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H4.SMR/650-8 1 Introduction.

. This lecture im devoted to the rrinciples of surface wave

} record processing. The general properties of surface wave signals

will be discussed, appropriate techniques of data processing and
representation will be developed.

. If the seiemological data is to be used in geophysical

Workshgf Soe f;g;%?&?;g;ﬁgﬁ::;&:ﬁﬁ?delling interpretation, it should be tranmslated into .thﬂ language of

Propagation and their Inversion . concepts and guantities that from theoretical model; this is the

: 3 vrincipal aim of data processing.

! In the came of surface waven many physical problems are
conveniently stated in terms of amplitude and phase epectrum of
Rayleigh or Love wave, and the initial information is presented in
fore of seismogram: record of ground displacement as function of
time, containing both Rayleigh and Love waves as the volume waves
and seismic noise. So we must identify a wave of interest and
separate it from ancther part of record, and to measure its
spectral parameters. In our discussion the term "measurement.
implies digital calculation of signal characteristics rather than
the phyeical act of measurement.

It is with the direct processing of a one-dimensional surface
wave record that the present lecture is concerned. We shall 1list
the assumptions relating to surf;ce waves when these are regarded
as ‘signals’, discues the parsmeters that describes there general
properties, and see how the principal procesaing technigues follow
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1 from this.
! "We firat state explicitly what the “model language® is into
N. M. Shapiro which we wish to “transiste” a trace recorded by a seismometer.

Suppose the record is given in the form of a real-valued function
. Rulsslian Acade?y of Sciences r(t) (Fig 1).
nternatio tut
:-;le:;:y ;:s ﬁ.m;agcl:lﬂlé]:::ﬁyl:ir:’dlcﬂon In theory the phrase “surface wave-® denotes a certain term of

Moscow the total wave motion expansion. Corresponding to a “wave” is the
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term signal in processing theory. The signal is understood to be
that portion of record which carries information on the wave of
interest, all the rest being considered as noise with respect +to
this signal.
r{t) = w(t) + n(¢t) ( 1.1)

where w(t) 18 a signal, and n(t) a noise. We first identify a
signal (that is, recognize the typical wave features), separate it
from ocut +the background noise and, lastly, identify its
characteristics with the corresponding wave characteristics. The
ultimate end of data processing is thus to measure signal
characteristics.

‘Model statements” corroborated with respect to serface
waves are not complete, and nearly avery seismogram presents some
unexpected fsatures that demands informal (frequently personally
based) decision making. So, signal identification ie not
completely formal problem. In such situation a convenient,
corresponding to signal and noise properties, data representation
is needed. The techniques called
Frequency-Time Analyals (FTAN) being discussed in this 1lecture,

surface waves processing

suggests such convenient, graphic method of data representation.

2 Signal properties.

In this section we shall define characteristices of a signal
and its spectrum, and discuss general properties of surface waves
as ‘slignalse’.

Suppose a signal is given in the form of a real-valued
function w(t) (1.1). We define the signal spectrum as

a
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where  |K{w)| , #(e)
respectively (Fig 2).

The above definition allows a complex-valued signal, W(t}, to
be constructed that corresponds to w(t) and is relsted to K(w)

through the ordinary Fourier transformation on the infinite axis:
wie) = [weey) o) o L

are wopectral amplitude and ypha=se,
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where {W(t)|, #(t) are time-related (or instantanecus) amplitude

and phase. In many cases the functions {W(t)] and ¢(t} have
visible meaning of “envelope amplitude” and ‘carrier phase”

From (2.1) and (2.2} it follows that W(t)
connected by

and w{t) are

wit) = Re W(t) ( 2.3 )

that is, the complex-valued signal containe the whole information
about the real-valued one, and both are solutiong to the
differential equations; W(t) is called the analytic
appendix 1),

Same
signal (See

Later, the next characteristic, called group time, will be
serviceabls
T(w) = — ¢' (w) ( 2.4)
because it is directly commected with medium properties.
If the medium is apsumed to be “linear® and ‘stationary”

(that is, its properties do not changs with time), it affects a
signal as a linear filter, whose response squals Green's function
of relevant differential equations. A filter is conveniently fixed
by given its frequency responss

Es(0) = K (@) Z{w,H)} ( 2.5 )



where index = denotes values measured on station, and index i -
ones in epicenter; R is the station coordinate vector.
wave in a laterally

In the simplest case of a surface

homogeneous medium thie response is the next
Z(w,R) = M(o,r) o 1K(©)T ( 2.8 )
where k(w) is the wavenumber, r the distance the wave has
travelled. Real-valued functions M(w,r) and k{w) are controlled by
the medium alone and do not depend on wave shape; they contain the
information on the medium provided by travelling waves.

characteristic is the phase
responae of the filtering msedium, which controle time features of

The most easily interpretable
a propagating wave. It usually given by fixing phase velocity

Clw) = ( 2.7 )

>
k(w)

We shall see below that surface wave processing requires

measuring another parameter, namely group velocity

Ulw) =

) ( 2.8)

The functions U(w) and C(w) are called dispersion curves.They are
related by

1
U(e)

_ df1
= Tyt d»[t:‘(u)] (2.9)

From (2.1), (2.5) and {2.6) spectral phase is given by

(W) = - ke)r + ya(v) ( 2.10 )
where ys (¢) ia the spectral phase at the msource. Differentiation
of (2.10) yields

T(e) ﬂfT)‘ - pat (@) ( 2.11 )

Thie relation explains the term “group time ., 7T(¢) being

-- T(w) =

that particular characteristic of signal which is used to

determine group velocity. For the same reason we shall asometimes
employ the phrase “spectral dispersion curve of the aignal” for
the function T(v).

Seismic sources usually act during a time that is short
comparsd with the typical values of 1(¢), enabling -pe‘{0) in
(2.11) to be replaced by a constant ("source time") to within the
required accuracy. We shall often set ys* (w) = 0, and use

r

[T { 2.12 )

Thus, to study the valocity characteristics of the medium one
must have measurements of («) and T(v) for the aignal.

The routine aspect of the Processing consista in functional

--— -‘transformations. Some of these, such as filtering, are
signal-oriented. This kind of transformations works the more
effectively, the better we know our signal and, generally

speaking, the noise. Bellow we list
properties of surface waves signals

teleseiamic records).

some well-known general
(manly in relation to
“Finiteness” in time and freguency. A surface waves involves
limited interval, both on the seismogram and in the spectrum,
signal amplitude being small and hidden in the noise ocutside that
interval. The behavior of a model signal thers chosen
arbitrarily, provided the amplitude does not exceed some
threshold. In particular. both functions, |W(t)[* and [K(v)|?, can
always be assumed to vanish at iw, and to be integrable.
Processing results should not significantly depend on intervale
where amplitude is small and cannot be reliably determined.

Deterministic character. Apart. from some
surface make up the largest, easlly identifisble portion of a
seimmic record. Noiee playe a subordinate role. For this reason a
surface wave signal can be treated as a determiniatic with
relatively mmooth curves of |E(¢)| and t(w).

Noipe. Stationary noise is small compared with surface waves
on most seismograms. Local impulsive nonstationary noime is the
main msource of trouble. This kind of noise may be largely

can be

special cases,



generated by the surface wave itself. Because it is nonstationary, Than (Parceval s equality)
regular noise models are useleas in most of the cases. The common

practice is to treat "everything that is unlike the signal” as Ty dt = fF) @ = 1 ( 3.4)
neise. -® ~®

The dispersion of 1(w) associated with group velocity 2 &
dispersion is the most striking feature of the signal discussed. Treating A (&) and (¢) as “energy distribution”, we define
As a result surface wave shows no definite front, but has a broad parameters that characterize ‘mean” properties of the signal: the

spectral band and is long in duration. The typical dispersion typical time

curves are shown on Fig 3. ®

— <> = S tA°(t) dt (3.5)
4 Sigonl parameterization. -

the typical frequency
The general properties of signal and spectrum cloeely related

to processing technigues 1in use are here desacribed by a L '
— . w> = J oB (o) @b ( 3.8 )
parameterization that is widely employed in physics, namely, by -
using moments snd guadratic norms.
We define normalized amplitudes of signal : the msan group time
Iweey| w
Alt) = ( 3.1) <t> = F t(e)F (e) b ( 3.7)
-0
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the duration Id

and spectrum

-]
I =27 (t—<t>) A(t) dt ( 3.8)
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|K(e)]
B{e) = ( 3.2 ) the spectral beandwidth Dv
[+ ]

| s |Kw))? o ©
e B =27 (e-w>) B(e) d ' ( 3.9)
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They are related by Fourier transformation
' the “interval” of signal group time Dt

[ ] . .
A( £) e-ﬁ’(t) = 1 I Blo) ei{"(")ﬂt] & . : . . ]
e B =275 (te)<>) B) @ ( 3.10 )
-0
( 3.3)
In appendix 2 is shown that
m —
Blo) e (®) = 1 5 arey GAR(D)0E) 4y <> = <> (211 )
Zn -m




The typical signal time <t> egquals <>, the group time
averaged over the spectrum.

Rguation (3.11) explains how a spectral gquantity, group
velocity U{w), can be the “velocity of propagation in space and
time . A wave propagating in a dispersive medium varies in s=shape
from point to point, mso the concept “velocity of propagation”
needs a epecial definition. We take for the “time at which a wave
is at point r° the valus of <t>. And we can obtain from (2.12)

and (3.11)

1 S~
(o) = % (3.12)
where
1 - ® Bzgo!
<T> = -i Ui & ( 3.13)

In the sense indicated, a wave travels in a dispersive medium
at a slowness <1/U>», that egquals the mean “group slowness’.

4 Duration and spectral bandwidth., Uncertainty relation.

In this part we 1l discuas well known for waves “uncertalnty

relation’. Using parsmeters, defined above, it can be written

(4.1)

We shall discuss this inequality in more detail,
that for dispersed aignale it can becowe

and show,

Dv Dk » 1 { 4.2 )

Such signals have a large “umcertainty’. In next sections we
shall show how this uncertainty can be diminished wusing the
frequency— time representation of a signal.

The signal duration and the group time interval are related

a0
I = B + 2sPB8% ) &

- D

( 4.3 )

( mee appendix 3 ).

Multiplying (4.3) by Dg we obtain the accurate expression of
the uncertalinty

o
KD = Pt + 200 5 B (o) { 4.4)
-0
It is convenient to introduce the next dimensionless
parameter
- ®
F = 208 r B ) @ ( 4.5 )
—0
to rewrite the uncertalnty relation
e = ¥t + I ( 4.8 )

Thus the signal uncertainty consists of the two different
parta. The firet is 12, it can be evaluated ( appendix 3 )
F=z 1 ( 4.7 )
It doea not depend on phane if we Buppose
M{w,7r) = M{¢) ( Bee (2.8) ), on distance r. And what is more, it

is readily verified that the substitution |E{w)| — |K(aw)|, where
a is a constant, does not affect I. Thus, I ia independent on the

spectrum and,

spectral bandwidth, and deascribes only & “nonoptimality” of an
amplitude spectrum form. .

The accurate eqguality in (4.7) occurs when B° ~ (v - <w>)B,
that is, for a signal having a Gaussian amplitude spectrum,

B(w) = ¢t explcz{¢ - <w>)). We must require oz < 0 for B(e) to
vanislr at infinity.

We shall later use the normalized Gaussian function
H .2

_!B“’Q!

2
1, 3 ( 4.8 )

[Ble)] = H(e) =




where o' = w> and 8 = Dv

In actual practice, most signale with spectrum closs to the
Gaussian one have I that is close to 1. It is true for
separated spectral peaks.
The second part of uncertainty IKID? is directly reiated to
the behavior of phame spectrum and of T(@) at first, becauses it
is proportional to IR. The statement IR = 0 is equivalent to
T(w) = copst. We shall occasionally call mignals with Dr > ©
"dispersed signals’. Thus a saparated, nondispersed spectral
peak is nearly optimal in the sense of uncertainty. =
When '

( 4.9 )

the nonlinearity in the phase spactrum seriously affects signal
shape. We introduce the diwensionless parameter q to
characterize the power of signal dispersion

2 1319
g = — ( 4.10 )
r
When g« 1 we pay that the signal i=s
“strongly diepersed” if g>1,
Using (2.12) and (3.8) we obtain

‘weakly dispersed”, and

[ )
ot = r’j[tﬁ)-@%—)]za’(o)d’ ( 4.11)

-
In this formula the integral does not depend on the distance from _
the source, therefore the group time interval is propertional to f
r. So, the influence of the vhase spectrum rimes with ». That i=s
the reason the surface wave signals becomes "strongly dispersed’ ’
on teleseismic distancea.

Frequently the entire signal may be recorded within a

spectral interval in which t(v) is wonotonic.

In such cases »a i
useful model is 1’ (v) = conat, here called a '

‘linearly dispersed

10

signal”. Within the framework of +this model the group
interval is proportional to the spectral bandwidth

time

D = | D ( 4.12)

and expression for the signal duration becomes

# = L, (t'Dv)? ( 4.13 )
e
Parsmeter ¢ for such aignal
BB~
= —_— { 4.14 )
I

Parameter |1’ | is proportional to the distance from the source

( 4.15 )

5 Locally narrow-hand signal .

If a signal hams g « 1 and I about 1, than any
transformation that diminishes Dv will, according to uncertainty
relation, leads to an increase in Dt . But surface waves presents a
different situation. When g » 1, both Dv and It can be diminished
sizmultaneously. We are going to demonstrate this for the simplest
case of a linearly dispermed =signal (t* = const) with a
sufficiently broad band and I about 1 (this last condition means
a single spectral peak is being considered).

Let up pass that mignal through a filtar with a real-valued
from;enoy responne H(e) (4.8) . Signal parameters at the filter
output are distinguished by placing ~ above a letter.

Kw) =

H(o) K(o) ( 6.1)

11
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Wty = K@) ot & (5.2)

B %5

-

We also suppone that H(¢) is a Gaussian function (4.8). As H(wv) is

real-valued, we have t' = ©°, and the time duration for filtered
signal becomes

¥ ox (1'B) + 81—2 ( 5.3)
the parameter a
2 = || 8° ( 5.4)

v and T have been replaced by the filter parameters o = B
and I'= 1, which would not incur serious errors when o o« Dy
i.e., when the filter bandwidth is narrow compared with the
bandwidth of the original signal, snd B(¢) = const Hiw).
Till the filtered signal remaina “strongly dispersed-
its time duration remains approximately
interval (the second term in (5.3)

first one)

(¢ » 1)
equal its group time
is small compared with the

® o= (B ( 5.5)

and its average frequency equals the filter's one

ws = " ( 5.8)
and ite average time ——
<t o= A o= 1) ( 5.7)

but the filtered aignal has the smaller duration and
bandwidth compared with the original one.
Several filters with different o®

apectral

can ssparate out an !
original signal into a sequence of relatively short, narrow-band

12

trains that arrive at different times { r(o“) }. Loosely
speaking, each narrow spectral band of a strongly dispersed signal
is significant only within a limited interval of time <that is
shorter than the total duration. Similarly, one may say that a
strongly disperped signal has a time-dependent, relatively narrow
spectral band around any instant of time t. (If the T(v) curve is
not monotonic, there may be several speciral bands of this kind
corresponding to a given time moment.) A signal of this kind can
appropriately be called a locally narrow-band aignal. While being
broadband as & whole, it behaveasa 1like & narrow-band in the
vicinity of a given instant of time.

But the signal duration can"t be diminished infinitely. When
a filter becomes too narrow (g < 1), Ix is significantly dependent

on the second term in (5.3). So, the function ™ (B) is not
monotonic, it has a minisum when
1
B° = — ( 5.8)
br i
8 EFrequency-time representation.
We have in fact umed the idea of a frequency-time

representation when discussing special properties of dispersed
mignale. If a signal! is passed through a system of parallel
relatively narrow-band filtera H(e—") with varying
frequencies o". then each resulting filter will, according to
(6.7), concentrate arcund the time ¢ = T(UH)- (This conclusion is
not related to the above requiremsnt g » 1, and is true for any
signal with a mmoothly varying t(e¢) ). The combination of all the
filtered eignals W' (t) will now be treated as a {(complex)
func;icn'of two variables S(o“.t). According to (5.1) and (5.2)

central

Jot

. 1 @ "
W)y = -1 s He-w") E) o

12 -

se.t) = & ( 8.1)

which is what we call the fregquency-time representation of a
signal. Tho signal analysis based on (B6.1) will be abbreviated

13



further on as FTAN (frequency-time analysis). (We shall always use
Gaussian function as a filter H(u—u") in (8.1) ).

A contour map of |S(v",t)| called a FTAN map is used for
visual representation. For o" fixed, [S(Q".t)]
envelope at the output of the relevant filter. For this
corresponding to each input aignal ig a “mountain
(increamsed values) in the FTAN anap oxtending along the disperaion
curve t(o") = (™) (Fig 4).

reason,

terminclogy based, in particular, on the concept of the

frequency-time region of a mignal: This is understood to be that
part of the (o",t)-plane ocoupied by the relevant ridge. It can be
seen from a Figure 4 that the ricture of a frequancy-time region
givea a much clearasr notion of a dispersed signal that the
parameters <it>, v, <w>, Dv can. The statement “the energy of a
signal concentrates (on the (vn,t)—plane) around its dispersion
curve’ acquires a defined meaning in terms of |S(o",¢)]. From this
one can also see that the large uncertainty DvIn of a dispersed
signal is in some senae fictitious; the area of the relevant
rectangle on the {u".t)-—pla.ne considerably exceeds that of the
frequency-time region.

This small area of the frequency-time region provides extra
possibilities for aseparation of aignals with different dispersion
curvea (for example Rayleigh and Love waves) (Fig 5). For the samns
reason the portion of noise that fails into the region
(<w>tDv ,<£>*Ix }, but lies far from the signal dispersion curve,
can be separated from it (Fig 8)}. Thus, FTAN gives additional

opportunities of filtering of the dispersed signals. This problem
will be discuased in the next part. _
There 4is an important feature of the frequency-time

representation that makes it osventially different from the wore
usual spectral and time representations. The function S(o",t) ia
not a property of the original eignal alone, but also involves the
filter characteristic H(w-—+") chosen by inveatigator. Different
choices of H(u—@") will transform one and the same signal +to
different 5(¢",t) functions. (The spectrum and the seismogram can
be regarded as two extreme cases in the clams of such functions:

14

ir the signal

E{¢) is for the infinitesimally narraw filters H(v—") = s(0="),
W(t) for infinitely broad filter H(w—") = conat. }
A complete frequency-time representation involves two

functions: S(o",t) and H(u-o"). we are in fact dealing with a
whole clasa of signal representations. This leads us to the
question of the choice of such reprasentation (function H(u—c")),
which is the most relevant to the processing problem in hand
called problem of ‘optimal FTAN filtering‘). In the
Gaussnian filters the form of representation is
described by the function of filter bandwidth B(u*).

¥We shall use the filters which minimize time cross-gection of
frequency-time area Ix . For a linearly dispersed signal the
bandwidth of such filter is given by (5.8)

(30
case of
completely

1
I ")

8% (") = ( 6.2)
In terme of the velocities this condition can be rewritten

U’(o")

dl, .
rl;‘;(o)

B (") =

( 6.3)

that is, the FTAN optimal filter width decreases with the
epicentral distance increasing.

2 Froquency-time filtering

In this part we shall discuse the opportunities
fraquency-time representation gives to mignal filtering.

The first method is to put & two-dimensional amplitude window
G(@"-',-t) .over the frequency-time representation of a signal to out
the noiss lying cut of the freguency-time area. Thus we obtain
filtered froquency-time representation § (¢*,t) (Fig 8).

the

s W', t) = 6", ) s*, ¢ (7.1

15

ey

v



(The index { above a letter is used to distinguish parameters at
the frequency-time filter output.) To obtain the filtered spectrum
K’ (@) we must restore it using Sf (uH.t).

The frequency-time repreasentation is the combination of the
narrow-band signals il"(t) which are the results of the inverse
Fourier transformation of corresponding local apectrums f(o) (see
(5.1), (5.2)).

£ () E(e,0") = Hw=") Ko) (7.2)

3 |-

Wit ) et a ( 7.3 )

8%8

The whole apectrum. can be restored as the sum of +the local

oneg

() ,e" ) "

8|8 S8

K(e) = (7.4 )

J H(u—w" ) &t
-

The freguency—time representation at the filter output is
the combination of the filtered time signals
Wir) = aw',e) W (7.5)

Fourier transform gives us the filtered local spectrums

[V 1)
) = A s Wi o ™M 4 (7.8)

YZr -w -

Similar to the formula (7.4) we define the filtered spectrum

as

w
£ ¥ w,e") *

E) = 2 ( 7.7 )

186

or

m m
s, ot g

:

E() = L. ( 7.8 )
- ]

Y2 5 Hs—") "

-

In the limit of a very large frequency-time window G(u",t)
Kf (@) + K(w).

We shall call the formula (7.8) ame the inverse FTAN

- transformation and the formuwla (68.1) as the direct FTAN

transformation.

One can image the oparation of frequency-tims filtering as a
“time filter whose parameters vary with frequency . The <filter
band is “floating® along the dispersion curve. This is the reason

"~ the frequency-time filtering is sometimes called "floating
filtering".

If the width of such “floating" filter does not depends on
frequency,the freguency-time filtering can be reduced to the
ordinary time filtering. In this case G(¢",t) is the region of
constant width. For a nondispersed signal it becomes analogous to
a time window.

If we know the dispersion curve T(¢) we can transform the
aignal into the nondispersed one, using operation of the phase
equalization. Inverting the group time definition (2.4) we get the
vhase spectrum

[

() = - S 1(x) de+ av + & ( 7.9)
o
were o, (= are constants.
Applying the next transformation
) . ©
P(e) = o) + 7 1(x) dx ( 7-10 )

o

K(e) = |K(e)] o) ( 7.11)
17



Wiey = L (712 )

B -

we obtain the weakly dispersed signal G( t). ( Index - above a
letter denctes a values after the phase equalization.) Its
amplitude envelope has a form of a narrow peak. And a large part
of the noiee, which was not distinguished in a time or frequency
domain, lies now out off the aignal region and we cut this noise
l:it:h the amplitude time window F(t) to obtain the filtered asignal

we).
wW(t) =

F(t) W(t) ( 7.13 )

Fourier transform gives us the filtersd spactrum

" @ L
K@) = 2 sw(e) et 4 ( 7.14 )
Yo -w»
The last atep is to restore the phase spectrum
. @
Wle) = (o) - S 1(x) dx ( 7.15)
v

The information about T(v¢) for such type of filtering can be
evaluated using from the axis line of corresponding ridge on the
FTAN map (Fig 4). The accuracy of such method of weasurement is
sufficient for filtering.

The sequence of FTAN maps
filtering is shown on Fig 7.

The combination of two filters discussed above also can be
used. In this case phase equalization (7.9)
direct FTAN transformation.

correaponding to such type of

18

is made before tha-‘-
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Appendix 1: Eannmianhn.tueenmlninaimlandmmm,.

We introduce the additional spectrum L(v), which is
to real-valued signal w(t)
infinite axis:

related
through the Fourier transform on an

Y ot
ty = L s L) o®F 4 ( AL 1)
me I -o
L) = L T o Wt g ( AL.2 )
I -w ‘
E(v) and L{«) are related
2L(e) , @w > 0
K(o) = { ( A1.3 )
0 . @ <0
L(w) = L{=o) ( Al.4 )
[¢] e +]
5Ly 6% = 5 L) e tg ( AL.5 )
o .

m o
Wt} = & L) 6% = 2Re( £ L(v) o®ta ) -
-m [+]
( 1.8 )
® ot
Re( f K(v) & de = Re W(t)

-

Appendix 2: The mean tiwes and group Lime,

We shall use the next two expressions

om

s &S G o ma(t-s) ( A2.1)
-

and

o

FBBa = $E1S = o ( A2.2 )
et '
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(We used the properties of surface wave spectrum discusased
section 2: K(¢) = 0 (and B{¢) = 0) when ¢« — #+w, }

We differentiate both sides of (3.3)-2 with reapect to the
frequency

in

-4}
(B - ) o¥ = L gy ot g,
-

( A2.3 )
2n

Now form the product of {A2.3)
(3.3)-2, and integrate it over o

and the complex conjugate of

[ -3 @ @ o
s IBFB-HB)d = -1 ,mtms),ﬂv(t)w(s)][,em(c-s)w]
oo

dtde
- I -~

Using (A2.1) and (A2.2) we get

o r4
-1 tA°(t) dt

- oo

[+2]
-1J5 1 Fo) & =
o0
And uming (3.5) and (3.7)

<T> = <t>

Appendix 3: Uncertainty relation apg paranpeter I,

We add {A2.3) to (3.3)-2. Multiplying the result by <t> and
using (3.11) we get

o

[B - Br—<>)le® = - L (s p o008 4 ( A3.1)
-
Regarding thims formula as the Fourier transform we apply

Parceval’'s aquality. The result i= the formulas (4.3)

o
¥ =0 + 25s8%0) &
-
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To evaluate I° we use Parceval's equality (3.4)

o
FBEW & = 1
-
@ w
using Bzu[_mzo and <> F BB d = © (see {A2.2)) we rewrite
-®
it
w © w -]
S E@) & =Fe|] 2 -2SBFBo d=-2/ (e-w>)FBo b =1
- o0 - -
' ( A3.2)
And now we apply the Cauchy s ineqguality
o 2 [+ ] [ ]
[:mm d.;] S[Ilmlzda][-"lﬁizde] ( A3.3 )
- 00 w0 -

substituting F: by B and F by (¢—<w>)B and applying (A3.3)
to (A3.2) and using (3.9) we get

[+ -]
20 s Biey dv 2z 1
—0
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Fig 1. Seismogram.



Fig 2. Spectrum of the signal drawn on Fig 1.
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Fig 3. Typical group velocities curves of Rayleigh (a)

and Love (b) waves.




Fig 4. FTAN map.

Fig 5. Separation

of Rayleigh (a) and Love (b) waves
on the FTAN map.
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Fig 6. Frequency-time filtering: (a} is the initial FTAN map;
{(b) im the filtered FTaN map.

Fig 7. (a) FTAN map of the original signal; (b} FTAN map after
Phase equalization; (c) FTAN map after filtering: ~{(d) resulting
FTAN map.






