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2. Introduction into the elementary theory

of elastic X-ray Scattering

2.1 Scattering at a free electron

Let us assume that an electro-magnetic wave having an
electrical field Eo exp{i{wt-k-x)] impinges onto an electron.
The electric field induces oscillations of the electron
charge and thus an oscillating dipole of size:

M = -(e?/ mw?) Ep exp(iot) 1)

This oscillating dipole emits now also a wave. This wave
has a wave vector k' (with |k'l = [kl), and its electrical field
- in a sufficiently large distance prp from the dipole - is
given by (see Jackson):

Ep = -(e2/me2)(1/rp)(n’ x Eg) x n' expli(ot-ktp)]  (2)

where n' is the unit vector in k' direction and rp= e 2/mc?2

= 2.818 (exp -15) m is the classical electron radius.

2
In the case of ¢ polarisation we have

Eg'= -Eg(e2/mc2)(1/rp) expli(wt-k'rp)] (3)
while for the case of m polarisation we get
" Ex= En(e2/me2)(l/rp) expli(otkrp)l cos & (4)
where ¢ is the scattering angle.
This last case shows the possibility to use scattering in
order to linearly polarise a beam which previously was

not polarised. Indeed, for ¢ = 90° only the 6 component
will be scattered.
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2.2 Scattering b n_atom; the Atomi ring Factor

The scattering amplitude for a collection of electrons in an
atom is the sum of the scattering amplitudes of all
electrons taking into account the phase difference arising
from the spatial distribution of the electrons which are
assumed to be free.

This assumption is true for photon energies much higher
than the binding energy of the innermost shell (for lower
photon energies the bound character of the atomic
electrons would become noticcable).

Let us now consider a X-ray beam which impinges onto
an atom whose n electrons have the position vectors [p.
For simplicity let us use ¢ polarisation. Then, in a point P
in a sufficiently large distance, the scattered wave is
given by the sum of all the n terms of type (3) created by
n single atoms:

2
Ep = -Eo(e2/mc2) 2, 1/(Irp-tnl) expl-ik'"(tp-1n)] expl-ik fn]
R=4
=
= -Ep(eZ/mc2) (1/rp) expl-iktp] 2. expl-ingl  (5)
ne4

with g = k'- k = scattering vector and Z=atomic number.

4
Now we pass to the more realistic case in which each
electronic state "i" has a continuos electron density {pi(r))

distribution. Then, summing over all states "i" and
integrating over all volume elements dv, equation (5} can
be written as:

Ep = -Eo(e2/mc2)(1/rp) expl-ik'rpl 2. [pi(D) expl-irg] dv (6)
v

The last part of equation (6) is called Atomijc Scattering
Factor or Form  Factor:

f=2fi=2[ pi(v expl-irgl dv )
T LU

Thus the intensity scattered by an atom is given by:
Ip = Ip (e2/mc2)2 (1/rp)? f2 (8)

f is therefore the relation between the intensities which
are elastically scattered by an atom and by an classical
electron,

If the pi(r) have spherical symmetries, then f can be
writien as:
o0

f=2. | 4n 12 pi(o) (sin kr / kr) dv (9)
.

withk=I1gl=4 xt sin8/A).

We note that in the case of g = 0 (forward scattering)

f=Z (10)
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Up to now we assumed that the photon energy Eph would
be much larger than the binding energies Ep of the atom.
With this approximation effects of in
are not taken into account. These effects however can be
included if correction terms are added to f:

f=fo+f+if" (11)

where fo is the structure factor for Epnh > ER

f and f" are real and imaginary part of the
contribution due to the presence of a natural
frequency ®' in the atom close to the
frequency ® of the incoming photon beam.

It can be shown that f' and f" are related by the Kramers-
Kronig relationship

f(w) = 2/115_[ (o' f(e) /(2 - 0'2)] do'

Furthermore,
f'(0) = (m o / 4% €2) (A/N) p(w) (12)
where N = Avogadro's number

A = atomic weight
u(w) = linear absorption coefficient

6
1; r I

We consider now an assembly of n atoms, each charac-
terised by a Scattering Factor fn. In the crystal lattice the
atoms are defined by the unit vectors ai, a2, and a3. The
dimensions of the crystal are given by Nj, N3, and Ng3.

. Then the position of the nth atom in the mth unit cell can

be written as:
Inm =Rm +'n (13)
where
Rm =mia1 + m2a2 + m3a3 (14)
defines the unit cell and r'y the atom in it.
The electric field in a sufficient far away point P is given
by:
Ep = -Eo(e2/mc2)(1/rp) expl-ik"rp] x
; fn expl-itn’ g % exp[-iRm gql (15)

The factor

=2 fy expl-itn' gl (16)
n
is called Structure Factor.

In eq. (15) the terms in the sum over the unit cells can
be divided into three separate sums, using eq. (14). Then
each sum has the following form:

N
> expl-ig mia1) = (explig Nia1] - Ditexpligai] - 1) (17)

mz:0
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The intensity is proportional to the product of the square
brackets of each of these terms:

(sin2 (1/2) g N1a1) / (sin2 (1/2) g a1} (18)

This function has a maximum only for g a1 = 2xh, where
h is an integer.

Equivalent conditions are valid for the other sums; thus
an diffraction peak can be obtained only if:

gal =2n h
ga2=2rxk (19)
ga3 =2x]1 with h, k, | integers

Note that the width of each peak is proportional to

1/NiN2N3, i.e. inverse proportional to the number of
involved atoms.

400 sind Nx
sin? x

N=20 H
oo
200H

1001

e Al

[ w2 L In2

The function (sin? Nx)/sin? x for N = 20. The funciion peaks at values o
x which are integral multiples of =, and it is essentially zero everywhere clse.

8
The above equations can be rewritten using the vectors
of the reciprocal lattice. If we define:

b1 =2r (a2 x a3) / {a1 (a2 x a3)} (20)

and the cyclic combinations to obtain b2 and b3, then

ai bj = 2n 8ij @1
These conditions are equivalent to
q=H (22)
with the vector H of the reciprocal lattice equal to
K=hbi+kb2+1b3 (23)

The condition (23) means that the scattering vector is
equal to a vector of the reciprocal lattice.

We remember that
\HI =2 / d{nk,1} (24)

Thus the relation (23) is equivalent to the well know
Bragg's equation:

2d{hk,l}sin@B=nAi (25)

@{HTa cled Boam




The Structure Factor
Fg= 2 fn expl-itn H

determines if the diffraction on lattice planes, which are
defined by H, takes place or not.

For example, for the Zinc Blende structure the following
rules for the components of H are valid:

forr h+k+1=4n Fhkl 2 = 16 (fo + fB)2
h+k+1=202n+1) Fhkl 2 = 16 (fa - fg)2
h, k, ! all odd Fhkl 2 = 16 (fa 2+ fg 2)
h, k, I partly even, odd Fiki2=0

For Si and Ge the same rules are valid with A = B. Using
these rules it is possible to calculate which reflexes, and
which harmonics of them, are allowed.

\'Qm/
—— &
!

pd= 1

{1o0)

in

2,0 410 3= 33

{2001 { \W/ “

i)

Fig. 3.7 Fi of () the f; rd £l from the (100} planes, (b} the
second-ordsr reflection from the (100} planls :nd(c: lhc lmH:mr rlncmen from
tha (200 Alanse: nd = nsrk Aiffasasis Wars =
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hort Introduction into the Dynamical
Theory of X-ray Diffraction

The intensity and form of a diffracted X-ray beam
depends on the quality of a single crystal. For a "perfect”
crystal one has to take into account that a diffracted
beam is again diffracted. The double diffracted beam has
again the direction of the incident beam.

The neglects this effect,
while the i iffraction Theory includes it.
Kinematical Theory Dynamical Theory
- highly imperfect crystals - highly perfect crystals
- mosaic crystals - multiple scattering
- small crystals - extinction

N///
\VAVAVAN

A\VAVAN
AVAY

1914 Darwin 1. dynamical theory

1916/17 Ewald independently developed theory;

different, more sophisticated treat-
ment of dynamical diffraction

1931 von Laue Ewald's theory reformulated;
problem now based on the solution
of the Maxwell equations for a
medium with a periodic complex
dielectric constant; with period
comparable to the wavelength of
incident X-rays

P
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Intensity_of i -T ion of th
grazing angle

12
Now follows

IEHI2 / IEgiZ = bl Ip £ (m2-1)172 2
The Dynamical Theory allows to calculate the amplitude of

the wave field in a crystal and the intensity of the

where
diffracted beam.

Eg is the incoming electrical field

Ey is the diffracted electrical field
"-" is taken for Re{n} > 0 and "+" for Re{n} < 0

(A &k Té)?

Here we consider only the (asymmetric) Bragg case:

o8+ |/ \\
084 ! )
sa // | — “oi
BRAGG PLANES aLr 1

024 X

We define: v e

-5 0 5 1© 15 20 25 30 88,
RIB.}
= [-b ABg sin 28B + (1/2) T Fg (1+b)] / T IPl Ibll/2 Fy 104

o

with . 06-
Qi+

b=[sin(@-a)]/[sin(®@+a)] asymmetry parameter 0zt

=1 fi . B —-—— e - .
- (b or sym ragg case) -5 Q 5 10 15 20 25 30 &,
Ae() - 90 - eB {sec of arc
Fip 4n Reflection curves for Sitl111 at 1.6 A R(&) i the reflectmry as a funcuon of the incdence angle & while RiB.) represenss the meensity
I = (12 / V]’[) (eZ/mcz) Wl[h V = vo]ume of unit ccll r2flecten at a refiection sngle d, £or 2 plane wave wncudent a1 &, (Sobid lney Jor & = 0.4; broken lines o & = | where Rid ) = R16,).) From et [20]
Fu Structure Factor for diffraction at lattice planes
defined by the reciprocal lattice vector H We note that:
Fo= (1-€)/T Structure Factor for H =0 1. In a small angular range A® around OB the incident
- wave gets
P =1 for o polarisation - quasi completely reflected
= cos 2 6p for * polarisation

- exponentially attenuated in the crystal

1 is generally a complex number: © =7'+ 1", but gets real if
absorption effects are neglected.
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This attenuation is described by the Extinction
Coefficient, which is much larger than the ordinary
absorption coefficient (e.g. for Si, 20 keV: the extinction
length is 20 pm, while the ordinary absorption length
is 1.1 mm),

Qutside of A8 occurs no diffraction

the center of the diffraction curve is at n'=0

and A8p = (1/2) (1 + 1/b) Alg
ABH = (1/2) {1 + b) Abg
with AOs =T Fo' / sin26p

This shift of the diffraction curve is due to the fact that
the refraction index n =1

diffraction occurs in the range -1 ' < 1

with Darwin width wo= s/ bl/2
WH = oS bir2
where ws = 2T IPl Fy/ sin 20p

Bragg reflecion widths w . cne}gy resolutions AE/E, and integral
reflecting powers / of some reflections of Si. Ge and a-quaruz perfect

crystals at A =154 A, From ref. {20].

w, AE/E = |
Crvstal hii {second of arct  (x10%) ©  (x10%)
Silicon H 7,395 14.1 39.9
20 £.459 6.04 9.7
n 3192 2.90 16.5
£ 163 153 19.3
331 133 .4 1.8
4 AALS 1.47 15.5
333
(511 1.989 0.88 9y
44 2.675 0.9 14.0
531 197 0.60 93
Germanium 111 16.338 32,64 859
20 12,449 14.46 67.4
3 7.230 6.92 371
&0 7.951 5.94 423
kx) 5.07% 1M 254
42 6.178 1.4 32.4
333
(S11) 4427 2.00 20.2
a0 $339 214 27s
531 3.719 1.33 17.7
a-quarz 100 1,798 10.00 18.8
T 7453 15.26 09
Lo 1812 3.69 12.2
102 2,488 3.36 12.9
0 228 281 1.5
12 2927 3.03 5.5
202 2072 1.93 10.6
a2 1042 1.47 10.7
203 AN 1.74 12.9
Al 2,368 1.69 12.6

T Mabsuchds & H Hashziume /

1987
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Energy resolmions of the monochromalor required

in various experiments.
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X-ray microscopy 10t~ )0

Structure analvsis e o? '
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EXAFS I~

Topegraphy (white beam)

(10 ~ 1079
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Interferomerry ~ o
Table 5
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