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1. The Classical KAM-Theorem

a. The purpose of this lecture is to describe the KAM theorem in its
most basic form and to give & complete and detailed proof. This proof es-
sentially follows the traditional lines laid out by the inventors of this theory,
Kolmogorov, Arnold and Moser (whence the akronym ‘KAM'), and the empha-
sis is more on the underlying ideas than on the sharpness of the arguments.
After all, KAM theory is not only a collection of specific theorems, but rather
a methodology, & collection of ideas of how to approach certain problems in
perturbation theory connected with “small divisors”.
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b. The classical KAM thecrem is concerned with the stability of motions
in hamiltonian systems, that are small perturbations of integrable humiltonian
systems. These integrable systems are characterized by the existence of action
angle coordinates such that the hamiltonian depends on the action variable
alone — see [2,12] for Jetails. Thus we are going to consider hamiltonians of
the form

H(p,q) = h(p) + fe(p,q),  fe(p.9) = ef(p.0,€)

for small ¢, where p = (p1,...,Pn) 8re the action variables varying over some
domain D ¢ R", while ¢ = (q1,--.,¢a) are the conjugate angular variables,
whose domain is the usual n-torus T" obtained from R by identifying points
whose components differ by integer multiples of 2x. Thus, f, has period 2=
in each component of q. Moreover, all our hamiltonians are assumed to be
real analytic in all arguments.

The equations of motion are, s usual,

p=—Hyp.q), ¢=Hp(p,q)

in standard vector notation, where the dot indicates differentation with re-
spect to the time t, and the subscripts indicate partial derivatives. The un-
derlying phase space is D x T* C R" x T". We as;ume that the number n
of degrees of freedom is at least 2, since one degree of freedom systems are
always integrable.

c. For ¢ = 0 the system is governed by the unperturbed, integrable
hamiltonian A, and the equations of motion reduce to

p=0, =w
with
w = hy(p)-

They are easily integrated - hence the name ‘integrable system’ - and their
general solution is

pt)=po,  qt) = g0 +wipo)t.

Hence, every solution curve is a straight line, which, due to the identification of
the g-coordinates mod:lo 2%, is winding around the invariant torus {pe} xT"
with frequencies — or v inding numbers — w(py) = (w1(Po), .. .,wn(Po))-
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Thus, the whole phese space is foliated into an n-parameter family of
invariant tori {po} x T*, on each of which the flow is linear with constant
frequencies w(po). That is, each torus is a so called Kronecker system (T",w).
- This is the geometric picture of an integrable hamiltonian system.

1t should be kept in mind that due to the introduction of action an-
gle coordinates these solutions are related to “renl world solutions” by some
coordinate transformation, which is periodic in g1,.-.,¢n. Expanding such a
transformation into Fourier series and inserting the linear solutions obtained
above, the “real world solutions” are represented by series of the form

Z ax(po) elkigor+(bwlpolyt o € R*™,
kEZ"

where (-, -) denotes the usual skalar product. Thus, every solution is now
quasi-periodic in t: its frequency spectrum in general does not consist of
integer multiples of a single frequency - as is the case with periodic solutions —,
but rather of integer combinations of & finite number of different frequencies.
In essence, the “real world solutions” are superpositions of n oscillations,
each with its own frequency. Moreover, these quasi-periodic solutions occur
in families, depending on the parameter gq, which together fill an invariant
embedded n-torus.

Let us return to action angle coordinates. We observe that the topo-
logical nature of the flow on each Kronecker torus {T",w) crucially depends
on the arithmetical properties of the frequencies w. There are essentially two
cases.

1. - The frequencies w are nonresonant, or rationally independent:

(k) #0 forall £k €EZ".

Then, on this torus, each orbit is dense, the flow is ergodic, and the torus
itself is minimal. :

2. - The frequencies w are resonant, or rationally dependent: that is,
there exist integer relations

{k,w)=0 forsome 0£k€Z".

The prototype is w = (w1,...,wnem,0...,0), with 1 £m < n—1 trailing
zeroes and nonresonant (wy,...,wn—m). In this case the torus decomposes
into an m-parameter family of invariant n — m-tori. Each orbit is dense on
such a lower dimensional torus, but not in T",
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A special case arises when there exist m = n ~ 1 independent resonant
relations. Then each frequency wi,...,wa 1s an integer multiple of a fixed
frequency w,, and the whole torus is filled by periodic orbits with one and
the same period 27 fw,.

In an integrable system the frequencies on the tori may or may not vary
with the torus, depending on the nature of the frequency map

hpl DHQCR"’ pr(P) =h’(p)

We now make the assumption that this system is nondegenerate in the sense
that
Bw

det hpp = det?a—; 95 0

on D. Then h, is an open map, even a local diffeomorphism between D and
some open frequency domain 2 C R", and “the frequencies w effectively de-
pend on the amplitudes p”, as a physicist would say. It follows that nonreso-
nant tori and resonant tori of all types all form dense subsets in phase space.
Indeed, the resonant ones sit among the nonresonant ones like the rational
numbers among the irrational numbers.

This “frequency-amplitude-modulation” is a genuinely nonlinear phe-
nomenon - in a linear system the frequencies are the same all over the phase
space. As we will see, this is essential for the stability results of the kAM the-
ory. As people say, “the nonlinearities have a stabilizing effect”.

d. Now we consider the perturbed hamiltonian. The objective is to
prove the persistence of invariant tori for small ¢ # 0.

The first result in this direction goes back to Poincaré and is of a negative
nature. He observed that the resonant tori are in general destroyed by an
arbitrarily small perturbation. In particular, cut of a torus with an n — 1-
parameter family of periodic orbits, usually only finitely many periodic orbits
survive a perturbation, while the others disintegrate and give way to chaotic
behaviour. - So in a nondegenerate system a dense set of tor is usually
destroyed. This, in particular, implies that a generic hamiltonian system is
not integrable.

Incidentally, it would not help to drop the nondegeneracy assumption
to avoid resonant tor. If h is too degenerate, the motion may even become
ergodic on each energy surface, thus destroying all ton [6}.

A dense set of tori being destroyed there seems to be no hope for other
tori to survive. Indeed, until the fifties it was a common belief that arbitrarily
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small perturbations can turn an integrable system into an ergodic one {on
each energy surface). In the twenties here even appeared an (erroneous) proof
of this “ergodic hypothesis” by Fermi. . o

But in 1954 Kolmogorov observed that the converse is true - the majority
of tori survives. He proved the persistence of those Kronecker systems, \:vhose
frequencies w are not only nonresonant, but are strongly no-m.'esonant in t.he
sense that they satisfy a diophantine, or small divisor condition: there exist
constants a > 0 and T > 0 such that

\(k,w)| 2 for all 0 # k € Z",

[&”

where k] = [k1}+ -+ + ka|- .
The existence of such frequencies is easy to see. I...et A7 denoter t}hle set
of all w € R™ satisfying these infinitely many conditions. Then A7 is the

complement of the open dense set

a
R = U Ry &, R;_,‘={uER :|(k,w)\<W}.
Al
Obviously, for any bounded domain 7 C R", we have the Lebesgue measure

estimate m (R}, ; N 72) = O(m%:pr) , and thus

m(R,NN) <Y m (R0 82)=0(a),
k

provided 7 > n - 1. Hence, R" = MNovo Ra is a set of measure zero, and its

complement

at=|Jas
a>0

is a set of full measure in R”, for any 7 > n—1. In other words, 'almost every
w in R™ belongs to A", 7 >n—1, and thus satisfies a diophantine condition
for some a > 0.

As an aside we remark that A” = @ for 7 < n — 1, because for every
nonresonant w,

k)] < 4L

(1) Kn—]

min
k:0#max |k; |[<K
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by Dirichlet’s pigeon hole argument. And for 7 = n — 1, the set A™! has
mensure zero, but Hausdorff dimension n - see [15] for references. So there
are continaum many diophantine frequencies to the exponent n—1, although
they form a set of measure zero.

From now on, we will fix 7 > n — 1 once and for all and drop it from
the notation, lettirg Ay = AL

e. But although almost all frequencies are strongly nonresonant for
any fixed 7 > n — 1, it is not true that almost all tori survive a given per-
turbation f,, no matter how small e. The reason is that the parameter «
in the nonresonance condition limits the size of the perturbation through the
condition

e(az.

Conversely, under a given small perturbation of size ¢, only those Kronecker
torl with frequencies w in &,,

a > Ve,

do survive. Thus, we can not allow a to vary, but have to fix it in advance.
To state the KAM theorem, we therefore single out the subsets

2, C 1, a>0,

whose frequencies belong to A, and also have distance > o to the boundary
of 2. These, like A4, are Cantor sets: they are closed, perfect and nowhere
dense, hence of first Baire category. But they also have large measure:

m(f2 - 2,) = 0(a),

provided the boundary of f2 is piecewise smooth, or at least of dimension
n—1 so that the measure of a boundary layer of size a is O(a).

The main theorem of Kolmogorov, Arnold and Moser can now be stated
as follows.

The Classical KAM Theorem [1,7,8]. Suppose the integrable ha-
miltonian h is nondegenerate, such that the frequency map h, is a diffeomor-
phism D — £2, and H = h + f. is real analytic on D xT". Then there exists
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a constant & > 0 such that for
el < a?6

all Kronecker tori (T",w) of the unperturbed system with w € 2, persist,
being only slightly deformed. Moreover, they depend in a Lipschitz continuous
way on w and fill the phase D x T" up to a set of measure Oa).

Here, “real analytic on D x T*” means that the analyticity extends to
a uniform neighborhood of D.

Is is an immediate and important consequence of the KAM theorem that
small perturbations of nondegenerate hamiltonians are not ergodic, as the
collection of Kronecker tori forms an invariant set, which is neither of full nor
of zero measure. Thus the ergodic hypothesis of the twenties was wrong.

It has to be stated again, however, that this invariant set, although of
large measure, is a Cantor set and thus has no interior points. It is therefore
impossible to tell with finite precision whether a given initial position falls
onto an invariant torus or into a gap between such tori. From a physical
point of view the KAM theorem rather makes a probabilistic statement: with
probability 1 — O(a) a randomly chosen orbit lies on an invariant torus and
is thus perpetually stable.

We can draw a stronger conclusion, however, for the special case of two
degree of freedom systems. Here the phase space is 4-dimensional, the invariant
energy levels are 3-dimensional, and the invariant 2-tori in those energy levels
have an inside and an outside. Hence, even when an orbit does not lie on a
torus, it usually is contained inside some torus, which will confine its motion
for all time and thus ensure stability, although not quasi-periodicity. - This
trapping mechanism is not available for n > 3.

The question arises, what, happens in the gaps? This is an area of active
research, and some relevant keywords here are Nekhoroshev estimates, Arnold
diffusion, and chaotic behaviour. But we will not discuss such matters.

f. We conclude with some remarks about the necessity of the assump-
tions of the KAM theorem.

First, neither the perturbation nor the integrable hamiltonian need to
be real analytic. It suffices that they are differentiable of class C' with

1>2r+2>2n

to prove the persistence of individual tori [10,13,17]. For their Lipschitz de-
pendence some more regularity is required [14}.

. :
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The nondegeneracy condition may also be relaxed. It ir not necessary
that the frequency map is open. Roughly speaking, it suffices that the inter-
section of its range with any hyperplane in R” has measure zero. For example,
if it happers that

hp(P) = (“"l(Pl)s coo Wl ))

is a function of p; only (and thus completely degenerate), it suffices to require
that

Biw;

det (—v-) # 0.
Bl /1<ij<n

For a more general statement see [16]. - Written proofs, however, are not yet
available, so a cautious reader may consider these statements rather as (well
founded) conjectures.

Finally, the hamiltonian nature of the equations is almost indispensable.
Analogous result are true for reversible systems [11,14]. But in any event the
system has to be conservative. Any kind of dissipation immediately destroys
the Cantor family of tori, although isolated ones may persist as attractors.

2. The KAM Theorem with Parameters

a. Instead of proving the classical KAM theorem directly, we are going
to deduce it from another KAM theorem, which is concerned with perturba-
tions of a family of linear hamiltonians. This is accomplished by introducing
the frequencies of the Kronecker ton as independent parameters. — This ap-
proach was first taken in [9].

To this end we write p = po + [ and expand h around pg according to
Taylor’s formula:

1
h(p) = hlpo) + (hy(oo), 1) + [ (1= O hap(pOLT)
where p; = pg + tI. By assumption, the frequency map is a diffeomorphism

hp: D— 2, por—w = hp(po)
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Hence, instead of py € D we may introduce the frequencies w € {2 as inde-
pendent parameters, determining uniquely po. - Incidentally, the inverse map
is given as

g =D, wr—p= gulw}

where g is the Legendre transform of h, defined by g(w) = sup,({p,w}—h(p)}.
See for example [2] for more details.
Thus we can write

h(p) = e(w) + {w,I) + Py(Lw)
fulp.q) = fulpo + L) E Pr(Lqiw),

where P, denotes the quadratic term in the expansion of h. Writing now 8
instead of ¢ for the angular variables, we obtain the family of hamiltonians

H = N(I;w) + P{{,6;w)

with

N =e(w) + tw, 1), P = Py(I;w) + Pr(1,8w),

which is real analytic in the coordinates (I, 8) in BxT", B some sufficiently
small ball around the origin in R", as well as in the parameters w in 2. That
is, the analyticity in w extends to a uniform neighborhood of 2.

Let us take this family as our new starting point. For P = 0 it reduces
to the so called normal form N = e(w) + {w, I}, which admits the invariant
torus

'Tg={0})<T"

with constant vectorfield § = w. The aim is to prove the persistence of this
torus and its vectorfield under sufficiently small perturbations P # 0, for all
w in the Caotor set f2, C 2. - Thus, instead of proving the existence of
a Cantor family of invariant tori in one hamiltonian system, we first prove
the existence of one invariant torus within a Cantor family of hamiltonian
systems.

This change of perspective has several advantages. — The unperturbed
hamiltonian is as simple as possible, namely linear. This simplifies the KAM
proof. — The frequencies are seperated from the actions. This makes their
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réle more transparent. For example, the Lipschitz dependence of the tori on w
is easily established. — Generalizations such as weaker nondegeneracy con-
ditions and extension to infinitie dimensional systems are easier. Also, this
approach lends itself naturally to applications in bifurcation theory, where
systems naturally depend on parameters.

b. We are going to prove the persistence of 7y by comstructing a
co >rdinate-parameter transformation F, which takes H back into another
normal form plus higher order terms. This transformation is of the form

Fi (1,6;w) = ($(1,6,w); ¢(w)),
where & is real analytic and symplectic for each w and of the form
& (1,0)— (U(1,8),V(9)),

where we did not indicate the dependence on w. Moreover, U is affine linear
in I. Such transformation form a group G under composition.

c. To state the basic result we need to introduce some not.a;.ttion. Let
Dy, ={|I] <r} x {|lmé] < sjcC*xC®

and
Orv={lw-2<hlcC

denote complex neighborhoods of To and 2, , respectively, where |-| stands
for the sup-norm of real vectors. The sup-norm of functions on D, , x Oy is
denoted by ||, -

‘We will also need to consider the Lipschitz norm - or rather semi norm
- of F with respect to w. We define

l$(v) — ¢(w)l

lv—w}

é|y;. = sup
I Ihp vt

where the underlying domain will be clear from the context. |};  is defined
analogously, extending the sup over [ and 4.
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We recall that 2, C £ denotes the Cantor set of all w in {2, which
have distance > & to the boundary of {2 and satisfy

(k,w)} > Iﬁ* forall 0 # k € Z".

The exponent 7 > n — 1 is fixed once and for all.
Theorem A. Suppose that P is real analytic on Dy, x Oy, and
|Pim x S yars”, s* <h,

where « is a small constant depending only on n and 7, andv=71+n+1.
Suppose also that r,s,h < 1. Then there exists a transformnation

F: Dr[Z,a/Z x 0o = Dy, X fn

in the group G described above, which is real analytic and symplectic for
each w and Lipschitz continous in w, such that

HoF =ew)+ (W, ) +...,
where the dots stand for higher order terms in I. Moreover,

. v . ¢
|W(e - id})|,s" |W(P - ‘d)h..ip C—=|Plranr

ars¥

e . c
16 - idl, 8" |6 = idlyiy < S 1Pl

uniformly on D, 3,2 x £, , where ¢ is a large constant depending only on n
and 7, and W = (r“H ol d), Id the identity matrix.

c. Thecrem A states that over a Cantor set f2, of parameter values
the perturbed family of hamiltonians H is transformed back into a family of
hamiltonians H of the form ‘linear normal form plus higher order terms in I'.
In these new coordinates-parameters we thus have, at I =0,

P Bl =0, 8= Filpg =

Hence, there is an invariant torus 7y = {0} x T® with linear flow 6 =w for

each w € f2,.

S

o ™
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In the original family of hamiltonians H we then have an embedded
invariant torus

T, =0T}, Pu=Ploou: T - R" xT",
not at the parameter w, but st the slightly shifted parameter
@ = $(w).

In other words, for every parameter value & in the slightly deformed Cantor
set

'(20 = ¢(‘Qd) C 'Q,

the hamiltonian H]; admits an embedded Kronecker torus T,, with frequen-
cies w = ¢~ (&) in 2, . This torus is close to the unperturbed torus Ty, since
& is close to the ide atity.

Moreover, since ¢ is Lipschitz close to the identity, we can control the
measure of {2, to the effect that

m(2 - 2.) = O(a).

The argument is the following.

It is a basic fact - recalled in Appendix B - that any Lipschitz con-
Linuous function on an arbitray closed subset of R" can be extended to R™
without changing its Lipschitz constant. Thus we may extend every coordi-
nate function of ¢ — id, and we may even prescribe ¢ — id = 0 outside of 2,
which affects the Lipschitz constant only verly little, since 2, has distance
> « to the boundary of f2. This way we obtain an extension ¢ of ¢ to all
of R", which is still Lipschitz close to the identity, hence a Lipeomorphism
of R®, and which is the identity outside 2. Hence we have a Lipeomorphism

é 12— 02, $|1 2. =9
Now we can conclude that
m(f2 — Da) = m(N - 6(8a))
= m($(2 - 2a)
< em( - $2,)
= Oa),
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since the measure of sets mapped by Lipschitz maps is estimated in the same
way as for C'-maps. )

We point out that such an estimate is not available, if ¢ were just
a homeomorphism. For example, there exist homeomorphisms on the circle,
which map Cantor sets of positive measure into Cantor sets of zero measure.

In the same way the coordinate functions of & are extended such that
the extension is real analytic for each w and Lipschitz in w; we do not bother,
however, to preserve the symplectic nature of the map under extension. We
then arrive at the following conclusion.

Theorem B. Suppose the assumptions of Theorem A are satisfied.

Then there exists a Lipeomorphism $:02 — 1 close to the identity and a
mapping

& AxT R xT*

close to the trivial embedding (w,8) — (0.6) such that for every parameter
value

o € 2o = ¢(2a)

the hamiltonian H|  admits an invariant Kronecker torus T, = F({w} x T"),
where w = $~1(&). Moreover, the estimates for ¢ and ¢ are the same as for
¢ and ®|;_, in Theorem A, though with a different constand ¢, and

m(§2 - 2a) = O(a)
where the implicit constant depends only on 12.

We will see at the end of section 5 that the map ¢ actually can be
assigned w -derivatives of every order on the Cantor set f2,. This may be
formalized by introducing the intrinsically defined notion of a differentiable
function on an arbitrary closed set {20,21}. The point is that — due to the
Whitney extension theorem — such functions can be extended to functions on
the whole space with the same differentiability properties. The upshot is that
there even exists an extension of ¢ to a C*° function ¢ cn §2. The same
applies to & and leads to the notion of smooth foliations of invariant tori over
Cantor seta [14].
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d. We now prove the classical KAM theorem. Introducing the frequen-
cies as parameters we wrote the hamiltonian as H =N+ P, where

P=P,+ Py,
is real analytic on B x T® x {2, B some small ball around the origin in R™.

Thus we can fix some small h and s, with s* < h, s0 that P is real analytic
on the complex domain Dy, % Oa for all small r, and so that

1P|r,.,h S |Ph|r,l,h + |P.f¢|r..,h S drz + dE,

d some constant depending on H . To meet the smallness condition of Theo-
rems A and B, we choose r = /¢ and arrive at the condition

€ < yars® = jas” - /e, =,
2d
which amounts to

e < ¥t =ats,  b=7s.

So there is 2 § depending on n, 7 and H such that Theorems A and B apply
for € < o6,

By construction, an orbit (I(t),8(t)) for the hamiltonian H at the pa-
rameter value o transiates into an orbit (p(t) = po(w) + I(t),g(t) = (1)} for
this hamiltonian in p,g-coordinates, where

po() = by (D) = gu(®).
It therefore follows with Theorem B that the mapping
¥ IxT =DxT",

given by

8 g= V(6;w)

(w) . (p = (h;' 0 @) (w)+ Lj'(o.e;u)) ,

where (U,V) = &, is an embedding of an invariant Kronecker torus (T",w)
for every w € {2, . Moreover, ¥ is Lipschitz close to the real analytic unper-
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turbed embedding

-1
U NxT =>DxT", (L;)H(h’e(w)).

It follows that the measure of the complement of all those tori in the phase
space is bounded by a constant times the measure of 2, xT", hence is O(a}.
This finishes the proof of the clasical XAM theorem.

3. Outline of the Proof of Theorem A

a. We prove Theorem A by a rapidly converging iteration procedure
that was originally proposed by Kolmogorov and implemented by Arnold and
Moser {1,7,8]. At each step of this scheme a hamiltonian

H; = N; +Pj

is considered, which is a small perturbation of some normal form N; = ¢; +
{w,I). A transformation F; = (#;,¢;) in the group G described in section 2.b
is constructed such that

HjoF;=Nju1+Pin
with another normal form N;4, and a much smaller error term Pjy,. Namely,
|Pjs1l < C 1P

for some x > 1. Repetition of this process leads to a sequence of transforma-
tions Fp,F1,..., whose infinite product

F= llm FoOflo---O}-,'

J—so0

also belongs to G and transforms the initial hamiltonian H = Hy into some
normal form np to first order in I, :

In the meantime a number of other proofs have been given, for example
by formulating some generalized implicit function theorem suited for small

e

vy

Ty
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divisor problems {22}, or by refering to an implicit function theorem in tame
Frechet spaces [4]. Recently, Salamon and Zehnder gave a proof that avoids
coordinate transformations altogether and works in configuration space [18],
and Eliasson described a way of using power geries expansions and majorant
techniques in a very tricky way [5)-

But here we stick to the traditional method of proof, as it probably
is the most transparent way to get to know the basic techniques. They are
indeed quite flexible and robust, and not st all restricted to perturbations
of integrable hamiltonian systems. As we mentioned in the beginning, these
techniques rather amount to a strategy of how to approach a large clrss of
perturbation problems.

b. To describe one cycle of this iterative scheme in more detail we now
drop the subscript ;.

First, the perturbation P is approximated by some hamiltonian R, by
linearizing it in I and truncating its Fourier series in 8 at some suitable order.
P — R will be small, and we now consider the hamiltonian H = N+ R instead
of H = N + P. The reason for this approximation will become clear later
hopefully. .

The transformation F consists of a coordinate transformation & and a
subsequent change ¢ of the frequency parameters. ¢ is obtained as the time-
1-map of the flow X} of a hamiltonian vectorfield X, that is, of the system
of ode’s

[ = ~Fa(I,6w), 8=Fi(l,8w).

Then & is symplectic for each w. To describe the transformed hamiltonien
H o & we recall that for a function K,

%KoX};-:{K,F}oX‘,

the Poisson bracket of K and F evaluated at X % Indeed,

:—KDX%- = Z Kojéj+K[jij
y =0 1<jgn
= Y KeFy - K Fy = {K,F},
1€j&n

and the general formula follows.
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So we can use Taylor’s formula to expand Hod = Ho X}"'It=1 with
respect to ¢ at 0 and write

Eoﬁ:NoXHt:]i-RoX:—.-l‘___l
1
=N+{N,F}+] (1-t) {{N,F} ,Fyo Xpdt
1]
1
+R+] (R, F}oXbdt
0

1
=N+ {N,F}+R+/ {(1—-t){N,F}+ R, F}oXpdt.
L]

This is a linear expression in R and F — the linearization of Hod —plusa
quadratic integral remainder. That is, if R and F are both roughly of order ¢,
then the integral will roughly be of order € < ¢ and may be ascribed to the
next perturbation Py = Pjyi-
The point is now to find F such that
N+{N,F}+R=N,
is again a normal form. Equivalently, we want to solve

(2) (FN}+N=R, N=N,-N

for F and N given R. Suppose for a moment that such a solution exists.
Then we have (1 —t}{N,F} +R=(1- #)N + tR, and altogether we obtain

Hod=Hod+(P-Ryod=N,+P,
with N, =N + N and
(3) P+=j:{(1—t)N+tR,F}oX},~dt+(P—R)oX}-.
c. Let us now consider equation (2) first on a formal level. Clearly,

{FiN} = ZF"'NI,' "-ZW,‘F‘; dé‘ awF
) J
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is & first order partial differential operator on the torus T" with coefficients w.
Expanding F into a Fourier series,

F = Z er"“"),
kEL"

with coefficients depending on I and w, we find

aF =Y itkw) Fieth®,
kEL"

Thus, J, admits s basis of eigenfunctions e ® with eigenvalues i (k,w},
k € Z". That is, 9, diagonalizes with respect to this basis.

If w is now nonresonant, then these eigenvalues are all different from
zero except whe | k = 0. We then can solve for all Fourier coefficients R
of the given function R except for the zeroth one Ry, which is given by the
mean value of R over T",

[R] = Ro Rd§.

@0 S

Hence, if R is given, then we can always formally solve the equation

8,F =R —[R]
by setting
Re iy
(4) F= ik},
u#gz- t{k,w)

We are still free to add a #-independent function to F, but we chose to
normalize F so that [F] = 0.
Finally, equation (2) is completely solved by setting

N =[R].

Of course, this choice of N is in no way uniquely determined, but this is in
some sense the simplest one.
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d. As an aside we point out a more systematic interpretation of the
preceding construction. For irrational w, the domain of 8., consisting of all
formal Fourier series in # (ignoring the other coordinates here), splits into two
invariant subspaces, its nullspace A’ consisting of all constant functions, and
its range R, consisting of all series with vanishing constant term. Moreover,
8, is invertible on R.

Decompose R into its respective components in N and R,

R =Ry + Rz.
The projection onto A is simply given by taking the mean value, so
Rv=|R, Rx=R-[R)

The equation

8. F+N=R=Rsr+Ry
is then simply solved by “solving componentwise”,
N=Ry=[R, 0&,F=Rzr=R-[R]

where the latter can be solved uniquely for F in R, since J. is invertible
on R.

This general procedure — “solve for all the terms you can solve for, and
keep the rest” — is at the basis of all normal form theory. It just happens to
take a particularly simple form in our case.

e. So far our considerations were formal. But in estimating the series
representation (4) of F', we are confronted with the well known and notorious
probiem of “small divisors”. Even if w is nonresonant, infinitely many of the
divisors (k,w) become arbitrarily small in view of (1), threatening to make
the series (4) divergent.

This divergence is avoided, if w is strongly nonresonant. To formulate
this key lemma, let A® denote the space of all analytic functions u defined
in the complex strip {# : sup; [Im ;| < s} C C* with bounded sup-norm |u|,
over that strip. Let

Al ={u€ A [u=0},

and recall that w € A] satisfies |(k,w}| > of |k|” for all 0 # k € Z".

e

g

e
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Lemma 1. Suppose that w € Ay. Then the equation
du=v, v € Ag,

has a unique solution ¥ in (Nocgecs Ay, with

c
lul,_, & pom ey jl,
where the constant ¢ depends only on n and 7.

Proof. Expanding u and v into Fourier series, the unique formal solu-
tion u with [u] =0is
Vk__ itk
u = —_—
0 ;t;z" i(k,w}

As to the estimate we recall that the Fourier coefficients of an analytic function
on T decay exponentially fast:

il < v}, e,

where [k} = |k1|+. .. |kn|. See Lemma A.1 for a remainder. Together with the
small divisor estimate for w we obtain

|vel __jeia-oy < 1oLy -
lul,os <Y l(k,wﬂe'"( ) < |T TRy e,

k#£0 k#0

The infinite sum is now easily estimates by ca™""". I

The lemma is actually true with ¢ in place of ¢™*", but the proof is
more involved [15,13].

We observe that 321 is unbounded as an operator in AJ. It is bounded
only as an operator from A into the larger spaces Aj™7, with its bound
tending to infinity as o tends to zero. This phenomen is known as “loss of
smoothness” affected by the solution operator 87 1 and is the main culprit
why small divisor problems are technically so involved. For example, during
the iteration we have to let ¢ — 0 in order to stay in the classes A. But then
|85 | = oo. By the rapid convergence of the Newton scheme, however, the
error term converges to zero even faster, thus allowing to overcome this effect
of the amall div-sors.
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It is absolutely essential for Lemma 1 to be true that w satisfies in-
finitely many small divisor conditions, thus restricting w to a Cantor set with
no interior points. On the other hand, we will also need to transform the fre-
quencies and thus want them to live in open domains. This conflict is resolved
by approximating P by a trigonometric polynomial R: Then only finitely
many Fourier coefficients need to be considered at each step, and only finitely
many small divisor conditions need to be required, which are easily satisfied
on some open w-domain. Of course, during the iteration more and more con-
ditions have to be satisfied, and in the end these domains will shrink to some
Cantor set.

f. We still have to finish one cycle of the jteration. Solving (2) we arrive
at Hod =N, + P, with P, < P and
N,=N+N=N+[R =e )+ {+o@)D,

since [R] is linear in [ and independent of 8. To write N, again in normal
form, we have to introduce

w, =w+v(w)

as new frequencies. Since v is small, there exists an inverse map ¢:w, — w
by the implicit function theorem - see Appendix A. With this change of
parameters,

Ny=e, t {wyo D)

is again in normal form. This finishes one cycle of the iteration.

g- The next section describes the quantitative details, and the final
section its iteration.

4. The KAM Step

a. Before giving the detailed estimates we cbserve that we may scale
the parameter a to some convenient value, say, @ = 2, by multiplying N
and P by 2/a. This rescales w to 2w/a, 8o the domain 2 and the parame-
ter h are scaled accordingly. From now on, we therefore consider the Cantor
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set 12, C 12 of all frequencies w in {2, which have distance > 2 to the bound-
ary of 2 and satisfy

(5) [k, W) = -I—f—ly forall 0# k€ Z".

Accordingly, we set Oy = {jw — 12,| < h}.
To avoid a food of constants we will write

U<y, u-<uv,

if there exist positive constants ¢ > 1 and v < 1, which depend only on n
and T and could be made explicit, such that u < cv and u < yv, respectively.

b. Now let P be a real analytic perturbation of some normal form N.

The KXAM Step. Suppose that |P|,,, Se€ with

(a) e-<qgro’,
(b) €< hr,
(¢) hs K-,

for some 0 < p < i,0<o<¢,and K21, where v=7+n+1. Then
there exists a real analytic transformation

F=(9,¢) Dyro-so 0'!/4 — D, x Oy
in the group G described in section 2.b such that HoF =N, + P, with
e 2 n —-Keo
I‘P+||,r,.l—.'m,hf4 < m + (ﬂ + K" )f

and |N, - No¢|,, 4 < ¢. Moreover,

€
ro¥

(W($ - id)|, [W(D® - I)W'| <

;¢-ed|,h|D¢—m<-§

uniformly on Dy, ,-5, % Os and Ohjs, respectively, with the weight matrix

W= (r_lfd ,—lu)'
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c. The proof of the KAM Step follows the lines of the preceding section
and consists of six small steps. Except for the last step everything is uniform
in Oy, whence we write |-|_, for |1, throughout.

1. Truncation. We approximate P by & hamiltonian R, which 1s linear
in I and a trigonometric polynomial in 8. To this end, let Q be the lineariza-
tion of P in I at I = 0. By Taylor's formula with remainder and Cauchy’s
estimate - see Appendix A for a reminder -, we have

‘er,a <€ ]P - Q|2qr,s < qu'

Then we simply truncate the Fourier series of Q at order K to obtain R. By
Lemma A.2,

lR - QIP,I—O < Knc—Kat‘
Since the factor K™e~X? will be made small later on, we also have

|R

< €.

ra-c

See Appendix A for some remarks about this truncation of Fourier series.

9. Ertending the small divisor estimate. The nonresonance conditions
(5) are assumed to hold on 2, only. But assumption (c) implies “hat

(6) |(k,u)|2% forall 0# k<K
for all w in the neighborhood Oy of f2.. Indeed, for w € Oy there is some
wy € 2, with |w —w,| < h, hence

1 1
|(kvw-wa)l S lk]'}w—wo‘s KhS F < 'l'k_l'f

for |k| < K. Together with the estimate (5) for (k,w,} this proves the claim.

3. Solving the linearized equation {F,N}+ N = R. We can now solve
this equation as described in the preceding section. We have N = [R}] and thus

INi, <\R|,,_, <e

We can solve for F uniformly for all w in O because of (6) and the fact that
R contains only Fourier coefficients up to order K, by truncation. Hence the

EE]
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estimate of Lemma. 1 applies as well with @ = 1, and we obtain a real analytic
function F with

|Rl, ,—o €
\Flrsmze € rpm < Grim’

With Cauchy we get |Fel, ,_ s, <efo "t and |Fil g ,-20 <efra™™, hence

1 1 ¢
-1- lFsl"n-l—hl' ’ ; lFIlr/Z,a-aa < ;’;;

with v=714+1.
§. Transforming the coordinates. The coordinate transformation & is

obtained as the real analytic time-1-map of the flow X} of the hamiltonian
vectorfield Xp - that is, of the ode’s

=-"F‘, 9=F].

With assumption (a) and the preceding estimates we can assure that |Fp| <
nr < r/8 and |Fi| < o on D, 2,0-3, uniformly in w. Therefore, the time-1-
map is well defined on Dy /4,040

(7) ¢ = X:‘"L=1 : Drl-l,:—la — Dr/‘!,:—aus
and
. £ . €
|U-:d|S|F9|<-;—‘;, |V—ld|§|F1[<~;—v:T

on that domain for @ = (U, V). The Jacobian of & is

_ Ur Uy _ Ur Ug
D¢ = (V, V.) ‘(o v, )
since F is linear in I, hence Fy and V are independent of I. By the preceding

estimates and Cauchy’s estimate,

€

£ €
- s s Ve — Id] <
U - Hd) < —, Wol < —5r Ve Hj<—3

on the domain D,/s,-5¢ 2 Dyr,e-se- This proves all the estimates for ¢.
Finally, we observe that, since |U — id] < [Fe| € nr, also

¢ Dyra-30 — Digra—te:
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5. New error term. To estimate P, as given in (3) we first consider

(R, F}. Agein, by Cauchy’s estimate,

(R, FMoja,0-30 < |Ral |Fol + |Rol 1Fil

<E €+C £
r oV GI'G"_]‘

E2

rov’

The same holds for |{N, FY,/24-30- Together with (7) and 7 < 5 we get

1
f {(1 —t)N +tR,F}o Xpdt
0

nra—5e

€2

g|{(1-t)N+tR,F}

rf2,a-4a < ro¥’
The other term in (3) is bounded by

l(P - R) ° ¢11:,1’,.-—.’“1' S IP - Rl?qr‘s—'ld'
< I'P - Ql2qr,a«—40’ + |Q - Rlirpt‘,a—d.u
<P+ K e e

These two estimates together give the bound for |Py|.

6. Transforming the frequencies. Finally, we have to invert the map
W w, =w +vw) v=N;=[Ri

toput N +N back into a normal form N, . With assumption (b) and Cauchy’s
estimate we can assure that

e _h
= |N P - < -
l”lh/? | I|h/2< ro 4

The implicit function theorem of Appendix A applies, and there exists a real
analytic inverse map

$: Onpa = Oz, Wy @
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with the estimates

¢~ idl,h|Dg~ | < =

on Oj/y. Setting N, = (N + N) o ¢ we finish the procf of the KAM Step.

5. Tteration and Proof of Theorem A

a. We are now going to interate the KAM step infinitely often, choosing
appropriate sequences for the parameters o, n and so on. To motivate our
choices, let us start by fixing a geometric sequence for o, say, o, = ¢o/2,
where the plus sign indicates the corresponding parameter value for the next
step. Let r, = nr, and let us consider the weighted error terms

€ €
»? + 7 v’
ro r.o¥

Then we have

E, 4% (E* + (n* + K e ¥°) E).

Suppose we can choose n and K so that n? = E and K"e~K¥e < E. Then

[N

E+<-;17-E2=E‘, K=

That is, E, < ¢! E* for some constant ¢, determined by the KAM step and
depending only on n and 7. Consequently,

61E+ S (CIE)“)

and this scheme converges exponentially fast, if ¢;E <1.
‘We still have to discuss our assumptions

(d) 7 =E
(e) Kue—Ka <E
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as well as assumptions (a—c) of the KAM step. There is no obstacle to take (d)
as the definition of 7, as this implies (a). The other three conditions amount

|

to i
|

I

i

f ch<KT1, Kre K <E=_—-. !
r ra i
Given the rapid convergence of E we may set up similar sequences for h
and K — say, h, = h* and K, = K¥ for p = -;- ~ since then K"e~ K will
converge even faster than E. We only need to make sare that these inequalities
hold for the initial values kg, Ko, ... . But here we may simply define
c 1
M K3™' =ho = 2, |
To .
where cg is determined by the KAM step, and fix E
€0 ?
f =FE =
( ) s 0= Yo [wé

to some sufficiently small constant =, . This will make Kooo large so that the
second inequality is satisfied.

b. We are now ready to set up our parameter sequences. Let )
a; Sp
0’j+1=—2-—, 3541 =s,~-55r,-, 00=E,

so that 3¢ > 8; > -+ — 8/2. Let

., _— -1 — LB —_ "
Eipy =i E}, ki =4, K =Kj,

ru

with = $ and Eo, €0, ho, Ko related by (f-g) and ¢, given by the KAM step.
Finally, let

rivn =miry, 0y = Ej, !
and define the complex domains
D;={ll<r;} x{Imél < s;},  Oj={w— | <hj}

Let H=N+P.

e
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Iterative Lemma. Suppose Py is real analytic on Dy x Og with

1Polyy 00,80 S €0 = T0T007,

where 7o is sufficiently small depending on n and 7. Then for each j 2 0
there exists & normal form N; and a real analytic transformation

Fi=Fpo---0Fj_y: Djx0;— Dy x 0O
in the group G efined in section 2.b such that H o F? = N;+ P; with

ol g
|Pj"’,‘ ,l,‘ ,ﬁj S ej = EJTJUJ *

Moreover, |Nj31 — Nj| < ¢; and

Wo(Fi+! — FI)|,|TFH* — TF o F| < =
f‘,‘h_,‘
- r;lId i
uniformly on Dj4y x Oj41, where W = " egtld 1) and TF? =
he' .

]
—;T denotes the coefficient matrix of the I-linear component of F .

Here and in the following we ignore the energy constants in the normal
forms, since they serve no purpose. But note that the linear terms of N;
and Nj4; differ through the frequency drift caused by the man ¢.

¢. Proof. Letting Fy = id, there is nothing to do for ; =0. To proceed
by induction, we have to check the assumptions of the kaM step for each j > 0.
But (a) is satisfied by the definition of 1;, and (b-¢) hold by the definition of
h; and K; and the choice of their initial values, fixing Ey = 7o sufficiently
stall

We obtain a transformation
Fi:Djp1 x Oj1 = D;j x 0;
taking H; = N; + P; into H; 0 Fj = Njy1 + Pj1 with
|Pj41} < E; + (q: + K;C—K""‘) £; < EJ'E,'
E?

» I3 v WA=k . v
<"";l_‘rj+ldj+1 <‘Ej"'j+1°'j+1 =& E_,+|r,+ldj+l.
2
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Fixing ¢, suitably we get |Pjy1] < €j41. Thus, the transformatien FI+! =
FioFj=Fpo--oF; takes H into N1+ Pj1 with the proper estimate
for Pj41. Moreover, ignoring the energy constants, we have [N — Ny| <
|¢j - ll’” gy,

The estimate of F7 requires a bit more, though elementary work. We
observe that the estimates of the KAM step and Cauchy’s estimate imply

5 : % -1 I B R
|W_,'(}-j - !d)l ) |WJ(D.F, - IJ)W, l < MAX (r"g;, "'jhj) < "y

uniformly on Dj41 X Oj41, where D denotes the Jacobian with respect to I,

et
9 and w, and W; = ( ’ e 1d Id) . We then have
L

Wo(F+! = Fi)| = [Wo(F o = F))|
< |Wo DY W | [W5(F; - id)
< |Wy(F; —id)|
€

<. i—
rih;

provided we can uniformly bound the first factor in the second row on the
domain D; x Q. B

But by induction we have DF} = DFyo---0DF;_y, with the Jacobians
evaluated at different points. Since |[W;W3j| < 1 for all i, we can use a
telescoping argument and the inductiv estimates for the F; to obtain

(WoDFIW;2y| < [WoDFo o0 Frma Wi
< WoDF WG | Wl |-
|W,-_1D.7'-j-1 W,'-—lll ]Wi—le_ll

C3€j
< 2
- 1:1 (1 ¥ f:‘h;) ’

which is uniformly bounded and small, since ¢, /r;h; converges rapidly to zero.
To prove the other estimate we observe that

T}'J'-Pl =T(.'Fj ofj) ="TF! of,‘ -T}-j,
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since § and w are transformed independently of I. Therefore,
|TFI* ~TFi o Fj| < |TF o F5| ITF; - 1d].

"The first factor is uniformly bounded by a similar telescoping argument, while

€5

< S5
¥ .h .
riof = rih;

[TF; — Id| <
by the estimstes of the KAM step. This finishes the proof of the Iterative
Lemma. §

d. We can now prove Theorem A by applying the Iterative Lemma to
H =N+ P, letting P, = P and rp = r, 89 = s. We have ko = cotofro =
cov00% < 8§ < h by assumption, and we can fix the constant in Theorem A
sufficiently small so that

[Polro,none < IPlrap S €< 7a7s < €0 = 207005,
recalling that we normalized o to the constant o = 2.
By the estimate of the Iterative Lemma the maps F J and subsequently

their J-derivatives TFJ converge uniformly on the set

D.x 0= []Dix0;, D.={0}x{lImb| <s/2},

iz0

to mappings ¥, and TF, that are real analytic in 6 and uniformly continuous
in w. Moreover,

= . €
|Wa(F. - id)},|TF. - Id| < —

by the usual telescoping estimates.

It seems to be very unfortunate that D, contains no open I-domain.
But, by construction, the ¥/ are affine linear maps in exch I-fiber over T" x
12, . and we have just proven the convergence of their zeroth and first ode-
terms in I. Therefore, the F/ indeed converge uniformly on the domain
Dy ja,0p2 X 52, to a map F in the group G that is real analytic and symplectic
for each w and uniformly continous in w. Moreover, piecing together the
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above estimates,

- . €
|Wo(F ~ id)| < K:IE < Y0,

hence F mape Dyjz,,/3 X {2, into Dy, x 2. ‘

The estimates |Nj4 — Nj| <¢; and |H o F/ — N;| = |P;| <¢; together
with Cauchy’s estimate now imply that these functions converge to zero to-
gether with their first I-derivative, because ¢;/r; — 0. It follows that N;
tends to some normal form N, and H o F/ tends to N, up to terms of first
order. That is,

HoF =Nyt =efw)t{w, D} 4,

as we wanted to show. — Observe that there is no control over the second I-
derivatives, since ¢;/r? diverges. The scheme was just designed to normalize
the hamiltonian H up to first order.
Let us now look at the w-derivatives of the F7. Since E; converges to

zero at a faster exponential rate than h;, we have

S0 forall A0,

rih}
Hence, all w-derivatives of the F’ converge uniformly on D, x 2, , and we
could assign w-derivatives of any order to the limit map ¥ on the Cantor
set {2, [20]. Without making this concept precise, however, we can at least
conclude that F is Lipschitz continuous in w. Its Lipschitz norm is bounded
by the limit of the bounds on the first w-derivatives of the F: 7. The usual
Cauchy estimate yields

WalF — id)] ) < oty = —

Tuhg Cu“(udg

on D,y ,/; x £2. by the definition of hg and €.

We finally look at the estimates of F. So far they do not reflect the
actual size € of the perturbation, since we fixed € independently of e. But
we observe that everything is still alright if in all the estimates for P;, F;
and F7, the ¢; are scaled down by the linear factor

€ € ce

€@ Yereol rs¥

ry

Ty W™

e
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Scaling down our estimates of F by this factor we can finally extract our
estimates of & and ¢ as stated in Theorem A. This finishes the proof.

A. Some Facts about Analytic Functions

a. First we recall a variant of the Cauchy estimate, which is used over
and over. Let D be an open domein in C*, let D, = {z:]|z—D|<r} be
the neighborhood of radius r around D, and let F be an analytic function
on D, with bounded sup-norm |f],. Then

<215,

TP p

|51

forall0<p<rand1<j<n. This follows immediately rom the Cauchy
estimate for one complex variable.

b. Next we give the estimate for the Fourier coefficients of an analytic
function v on T™ used in the proof of Lemma 1. Recall that A’ denotes the
space of all functions on T* bounded and analytic in the strip {|Im#é| < s}.

Lemma A.l. IfveE A’ thenv=7, vge'*®) with

o] < Jol, e ™, keZ™

Proof. The Fourier coefficients v, of v are given by

__ 1 se-ite®
U= / (0)e~ =0 49,

Since the integral of an analytic function over a closed contractible loop in any
of the coordinate planes is zero, and since v is 2x -periodic in each argument
also in the complex neighborhood, the path of integration may be shifted into
the complex, so that

o =ik 0=id)
vy = @y ,/;.. v(@ — ig)e de
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for any constant real vector ¢ with 14| < 5. Choosing ¢ =(s ~o)(eg,--..€n)
with 0 <o <s and ¢; =sgnk;, 1 < < n, we obtain

lox] < o], M0~

for all o > 0. Letting 0 — 0 the lemma follows. 1

We can now also estimate very roughly the remainder, when we truncate
the Fourier series of v at order K.

Lemma A.2. Let Txv = Emgx”kei(k'”' If v € A*, then

< cKme K|, , 0<o<s,
3

r—c —

lv — Tkl
where ¢ only depends on n.

Proof. With Lemma A.1,

lo—Txvl,_o < D jog] e}¥le=)

|k|>K
S 1.0[‘ Z e"lklﬂ
|k|> K
< |U|. Z 4nln—lc-ia'
1>K

by sumiming first over all & with |k| = I, whose number is bounded by 47"t
The last sum is then easily bounded by a constant times Kre~ Ko 1

There are much more efficient ways to approximate a periodic function v
by trigonometric polynomials. The above crude way amounts to multiplying
the Fourier transform © of v with a discontinuous cut off function. Instead,
one should multiply ¢ with a smooth cut off function Y . For instance, one
could take Y (z) = ¥(z/K), where ¢ is a fixed function, which is 1 on the
ball |z| < &, 0 outside the ball |z] 2 1, and between 0 and 1 otherwise.
Transforming back,

(ﬁ!l'K)A =vedy

amounts to a convolution of v with a real analytic approximation of the
identity ¥, as K — 0o. Such smoothing operators have many interesting
properties. For more details, see for example [22).
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¢. We finally formulate a special version of the implicit function theo-
rem for analytic maps, which we need to invert the frequency map during the
KAM step. Recall that O is an open complex neighborhood of radius A of
come subset {2 of R”. In the following, |-| denotes the sup-norm for vectors
and maps, and the induced operator-norm for Jacobians.

Lemma A.3. Suppose f is real analytic from Oy into C*. If
|f - id] < 5 < 4

on Oy, then f has a real analytic inverse ¢ on Oh/4 . Moreover,
. h
-idl, 7I1Dé-TAI<6

on this domain.

Proof. Let n = h/4. Let u,v be two points in Oz such that f(u) =
f{v). Then :

u—v=(u=f(u)= (- fv),

hence |u — v| < 26 < 2. It follows that the segment (1—s)u+sv, 05551,
is strictly contained in Oa,. Along this segment,

9 =max|Df-I|<é/n<1
by Cauchy’s inequality and so
lu—v| £ IDf —I|ju—vl<0ju—y
by the mean value theorem. It follows that u = v. Thus, f is one-to-one
on Oay.
By elementary arguments from degree theory the image of O, under f

covers Oy, since |f — sd| < é. So f has a real analytic inverse ¢ on O,
which clearly satisfies |¢ — id] < &. Finally,

D¢ - 11, = |(Dfy ot~ 1|
<fion -,
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-1
<(1-1Df - Ilp,) -1
1
< -1
—1-§/2
<¢
n

by applying Cauchy to the domain Ozy. §

B. Lipschitz Functions

Let B C R" be a closed set. We prove the basic fact ~ used in section 2 -
that a Lipschitz continuous function w: B — R can be extended to a Lipschitz
continuous function U': R® — R without affecting its Lipschitz constant

|u(z) — uly)|
uly; g = sup —=———
I |L1p,B !"EPB I"r — yl v
#y ~
where on R" we may take any norm |-|. That is, we have
Ul =u, ViLipan = |ulpip, B »

In fact, B could be any point set.
Indeed, U is simply given by

Ulz) = sug(u(z) - Xz -z}, zeR",
z€ .

where A = |u|y,, 5. By the triangle inequality,

D

(u(z) = Mz —yl) 2 (u(z) = Az = z) = Az — vl
Taking suprema over z we obtain U(y) 2 U(z) — Ajz - y], or

U(z) ~U(y) S Az — |-

B

e
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Interchanging = and y we obtain

[U(z) = Ul £ Mz —yl,

whence Ul pn < ulpip, 5 - We leave it to check that U =u on B.
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