W' = W e,

And finally wH e s (at). (40)

Inequality (40} is valid in the case of 2-dimensional source
region {a plane source) as well. Bewriting (40) in such a case in
the coordinates of main axes of matrix W, using formulae (4)-(8) we
will obtain inequality {(11).
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