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1. Basic principles of seismic tomography
1.1. Classification of tomography precblems

In general, 1 nogrophy means a reconstruction of image of an
"object" from its projections. Projections are some functionals of
unknown physical characteristics of the object. 1In seismic
tomography "chsracteristics" are wusually velocities of seismic
waves, and "projections" are either travel times or waveforms
obtained lrom observations.

Dependently on the data seismic tomography is subdivided to the
ray and Jiffracticonal tomography. The ray tomography is based on
the data of the waves, whose lengths are much less than dimensions
of leterogeneities under investigation, so that for calculaticns
of the wave fields the ray theory may be applied. The
diffractioral tomography is based on a long wavelength
approximation ({(dimensiuns of heterogeneities are less than
wavelength). An advantage of the diffrational tomography 1is the
use of the data on wave“orms rather than on travel times only,
since the waveforms contain enlarged information about
characteristics of the medium. But solution of the problems of
diffrational tomography involvs some computational difficulties as
well as difficulties in calculation of synthetic seismograms,
especially for complex structures. Therefore the methods of the
ray tomography are more developed by the present time, and these
methods are widely used for determination of 3D distribution of
seismic velocities in the Earth.

1.2 Formulation of the ray seismic tomography problem

The ray tomography is one of the inverse problems of seismology.
Tts peculiarity is that the initial data are functionals over
lines (rays) in the space. But the rays do not cover the space
entirely, so that such data seem to contain no information on the
parts not crossed by the rays. However it is not quite so. The
rays are infinitely narrow lines only in case of infinitely high
frequencies. But since the wavelengths are always finite, the rays
may be regarded as thick, their thickness being dependent on
frequency: it is equal to a dimension of the Fresnel =zone.
Therefore if a number of the rays if sufficiently large, the
"thickened" rays {(let us call them ray tubes) may cover the whole
space.

However we cannot express the "data" (travel times) as some

functionals over 3D parts of the space, they are represented as
the functionals over the lines:

t= [ 98 {1
1 vir}
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or in the form more suitable for solving the tomography problem:

t= [ 6 trvicar (2)
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O
where G {r) is singular on . and egqual to @ elsewhere. Extending
N 18
this definitien to finite wavelengths we must assume V(r) in (1)

as an average value over a cross-section of the ray tube rather

than a local value. Correspondingly a definition of the function

G {r) is changing: it differs from zero outside the ray tubes, and
L

co , -1 .
inside it may be roughly assumed to be equal to W , where W is
the area of cross-section of the ray tube.

This consideration allows on one hand to understand a difference
between the approaches for solving the teomography problem, on the
other hand to realize what is a meaning of the solution.

1.3, Linearization of the problem

The general formulation of the problem is given by (1) or (2):
the observational data are t (i=1,2,..,N), and the velocity
1

function Vir) has to be determined. This problem is obviously non-
linear, since a shape of the ray depends on the unknown velocity
distribution. But in most cases a rough approximation of the
velocity distribution Vu(r) {a starting model) 1is known from

former gecphysical studies. Sc instead of V(r) we may determine a
velocity correction assuming that the ray in the starting model
differs slightly from the ray in the starting model. Usually
instead of the velocity correction we determine the relative
slowness correction: ’

nir)= (v"(r)-v;‘m)/v:(r} {3

If we define travel time in the starting model as

t ds
O vV (r}
0
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then the problem is linearized:

ce L ., ds
st = jmn )m {5a)
. 0]
“
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or
St = j G (rim{ridr {5b)
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where G (r) does not depend on the unknown veleocity function

vir).
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1.4. Tne approaches for solving the problem.

since a solution of (5) is not unigue, some < ¢ilcr1l assumptions
¢ to be made about the solution. Differences between the
Jisting algorithms for solving the problem ultimately follow from
fferences in the « pr:ur: assumptions. The assumptions may be
volved into the algor thm in explicit or implicit form.

By the present time many different algorithms have been
weloped for solving the tomography problem. This follows from
;e fac. that any algorithm must satisfy different requirements.
;e main requirements are following:

t the « gricr! assumptions must be well founded from physical
int of view;

y a solution has not to be affected strongly by the values of the
irameters of the algorithm, which are arbirtary to some exent;

' the algorithm must be as fast as possible and not require too
1Ich computer memory.

In the most of algerithms the medium is divided inte a number of
'11s, mir) being assumed constant (m) in each cell. It is

rident that in this case the problem 1is reduced to solving a
inear system of equations. But in this case arises a question:
1at is the optimum number of the cells? If the number of cells is
ich less than the number of rays, the least sguare method may be
sjplied to obtain a solution. But in this case we cannot get a
sasonable resclution.

Therefore a number of cells should be assumed to Dbe large
jough, but in this case we cannot get a unique solution, so some
jditional assumtions must be involved. Most of the algorithms of
1ch kind are based (explicitely or implicitely} on the assumption
1at the norm of the solution must be minimum. Such is ACH-method
; well as some of ART-algorithms. An advantage of this approach
3 that for sclving the large linear systems we may apply some
-erative algorithms of linear algebla, which allow not to keep in
1e computer memory the whole system. A disadvantage is that it is
ifficult to bring in correspondence the jattern of cells with the
ita set.

To avoid this difficulty some authors proposed the algorithms,
1 which the medium is not divided into cells: a solution is
ipposed to be & continious function of coordinates, but some
ijditional ¢ prior. constrains are imposed to the unknown
inction. In the algorithm proposed by Tarantola & Nersessian
1984) the Bayesian approach is applied, and an « grrort
svariance function of the model is assumed. Yanovskaya & Ditmay
1990) proposed the algorithm based on the assumption of
wothness of the unknown function, which 1is expressed as
inimization of the functional

| “misy Tl (6}

for 2D case under the constrains {5a). For 3D case the functional
[17mir) |“ar (7
has to be minimized.

For the 2D case the solution takes form:

mir) =Zann~)+c (8)
Lol
where
Hor= gt LA (9)
' , v (')
i [
and gi{r,r'}) is the Green's function of the Laplace equation
Agler,r 'Y= &Sf{r=-v")
The coefficients a are determined after substitution of (8)

L
into (5), so that a system of equations, number of which is equal
to the number of the data, is to bhe solved.

The advantage of these apprcaches is that a resolution of the
solution is in correspondence with the dataset: in the parts of
the area covered densily by the rays the solution is detailed,
whereas in the other parts it is more or less smocthed.

The disadvantage is that the methods of this sort require too

much cemputer time comparatively with the former methods., The
method based on the smoothness criterion is practically suitable
cnly for 2D case if the velocity in the starting model V is

(8}
constant (i.e.for determination of lateral distribution of surface
waves), whereas the approaches, in which the preblem is reduced to
solving a linear system of equations

Lm = y (10

and the matrix G is sparse, allow the iterative algorithms to be
applied, as mentioned before.

The simplest {(though not widely used) algorithm 1is so-called
Back FProjection Technigue [BPT}. According to this algorithm the
solution is determﬁged by the formula:

m= 22t (11)
LS,

This gives the exact solution of (19) in the only case, when each



cell 15 Ccrossed not more inan oDy one ray, DUt 1U 15 not clealt Lo
which solution this algorithm converges otherwise.

Some other jiterative algorithms converge to the solution with
minimum norm, i.e. they lead to the solution, which mimimize the
mean square residual

(Gm = y) (Bm-y) (12)

T
and the norm [m|, or m m.

In general case, when the random errors in the data are
described by the covariance matrix FL. and an < o2ris01 covariance
matrix of the vector of the unknowns is F , it is reasonable to

m
look for the solution which minimizes the functional

{(Gm ~ y)TR_1(®m—y)+mTR;‘m {13}
¥

If R =azﬂ. and E =azﬂ, then the functional {13) reduces to:
m n W v
T T
(Gm = v} (Gm-y)+am m {13a)
and the solution is obtained from the linear system

B Gralim = Gy (14}

which also may be solved with the use of one or another iterative
algorithms. Here u=o /o may be regarded as a regularizaticn
'3 m

parameter in Tikhonov's approach.
In the approach based on smoothness criterion in case of

erroneous data the solution is determined by minimization of the
functiconal

(Gm ~ 5t) (Gm-6t)+ of[|7m|%ar (15)

where o is again a regularization parameter. A solution for the
coefficients a and th constant C are determined from the system
L

(S+al)a + Cto= St

at =29 (16)
[}
where
ds dsJ
L
8 = ”g“’t"ﬂvo v—o {17)

4. v Luliilde iyl wL LW dppludciles .,

It is possible to combine the two approaches so that to keep the
advantages of them both. It can be done if the method based on the
smoothness criterion would be applied to a discretized model. The
medium is divided into cells, the number of cells being arbitrary
and larger than the number of rays, and to determine the values of
% we minimize the discrete analogue of {15). The functional

{15} transfomrs into the following:
(Sm - dt)T(Gm—ét) + omCm (18)

i~

where the matrix € is defined from the relationship:

mim =

B3|

, ~ z
F {,tk(ml mk) {(19)

where
[ 1 if the k-th and the i-th cells are adjacent

Lk t P

The solution is obtained then from the linear system

otherwise

(o + ©'Cim = G ot (20}

When the solution is constructed proceeding from the
minimization of the functional {13a), the system of the same form
is to be solved, but in this case {=] (unit matrix).

In 3D case the matrix { is determined as a discrete analogue of
the matrix of second derivatives.

Returning to the system (20) we notice that the matrix C is
sparse, the total matrix «C+&'G  is positive-definite, so the
solution may be obtained by the use of some iterative methods, in
particular with the use of Conjugate Gradient Method (CGM).
Computer time needed for calculations turns out to be much less
than for the continious case,

The program developed in §-Petersburg University is based aon
solving the system (20) by the CGM algorithm with C=f and i
defined by (19}. So the solutions corresponding to two different
criteria can be easily compared.

Calculations made for some model examples allows to draw the
following conclusions:

® When the number of cells increases, the solution obtained by
the discrete analogue of the approach based on the smoothness
criterion converges to the true model, whereas the method based oun
minimization of the norm leads to destruction of the solution.

# The former conclusion is kept even if the real model is not
stmooth.

e



2. Resolviog power of bomag apny dat a

We c¢an never obtain lecal wvalues of the unknown velocity: the
olution of the tomography problem 1s always smoothed. Not to
ention that discretization implies estimation of averaged values
ithin each cell, even these values may be interpreted as averaged
ver some cells.If the solution is determined as a continicus
unction, the values, which are obtained in each point may bhe
egarded as a result of interpclation. Therefore, to judge on
eality of some features of the solution it is important to
alculate not only the solution, but also a resolattion.

In the theory of inverse problems the resolving power is
haracterized by the rescolulion matrls or auerasing Rernel.

If a solution is determined by some linear operator ii {for the
ystem (20) H={uL+5'G) 'G'), i.e. the solution m=HSt, and since

t=Cm, we derive that m = HGm = Rm, where R is the resclution
atrix.

A row of the ¥ may be }nterpreted as welghts which average
solution for j-th cell m over all other cells:
)

m o= R m
1 ko k
e closer R to % , the better the resolution in the j-th cell.

I8 n

If the operator H may be calculated explicitely, then the
psolution matrix is easily determined by multiplication: [F=Hb.,
awever, when the solution 1is determined by an iterative
rocedure, the operator H is implicit. But if the resolution
atrix is symmetric, we may calculate the columns of [ using the
ame iterative procedure and substituting the corresponding column
f the matrix & instead of &t. In the case =] this condition is
atisfied:

P o= (5 G+al) G G=
(5T G+el) G Groli-all) =

T~ (BT G+l ™

at if € is determined by (19) the resolutiocon matrix turns out to
: non-symmetric. Applying the similar transformatioa one can get:

P = 1-a(G G+al) 'C

1d though the twc matrices (GTG+aC)_1 and € are both symmetric,
1e¢ir product is not symmetric. Thus, for calculation of the
ssolution matrix we can apply the same procedure, which is used
sr getting the solution, only for the solution with minimum norm.
1is is a disadvantage of the solution based on the smoothness
~iterion.

A row of the resclution matrix describes a resglution in one
tparate point (or cell). To draw conclusicns about resolution in
L1 cells we must calculate the total matrix rather than one row,

but this eguires too much time. Therefore it is desirable to be
able tc estimate resolution at least roughly in all points of the
space. In classical Bakus-Gilbert method for 1D} inverse problems
such characteristics of the resclution i1s sc-called '‘averaging
length'. If the 2D tomography problem is solved using the appreach
based on the smoothness criterion

Ji?m(r)|2dr = wmin,

the analogous characteristics is a linear dimensicn (or radius) of
'averaging area'. This radius is determined by the formula

D= expl0.75-a Ta -2H'a)

where the matrix ¥ is determined by {17) and the vector H by (%}.

Application of this criterion for estimating the resolution in
the problems of surface wave tomography shows that the value of £
in fact correlates with density of the wave paths and consequently
may be taken as an estimate of the resolving power of the data.

3. Joint determination of lateral velocity
variations and azimuthal anisotvropy

Travel time residuals contain information not only on velocity

variation but also about anisotropy. There are many papers, in
which azimuthal anisotropy is estimated jointly with lateral
velocity wariations {Nakanishi & Anderson, 1983; Tanimoto &

Anderson, 1985; Montagner & Tanimoto, 199@). In all such studies
the velocity is assumed to be a function not only cooerdinates but
alsoc a direction of wave propagation. It is well Kknown that for
weak anisotropy in 2D case the velocity mav be represented as

V = V +Acos2¢ + Bsin2g + Ccosdp + Dsindg
(9]

where o is azimuth.

Usually a contribution of the terms with 44 is much less than
those with 2y, and they may be omitted. Assumung also lateral
velocity variation to be small, we may represent the unknown
velocity in the form:

VIiX,v,p) = VD+ SVix,y) + A(X,ylcos2g 4+ Blx,y)sin2y

5¢ now three unknown functicons &VI(x,v), Al{x,v) and B(x,y) are to
be determined instead of one function &V(x,y). These functions
are usually represented in series of some basis functions with

unknown coefficients {in spherical case - in series of spherical
functions), and the coefficients are obtained from a liiear system
of equations.

But the question arises: is the resulting anisotropy is a real
property of the Earth's material, or it 1is a consequence of a
lateral heterogeneity?



To answer this question we should estimate a resolution for
anisotropy , i.e. a dimension of averaging area, and compare it
with correlation length of lateral velocity variations.

For estimation cof the azimuthal anisotropy, i.e. the Ffunctions
Alx,y¥) and Bi{x,y) we may apply the same technigque as for
estimation of lateral velocity variations in continious case.

As before, we substi’ute the unknown functions &V(r), Alr} and
Bi(r} with the following: m(r)*-JV(r)/VU. a(r)=-A(r)/V“,
b(r)=—B(r)/V0. Then the travel time residuals may be written in
the form:

st = “GL rimir)di + cosZpJfGL (riafridr + sin%}JfGt {etb(r)dr
The functions m(r), af{r} and bi{r} may be determined by

minimization of the functional analcgous to (15):

(Gm - 50 (a-ct)+ af[17m)%ar + 2{f(|7a;"+ 17 Y ar

Then it is easy to show that as before ‘see (8)):

mir) = z;\n (r)+C
Lo 1

alr) = Ekh,c052p H (r)+c
1 Y 2

b{r)

ZI{-\. sin2g H {r)+C
1 Lo FA
where k=au/{3.

The coefficients 4 and Cl,Cz,C3 are determined from the system
1
similar to (16)
(Secllla + C L+ Ct + 0t =5t
T 1 0 2 Ox 3 Uy
At_=
TU
At
TUX
At =
)

"]
[}
‘ @
3y
where .
5 =S {l+kcos2ip -¢ )}
LYY | Vo)

t =t coslp
Ouwx oL 1

t =t sinlp
ALy oL 1

So the computationel procedure developed for estimation of
velocity variations with minor changes may be applied for joint
estimation of lateral variations and azimuthal anizotropy. Azimuth
of the fastest direction of wave propagation is then determined as

Ao = arctgla/b)/2

and the anisotropy as

o= 24a2+b2

Analogously to the iscotropic case the radii of averaging areas
separately for a{x,y) and bi{x,y) can be estimated.

Test >xamples show that even in case of exact data there 1is an
influence of velocity wvariaticons on anisctropy and vice versa.
This influence is strong in the cases when whithin the averaging

area the averaged velccity is different along different direcrions.

Application of the described appreoach to the data on group
velocities of Rayleigh waves in the region of South-eastern Europe
shows & distinct anisotropy, which correlates with tectonic
structures. However, the radii of averaging areas are found to be
larger than dimensions of these structures, so that the anisotropy
revealed in this study may be regarded as apparent anisotropy due
to lateral heterogeneity similar to transverse anisctiopy due to
layering.

4, Computational facilities

For solving tomography problems two computer programs have been
developed in S-Petersburg University:
& for 2D tomography problem based on continiuos soclution,
including determination of anisotropy:
# for 2D and 3D problems based on discretization.

The first program is designed for calculation of the solution
{velocity distribution over a spherical surface), standard error
of the solution and radius of averaging area over the region under
investigation. Velocity in the starting model is assumed toc be
constant, only one step in improving the velocity being admitted.

In the second program a solution may be obtained by one of the
three methods: BPT, MinNOrm (minimization of the functicnal (18))
and MaxSmooth {minimization of functional (28)). A «column of
resolution matrix may be calculated for any cell (in case of
MinNorm solution it reflects resclution in the corresponding
cell}. Non-linearity is taken into account for 2D case, 1i.e. the
solution obtained at the former step is assumed as a starting
model at the next step. The program is supplied with graphic
facilities for plotting pattern of rays and the solution at eacl
step.
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