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1. INTRODUCTION

In spite of the very considerable efforts made by seismologists and
theoreticians, it is still missing a satisfactory theory which describes accurately
wave propagation in three-dimensional models of the Earth. If the extremely
time consuming numerical procedures, based on finite differences or finite
element methods, are excluded, all the existing analytical methods involve
significant approximations. The modal summation method (Panza, 1985; Florsh
et al., 1991} is practically free from approximation in the one dimensional case
and can be efficiently extended, introducing approximations of variable and to
some extent quantifiable size, to two- and three-dimensional cases (Vaccari et
al., 1989). The method allows to construct very realistic signals, also in the
relatively simple one-dimensional case, and can be very easily applied for a
quantitative and realistic earthquake hazard assessement.

2. WAVES IN MULTILAYERED MEDIA

The medium is assumed to consist of homogeneous layers, separated by
first-order discontinuities. If a medium is continuously inhomogeneous, it is
replaced by a number of homogeneous layers. The advantage of the
homogeneous-layer approximation is that inside each layer the equation of
motion takes a relatively simple form and can be solved exacly, Its disadvantage
is that boundary conditions have to be fulfilled at many interfaces. Analytical
methods for inhomogeneous layers - in contrast to numerical, e.g. finite-
difference methods - are not yet developed to a point where they really can
compete with the methods for homogeneous layers. At present, within the
framework of the activities of the Istituto di Geodesia e Geofisica dell Universita'
di Trieste, it is under development a large project for the formulation of the
theory and related computer code for the construction of complete synthetic
seismograms for three-dimensional anelastic media, based on modal
summation.

The equation of motion for a homogeneous, isotropie elastic medium is



puy =(h+2p) grad div u -y rot rot u (1)

where u is the displacement vector, ngy its time second order derivative, p is the
density and & and p are the Lamé parameters. Body forces due to gravity and
seismic sources are not included in equation (1): it is assumed that gravity has
no other effect than to determine, via self compression, the constant values of p.
A and y, and sources of seismic waves are included through their known
contribution to u (Harkrider, 1964). In order to simplify the discussion as far as
possible, we shall consider solutions of the elastic equations of motion in the form
of plane waves rather than attempt to treat the more complex case of waves
diverging from a point-source. This does not involve loss of generality in the
computation of the dispersion function since the point-source solution may be
developed by integration of plane-wave solutions (Harkrider, 1964), with a
preassigned precision depending upon source-receiver distance (Panza et al.,
1973).

The x axis is taken parallel to the layers with the positive sense in the
direction of propagation. The positive z axis is taken as directed into the medium.

3. P-SV WAVES

For the m-th layer let rm= density, dm= thickness, Ay and um =pmpPm?=
Lamé elastic constants, ay,= velocity of propagation of dilatational waves,
Bm=velocity of propagation of rotational waves, k=w/e=horizontal wave number, w
angular frequency, ¢ phase velocity, ym=2(Bm/c)?, um=displacement component
in the x direction, wy=displacement component in the z direction, om=normal
stress, Tp=tangential stress.

For men rg,={(c/am)*-1]"2if c>am and ray=-i[1-(c/am)?1*/2, if c<om;
furthermore g, =((c/Bm)?-11""%, if c>Bm and rg,,=-i[1-(¢/Bm)?1"? if c<Br.
Finally, if m=n, rq,=-i[l-(c/am)?]'? and rg_=-i[1-(c/Bm)?]"/2.

Then periodic sclutions of the elastic equation of motion for the m-th layer
may be found by combining dilatational wave solutions,

Am=(0um/dx)+(dw,/dz)=
cxp[i(pt-kx)}[A‘mexp(-iqumz)+A”mexp(ikrumz)] (2)

with rotational wave solutions

Sm=(1/2)}[{dum/az)-(dwm/ox)]=
expli(pt-kx)1[§ mexp(-ikrp,z)+8"mexplikrp,z)] (3

where A'm, A"q, 8'm and &'y are constants.

With the sign conventions defined above, the term in A’ represents a
plane wave whose direction of propagation makes an angle cot'lram with the +z
direction when rq is real, and a wave propagated in the +x direction with
amplitude diminishing exponentially in the +z direction when ry  is imaginary.
Similarly, the term in A”p, represents a plane wave making the same angle with
the -z direction when ry, is real and a wave propagated in the +x direction with
amplitude increasing exponentially in the +z direction when ry,, is imaginary.
The same applies to the terms in &' and 8"y with ) substituted for rq,,.

Droping the term expli{wt-kx}] the displacements and the pertinent stress
components corresponding to the dilatation and rotation, given by equations (2}
and (3), can be written:

Um=-(m/0)2(3Am/3%)-2(Bm/0)}2(38m/02) (4)
Wm=-(am/0)(0An/02)+2(Bn/0)?(38m/dx) (5)
Sm=pm{ &’mAm+2B8%m[(em/0)2(3%Am/0x2)+ 2 Bm/w)2(3%5m/Ax3z)] } (6)

tm=2pmB%m { -(0m/®) A Am/0x02)+ (Bm/®) 2 (328m/dx2)-(328m /322) |} (7

The boundary conditions at an interface between two layers require that these
four gquantities should be continuous. Continuity of the displacements is assured
if the corresponding velocity components iy and W, are made continuous
and, since ¢ is the same in all layers, we may take the dimensionless quantities
Um/c and W p/c to be continuous. Substituting the expressions {2) and (3) in
equations (4) to (7) and expressing the exponential functions of ikrz in
trigonometric form, we find

cu m=AmCospy-iBmsinpy+1p,,Cmcosqm-irg,Dmsingm (8)
CW m=-ifg, Amsinpm+rgyBmcospm+iCrsingm-Dmcosqn (2
Om=Pm{¥m-1}Amcospm-ipm{¥m-1)Bmsinpm+pm¥mI3,Cmeosqm-
ipmYmrpy Pmsingm (10)
tm=1PmTmTon AmSinPm-Pm¥mlonBmeospm-ipm{(¥m-1)Cmsingm +
Pm{¥m-1)Dmcosqm (11)
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where

Am:-azm(A’m-#A”m), Bmz‘azm(ﬂ’m'ﬂ"m), sz'zﬁzm(s’m's“m). Dp=-
2828 m+8 " m) pm:kram[z-z(m'l)], qm:krﬂm[z-z(m'l)], 2(m-1) i5 the depth of
the upper interface of the m-th layer and A’m, A”m, 8'm, 8"m are the constants

defined in (6) appearing in the depth-dependent part of the dilatational and
rotational wave solutions:

A'mexp(-ikrg, )+ A" mexplikrg,z) (12)
& mexp(-ikrp 2)+8 " mexp(ikrp,z) (13)

2.1. EVALUATION OF EIGENVALUES AND EIGENFUNCTIONS

For a continental model, the vanishing of the two components of stress at
the free surface yields:

-p1(yr-DA-pinirg C1=0 (14)
P1Y1Fe By-pr(y1-1)A =0 (13

Thus the submatrix A/ defined in (7,8) can be written in the form

pun-1) 0 -PImi 0
Al (16}
0 PITI 0 -pilyi-1)
At the m-th interface, the continuity of displacement and stress yields
AmcosPnriBmsian+r5mCmcost-ierDmsian:AmH+rgm+1Cm+1, (17)

—iramAmsian+ramBmcost+iCmsian-Dmcost= Tome BM+1 -Dm+1 (18
pm{tm-1)AmcosPr-1pm(Ym-1 )BmSi"Pm*PmYmerCmCOSQm'imemTBmDmSian

=pm+1{fm+ 1- D Am+ 17 Pm+1Ym+ 173 1 Cm+ 1, (19)
ipmymrumAmsian-pmymramBmcost—ipm(ym-1 WomsinQm+pm¥m-1)DPmcosQm
=pm+ 1Y+ Tame Bm+ 1+ #m+ 1 (fm+1-1)Pm+ 1 (20)

where Pp=krg,dm » Qn=krp,dm and dm is the layer thickness, Thus the
interface submatrices defined in (6) have the form

cosPmy -isinP fTo, <cosQm -irR,,$inQm
A= i sinPp cosPm iSinQm/tpy -cosQm
pm{Tm-1)c0sPm  -ipm{¥m-1sinPm/ray, Pm¥YmCOsQm PmY¥mTB,$inQm
ipmYmFomSinPm -PmImEesPm dpm (Y- 1sinQm/TBy,  Pm Ym-1)e0sQm
-1 0 -1 0
0 -1 0 1 (21}
Pm+1lfmei-) O Pm+1¥m+1 0
0 Pm+1Ym+1 0 Pm+1{tm+1-1)

and, noting that, when imposing surface waves conditions, in the half space
A"=8"=0, Ap=Bp=-al,A’y and Cp=Dp=-2Pa® n, the submatrix representing
the {n-1)th interface has the form

-1 “TBn
- Teg 1
Aln-i)- v palya-1) -Pn¥alpy (22)
Pa¥nlay -palyn-1)

where the first four columns are the same as those of AlM with m=n-1. For each
layer, AW {i=1,n) submatrices represent the denominators of Cramer's system
solutions when the boundary conditions are applied. In more compact notation it
can be written

2]
| A

(23)

| a2 |

| Ao

where the non zero elements only are pictured. A condition for surface waves to
exist is Ap=0, which defines the dispersion function for Rayleigh waves:



Fglw,c)=Ap=0. (24)

The discrete solutions (w,c) of the equation (24) describe, in each of the layers,
bedy waves or surface waves depending upon the real or imaginary nature of
Tay, and 1p, . More precisely real values of Tay, and 18 correspond to P- and S-
waves while imaginary values of tay, and 1p. correspond to surface waves,
Therefore the modal summation method allows to solve in an exact and complete
way the full wave equation in a preassigned (w,c) interval. In other words it 15
possible to describe all the rays propagating with phase velocity less than &
preassigned maximum value. It is easy to prove that using the modal
representation the upper limit for the phase velocity is represented by the S-wave
velocity value assigned to the half space used to terminate the structure at depth.

Once the eigenvalue problem is solved it is possible to determine
eigenfunctions, i.e. displacements and stresses.

The algorithmic details of eigenfunction evaluation by Knopoff's method
are rather involved (Schwab et al,, 1984). The problem consists in the
determination of the constants An,Bm,Ci, Dy for the layers above the
homogeneous half-space and the constants An, and Dy for the deepest structural
unit. The starting point is therefore the linear, homogeneous system of 4n-2
equations in 4n-2 unknowns

|A(O)| Ay

| Am' 3 C

=~ ==]

IA(“‘z) I Tay 1Bn-t

]A(“‘l)l Dy 0

D2 (25)

where the submatrices Al (i=1,n) are given by equations (16), (21) and (22).
Once the dispersion or eigenvalue problem is solved we are ready to determine
the layer constants. This is done by deleting the last equation of the system and
transposing the terms containing Dy, to the right-hand side of the equations,
thus forming a vector of inhomogeneous terms, If we arbitralily set Dy, to unity,
this will force all To,Bm and Dpy to be real, and all A, and 13,Cm to be
imaginary. At this stage Cramer's rule can be applied to obtain A,. The
remaining layer constants can be determined by iteration. For more details about
the computations of eigenfunctions see Schwab et al. (1984).

4, SH WAVES
With the same notations and geometry of Section 3 we may write, for the
m-th layer, the following expressions for the displacement and the stress

Um=Wm=0m=Tm:0 (26)
vm=exp i(mt-kx)[v'mexp(-ikerz)+v"mexp(ikrgmz)] 27)
Um=Hm(dvm/dz)=ikpmrp,exp i(mt-kx}[v"mexp(ikrgmz}-v'mexp(-ikrﬁmz)] (28)

Neglecting, here too, the term exp i(wt-kx), at the m-th interface the
continuity of displacement and stress yields

Vm/e=(V m-1/¢)cosQm+ivm.1(kmrp,,) ' sinQm (29)

Um=i( ¥ m-1/CImTp  $inQm+vm-1c05Qm (30)

4.1. EVALUATION OF EIGENVALUES AND EIGENFUNCTIONS
From equations (29) and (30) the layer matrix ean be defined:

r .
1 sin Qm
cos Q. EE—
p‘m ‘r
ap, = B..
_mm T B, sin Qm cos Qm_

For the multimode surface-wave eigenvalue computations, using notation of
(Schwab and Knopoff, 1972), the dispersion function can be written as the
modified product for layer-matrices :

P



FL((I.),C)=bn : bl’l b e b 3n

where n is the number of layers, including the lower halfspace. In equation (31)
b, is given by:

bp=(g,-1) if the halfspace is solid
by=(0,-1} if the halfspace is liquid (32)
b,=(1,0} if the halfspace is rigid

where

C 2.;
)

by, (O<m<njis given by:

sin(
cos Om m
oy Ty
b= m fe) B, (34)
M T - sinQ cos @
[lT'I
*
sinh Q
cosh Q:n *F“
- T
Hm B '
by = - if ¢ {Bp, (35)

= ifc=4 (36)

0 1

where we have introduced the real part of imaginary quantities

itehy  an

The modified matrix product of by, and by, 1 is defined as follows:

(bm) (P9 if ({+K) is even
i K

Pm o] 7 (38)

Kol
l

! . (bm) . (bmq) if (j+k) is odd
il Ik

The mathematical solution of the surface wave propagation allows two
types of waves in the solid halfspace, exponentially increasing and decreasing
with depth. To aveoid infinite values of the solution, the coefficient of
exponentially increasing wave in the halfspace must vanish (surface waves
condition). If the halfspace is supposed to be liquid, the deepest interface is at the
analogy of the mantle-core boundary. In analogy with the case of P-SV waves,
imaginary values of rg, correspond to surface waves, while real values of rg,,
correspond to S-waves. More precisely real values of rg, correspond to S-waves
while imaginary values of rg, correspond to surface waves. Therefore also for
SH-waves, the modal summation method allows to sclve in an exact and
complete way the full wave equation in a preassigned (w.c) interval. In other
words it is possible to describe all the rays propagating with phase velocity less
than a preassigned maximum value. It is easy to prove that using the medal
representation the upper limit for the phase velocity is represented by the S-wave
velocity value assigned to the half space used to terminate the structure at depth.

The computation of the eigenfunctions at the layer interfaces can be
performed as follows (10):



sin Q
v cos Qm m v
m k- p_m T m -] )
= Pa - 1) Bn  (39)
Ym ’m - 1
k—k By T B, sin Qm cos Qm |
[ o sinh Qp, |
Y cosh Q, k'“m'rE Yo -1
= " - ifec{ ﬁm 40)
u v
" Kb T csinh QR coshQp, | b
r d
v 1 —m v
m Hm m -1
= . ifc=p, 41)
Ym 0 1 Um -1

where vy, is the displacement and v,,, the stress at the interface m. Notice that :

V= iev (42)

For the last interface, supposing a sotid terminating halfspace, we shall use:

) -sin Q
Vo, cosQn_1+k.r i 1fc)|3n_l
Bn—l n-
v sin Q
3 mn=2 " “n+d ;
Vi COSQn—1+k.r* " 1fc([3n”1
n-
n -1 (43)
.dnﬁl
vnk2+Un—2”Hn_1 lfC:Bn—l

These computations are performed using the initial values {vy ,uy )=(1,0) at the
free surface.

5. COMPUTATION OF GROUP VELOCITIES
Following (Schwab and Knopoff, 1972) the group velocity, u, is obtained
from

u= (44)
1-(w/c)(dc/ow)

where standard implicit function theory is applied to the dispersion function F to
obtain

de/dw=-(dF/dw) /(3F/dc),, (45)

Equation (45} is obviously valid both when F indicates Love as well as Rayleigh
digpersion function.

6. ENERGY INTEGRAIL
Along with eigenvalues and eigenfunctions, the integrals:

L = j:p(z) Y @+¥* (@) 46)

where y;=w(z)/w(0) and iyg=ulz)/w(0}, are required in multimode synthesis of
theoretical seismograms. For a sequence of homogeneous solid layers, these
integrals can be written as

Lig=¢[1aBy - D12 X Iy with m=1, 2,...... n,

The integrals Ym; are given by equations (51) and {53} of (9).

For SH-waves we have:

for the (S -L) case

(48)

2 n
l (VLJ : [[ 21 I(m}] +I{s _S)] for the (S-35) case

e

. :



with:

2

NG L

. 2 (49)

The integrals I, can be computed analytically, both for Rayleigh
and Love waves (Schwab et al., 1984; Florsh et al.,, 1991}

7. MODE FOLLOWER AND STRUCTURE MINIMIZATION

Since all the problems connected with the loss of precision at high
frequencies have been solved (Schwab et al., 1984) the summation of higher
modes of surface waves allows the generation of complete strong motion
synthetics even at high frequencies. The key point in the use of multimode
summation, both for Love and Rayleigh modes, is an efficient computation of the
phase velocity for the different modes at sufficiently small frequency intervals Af
with sufficient precision. To be efficient it is not advisable to determine at each
frequency and for each mode the zeros of the dispersion function using the
standard reot-bracketing and root-refining procedure (Schwab and Knopoff,
1972). This must be used only when strictly necessary, as for instance at the
beginning of each mode. For all cther points i of each mode, the phase velocity
can be estimated by cubic extrapolation, using the values of the phase slowness
s=1/c and df/ds already determined at frequencies fj.2 and fi.1. However, the
precision that can be reached in this way is not satisfactory, thus the phase
velocily value must be refined. This can be done by an iterative cubic fit in the F-c
plane.

Once the problem of an efficient determination of phase velocities is
overcome, two other main problems must be solved at each frequency: (&) to
correctly follow a mode and (b} to determine the minimum number of layers to be
used. The problem »f correctly following a mode arises in the high-frequency
domain (f>0.1Hz), where several higher modes are very close to each other, The
determination of the minimum number of layers to be used - structure
minimization - is critical in order to reach a high precision in phase velocity
determination spending the minimum possible computer time. In order to
ensure high efficiency in the computation of synthetic seismograms, it is

necessary to compute the phase velocity, phase attenuation, group velocity,
ellipticity, energy integral and eigenfunctions and their maximum depth of
penetration at constant frequency intervals. To reach a maximum frequency of
10 Hz, a satisfactory step is 0.05 Hz. To determine the total number of modes
present in the frequency interval considered, we fix c=c, a value cloge to Bn,
where fip is the S-wave velocity in the half-space, and we increment f to find its
values corresponding to zeros of the dispersion function F(f.cy) (8). Obviously,
starting from f=0, the first zero in F{fic,) corresponde to the fundamental mode,
the secend to the first higher mode, and so on. The values of f for which Fif,c,) =0

are used as starting frequencies (the lowest frequencies) for the computation of
the different modes. Once the starting frequency for each mode is defined, it is
possible to compute, beginning from the fundamental mode, all dispersion
relations. This is accomplished by keeping f fixed and varying ¢, the procedure
being applied at all of the equally spaced frequency points of the chosen frequency
interval.

More details about the mode follower and the complete description of the
procedure for structure minimization are given in (Panza and Suhadole, 1989},

8. ATTENUATION DUE TO ANELASTICITY

The treatment of anelasticity requires, for causality reasons, the
introduction of body wave dispersion (BWD) (Futterman, 1962). In a medium
with constant Q, the P- and S-wave phase-velocity can be expressed:

A (o)
Aoy =— L0 o] (50)
I+ Aoy A 2(mo) - In (T)
B {0 )
B (@)= — (51)

: (=)
1+ -B] ((,00) : Bz(wo) n {4
The layer index m is omitted in equations (50) and (51} Aoy and Aglwg} are the
P-wave velocity and the P-wave phase attenuation, while Bq{w,) and Balw,) are

the S-wave velocity and the S-wave phase attenuation at the reference angular
frequency o, (see also Panza and Suhadolc, 1989). The quantities A1 and Ag and
Bj and By are related to the complex body-wave velocity o and B (Schwab and

Knopoff, 1972):



11
—=-—-i-A

“ A 2 (52)
11 .

~_L _i.B

B B 2 (53)

In the computation we have chosen the reference angular frequency w=2n

radians. In anelastic media the surface wave phase velocity ¢ must be expressed
as a complex quantity:

C ' 2 (54)

C1 is the attenuated phase velocity and Ca is the phase attenuation, which is
necessary for the computation of seismograms, Co can be estimated by using the

variational technique (Takeuchi and Saita, 1972; Aki and Richards, 1980), The
phase attenuation Cg is given by (Panza, 1985; Florsh et al., 1991; Panza and

Suhadole, 1989). For Rayleigh waves:
— -1
C2=(2_mllk) / Im(I,)

where K is the wave number in the perfectly elastic case and:

o (bt o i)

It

T 1
la_qa(l"’z“) "'*lf—z(yzz+2kly2y3)+k1I+--—l-—z v
0 (A +2u) (h+2p)

1.2 2k 2
+6U~uzy4 8){(14_2“)()/2)’3"'](1)’3)}‘31

and yy=o(z)/w(0) and tyg=1(2)/w(0),

8= o, - B, B )+ 2ipp, p,
8 = ;{(uf - ai _62) _Z(Bf - 1322 _Bz)}" ipZ(aluz - 2B1B2)
(A +2n) = p(af —cxzz —-Ez) +i2pa o,

In these expressions o and B are the compressional and shear-
wave velacities in the perfectly elastic case.

All these integrals can be calculated analytically, since simple
analytic expressions are known for the eigenfunctions.

The most important effect of the attenuation is the modification of
the wave velocities and the decay of amplitude in the final computations of
seismograms. As the variational technique is only an approximated method, the
Cg values can be in error by as much as 20 per cent in comparison with the exact
method. This error arise mainly from the use of the elastic and therefore real
eigenfunctions to compute the phase attenuation.

Recently (Day et al., 1889) showed the limits of the variational
technique in the locked mode approximation, which can be obtained by limiting
the model with a rigid or tiquid halfspace. He showed, that an error in
amplitudes up to 100 per cent can occur, when dealing with low Q-values. The
error increases when the Q-values underge large variations with depth.
Introducing a solid halfspace in the model and using the structure
minimization procedure prevents this kind of error.

9. RESPONSE TO BURIED SOURCES

To include the seismic source in the computations, the formulation due to
{Harkrider, 1970} is used. A detailed description of the fault meodel of an
earthquake used in the following computations is given in (Panza et al,, 1973).
For the double couple point source, the asymptotic expression of the Fourier time
transform of the j-th Love(UL)- or Rayleigh( U: , U:)-mode displacement at the

free surface at a distance r from the source can be written as:

i% _-‘- 7 2
= R ° L £ . L
UL-R(m) e e k]_ %8, h) AL o e (57)
i@ _i3n 1 -k 1 —wrCz
URR= Rlw)-e * |n|-e ¢ .k REp Xa{Bh) AL S — *

‘\/21’" € (58)

-
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U =e *¢ " U (59)

where Ri®) is the Fourier transform of the equivalent point-force time function, n
is the unit vector perpendicular to the fault and has units of length, ®y= argR{w)
is the initial phase and e;=-u*(0)w(0) is the ellipticity. The factors Ag Aj, are
given by:

SR S '
A= I | (60
L

and

- 1 -
A e 61)
R

A

where ¢ and u are the phase and group velocities for Love and Rayleigh waves
respectively.
The effect of anelasticity is expressed by the term:

—wr02
e (62}

where Cgz, which indicates the phase attenuation either for Love or Rayleigh
waves, can be determined as shown in Section 8.
¥(8,h) is the azimuthal dependence given by:

(8. h)=d; +i-(d sin 0+d, cos @) +d, sin 28+d, cos 26
R R R R

for P-8V waves, and by

x,8,h)=1(d, sin 8+d, cos 8) +d, sin 26 +d, cos 26
1 L L L

for SH waves.

d, =7 B(h) - sin & sin 23
d, =—C(h) - sin A -cos 28

R
d2

=-Ch) - cos h cos &
R

d, =Ath) - cos i- sin 8
"R
4R=_‘5. A(h) sin - sin 28

d

d

1

=Gh) - cos h-cos S

L

d, =-Gh) - sin X - cos 25
L

d, =5 V(h).sin & sin 28
L

d, =V(h) - cos L. sin d
L

8 is the angle between the strike of the fault and the epicenter-station direction, A
is the rake angle, 5 is the dip angle and h is the source depth. A(h), Bh), Cth),
G(h) and V(h) depend on the values of the eigenfunctions at the hypocenter:

Alh) = _%%l

o=~ S I - ke £
c

V(h)= Vi(_h_) _ "\sf:‘l

o

The asymptotic expressions (57), (58) and (5%) allow the computation of
synthetic seismograms with at least 3 significant fipures as leng as kr>10 (Panza
et al., 1973) and is equivalent to the expression in terms of the seismic moment
[e.g. see equations (7.148), (7.149) and (7.150) in Aki and Richards (1980)).The



seismogram related to a given mode is obtained by the inverse Fourier transform
of (57}, (58) and (59).

The extension of these results to the available formalism for sources with
finite dimensions and durations is quite straightforward; the necessary details
can be found in (Panza and Suhadole, 1989).

10. TWO DIMENSIONAL MODELS

The expressions (57}, (58) and (59), describing the displacement due to
surface-wave modes, have been generalized to the case of two stratified
quarterspaces in welded contact, (Levshin, 1985; Vaccari et al., 1989). For
example the radial component of displacement spectrum can be written:

U=R(w) ¢ @54 g mitiesrt oy e i)

€
‘ h)
A e e o feos e X8 (63)
] 2 Zcul i Cos @ 2
N [2cul, ch al,

It is assumed that the source and the receiver are situated far from the sharp
vertical discontinuity in comparison to the biggest wavelength of interest.
Equation (63) represents the radial displacement carried by the n-th Rayleigh
mode generated by a point source at Mir, I} of a medium j, then transmitted
through the boundary between j and j and recorded at point M'(r, 1) on the
surface of medium j' as mode n'. r and r are respectively the distances of source
and receiver from the vertical interface, 1 and 1' are the paths travelled by
incident and generated waves, ¢ and ¢’ are the angles of incidence and
refraction. In Eq.(63) the primed quantities refer to the medium where the
receiver is placed while the unprimed quantities refer to the medium containing
the source. R{w) is the Fourier transform of the time function relative to the
source, ¢ and c' are the phase velocities, u and u' the group velocities, I and T'
are energy integrals e’ is the Rayleigh mode ellipticity of the receiver's medium,
Xr(6.h) is the radiation pattern evaluated for the medium containing the source,
J=(cos ¢ cos ¢'/c)[(re/cos3d)+({r'c’/cos39")] describes the geometrical spreading
of the surface wave ensargy. The effect of anelasticity is expressed by e-
O(1C+I'C'y) where € and C'z are the phase attenuations in the two media (for
more details see (1)),

The coupling coefficients Fjj'(m, ¢, 9, n, n'), necessary to describe
reflection and transmission phenomena at the boundary, will be discussed in
Section 10.1.

10.1. COUPLING COEFFICIENTS

The problem of reflection and transmission of surface waves through
lateral discontinuities existing inside the earth can not be solved in an analytical
way. Several methods based on different approximations have been proposed to
define and estimate surface waves reflection and transmission coefficients. Here
only the transmission problem will be discussed, but the same proced are can be
adopted to describe the reflection problem.

The approximations suggested by {Gregersen and Alsop, 1974) were
chosen to evaluate a set of coupling coefficients that gives a picture of how the
energy carried by the normal modes, characteristic of the medium with the
source, and transmitted through the discontinuity, is redistributed among the
normal modes, of the medium with the receiver,

The starting point is the stress-displacement system of the incoming
surface wave mode. Decomposing the incident wave into the P-component and
the SV-component, we turn to a solvable problem of reflection and transmission
of P-8V waves. The problem will be solved for every single section on the vertical
interface as if it would be infinite, using well known formulae based on Snell's
law and continuity conditions of displacement and traction at the boundary.
Since the sections are in reality limited, in this way we neglect the effects arising
at the corners between the horizontal interfaces and the vertical one. We can
think the corner effects as giving rise to a system of diffracted waves. These arise
because it is impossible to satisfy exactly the continuity conditions also on the
horizontal interfaces. With this approximation a reflected and a transmitted
stress-displacement system can be determined. They contain a P-component and
an SV-component but their combination does not give a Rayleigh wave any
longer because the continuity conditions at the horizental boundaries are not
matched. The medium with the receiver is characterized by a set of normal
modes corresponding to solutions of the wave equation verifying the continuity
conditions on the horizontal interfaces. Qur aim is to determine how each of
these modes is excited by the modes contained in the incident wave, or in other
words, how the transmitted system redistributes among the normal modes
existing in the medium with the receiver. To obtain this, the transmitted system
is projected on the system of normal modes characteristic of the medium with
the receiver, using an appropriate definition of scalar product.




A stress-displacement vector for an incident wave identified by the
subseript I can be defined

Ay = (up, v, Wy, Pxxls Pryls Przl) (64)

where p;; is the j-th compenent of the stress acting across the plane normal to
the i-th axis. The py (with j = x, y, z) stress components are considered because
for the geometry of the problem only stresses acting on the vertical plane x=0 are

involved. Defining similarly a stress-displacement vector relative to the normal
modes system of the medium with the receiver, the projection of vector Aj on the

vector Ay is performed via a scalar product, suggested by Herrera's
orthogonality relation (Herrera, 1964);
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the bar denotes complex conjugate. Indicating the transmitted system by the
vector

AT = (UT, YT, WT, PxxT» PxyT» PxaT) (66)

the quantity:
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provides the amplitude of mode n' of Aj; due to mode n of Ay, contained in the
transmitted vector Ay. If the amplitude of a wave generated by an incident wave
of unit amplitude is preferred:

(m,m)
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rjj' is the coupling coefficient appearing in equation (63).

The approximations used to obtain [j; are:

a) the Rayleigh modes for the two media are evaluated assuming each
medium as a halfspace instead of a quarterspace; this is a reasonable
assumption a few wavelengths from the interface;

b} a system of diffracted waves arising at the corners of the sections is
neglected; this is a good approximation for a small contrast in the elastic
parameters characterizing the two quarterspaces {Gregersen and Alsop, 1974).

The crucial approximation is contained in this last point. Although it is
not easy to estimate quantitatively the accuracy of it, a criterion is given by a
reversibility theorem {(Vaccari et al., 1989).
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