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Dynamical Theory of X-ray Diffraction
by Perfect Crystals

deals with the propagation of waves in a periodic structure in a
self-consistent way; couples the incident and diffracted waves

successive stages of accounting for the physical phenomena
geometrical theory
directions under which diffracted rays appear.
kinematical theory

combined effect of wavelets in directions other than those of
maximum cooperation is laken into account; diffracted amplitudes are
negligible compared to incident amplitude.

no attenuation ->  energy is not conserved
good for thin crystals & imperfect crystais

dynamical theory
find conditions for a wave field exist and travel through the perfect
crystal; connect fields inside the crystal to those outside.

> solving Maxwell equations in a Perfect Periodic system

historical

1812113 Eriedrich, Knipping and Laue discovered X-ray diffraction
Annalen der Physik, 41, 971 (1913)

1913 Bragg relation ni=2dsin@
Proc. Camb.Phil.Soc.,17, 43 (1913)

1914 Darwin : interaction of each atom in the structure with the
incident wave, neglecting its interaction with the scattered

waves. Good for structural crystaliography; had for
diffracted intensities

Phil. Mag., 27, 315 (1914) (I); 27, 675 (1914) (If)

1916/17 Ewald : the crystal is formed by a tridimensional array of point

resonators (oscilating dipoles) responsible for scattering
of the electromagnetic field.

Annalen der Physik, 49, 1 and 117 (1916); 54, 519 {1917)

1931 Laue : consider a continuum electron density distribution,
described by a dielectric constant - periodic and complex,
similar to Bethe's devellopment for electron diffraction

Ergeb. exakt.Naturwiss., 10,133 (1931)
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X-ray Diffraction
o scattering from electrons in an atom
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o periodic structure - perfect crystal (a, b, ¢)

e ihr
h

"

h  mustbe areciprocal lattice vector: B =h @* + k b* + | ¢*
toensurethat p(f)=p(t+ua+vb+wg)

within the assumption that the atoms behave as rigid spheres with respect
to their charges densities and are not vibrating thermally

Fh: Fln:z, {“Q,

the structure tactor is the 'sum’ of the scattering factor of each atom in the
~_ unitcell. Fq is the vector fixing the center of each atom.

~M
fh: - .F“ e Debye-Waller factor

s o.-a'e.. © Hn =%’%:-@Q+(6@3.'_)‘) (L ;_,‘

Batar wou avd Chipwon (1962)

§=5-59=!|, or §.g=b, etc...

Laue conditions

two useful properiesof h: ) h is perpendicular to hkl plans
i) | h|=1/dw

b b

£ ‘Jhu

the positions of the nodes in the reciprocal lattice give the periodicity of p(r),

hence of the crystal

reciprocal lattice
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the periodic, complex, dielectric constant :

connection to the Fourier series describing
electron densities

oE & H small enough - > linear relations
4T P="Xg P=e+4TP =(I1+X)E =
4T H = AwH Ko & O

X(T) carries all the physical information about the crystal

XO:.)z?; Xy, exe emilh.r)

3
Xy, = + ‘S")(cr.) exp(zTihr)dr
v
o sinusoidal field on a collection of free electrons W X. = < &
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which accounts for the bounded slectrons ana absorption
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refraction index n
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Maxwell's =
equations

basic equations for possible wave-fields

D sum of plane waves (Bloch’s solutions)
2Ti (Wt-Ker) — ~27i h,.
D-e ° & _)_ Duw = ~"
~ VA
LTAVE —2vi Ko,
or D= e Z_ Dw & Pl
m F and
with the condition R = Ko + hw  ( Bragg'

=>

fundamental equation of the dynamical theory
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l’)(wm-v\l very small 4,&?_ 4.007 B |O-S

-> equation is satisfied for Dm not vanishingly smali only if km? = K2

i.e, if elastic Bragg diffraction is nearly satisfied.

one-wave case (0)
it only Do is non-negligible, i.e. far from the Bragg condition

z 2
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1 } X
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two-wave case (0,h)

Bragg condition nearly satisfied for one set of plans

-> spheres of radii k, centered around O and H

(- YR = P X Xs K

2K €= i Soshzmt
T T
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Do K 28,
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geometrical approach

it is interesting to use Ewald's construction to better understand the
dynamical parameters.

two spheres of radii K centered at O and H

La

refraction (n" < 1)

to match outside to inside field
continuity of the tangencial componen

K%o K
x

what happens when we are near a Bragg condition ?



field equations near a Bragg condition (two-wave case)
(Li-8%)= (bot8)(8o-%) = 2 (R &)
c2lg ~ Ao

H2
6. §,= XX K

Do KW{ 25\‘

n

it

S. k-
S 2h-k

the secular equation is transformed into a hyperbola ("two branches”)
"dispersion surface”

the dispersion surface contains full information about the
waves which can propagate in the crystal

. (113
diameter $1S2: © T @

[ the amplitude ratio is proportional to the distance of the tie-points
to the assymptotes.

° propagation diraction is the normal to the dispersion surtace at the
corresponding tie-point.
’ > 4 -4 “ 2
L " " o (:&:" ) << 4
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boundary conditions at the crystal entrance

the tangencial component of the wave-vectors
has to be conserved

plane wave

Laue case

PO : incoming wave-vector Ko

generates two wave-fields inside the crystal
the propagation direction is normal to the dispersion surface

As Ko changes by few seconds of arc
the wave fields change their propagation direction angle

by the very large angle 26
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Pendellosung effects

Borrmann fan o
the two-wave field excited will overlap through their propagation

Incident wave : O-type fields are coherent ; P10 and P';0 differ by P',P",
sufficiently wide spatially to be considered as an almost plane wave, the amplitude oscillates along the normal to the entrance surface with a
but sufficiently narrow to be traced as bundles of rays. period (1/P1P’2) as the wave-fields propagate into the crystal,

2%

symmetrical Laue geometry and at exactly the Bragg condition we have the

; Pendellosung period : D= _L_ 2@ ~ 10w
there will be wave-fields propagating in all directions between the incident : sung period S8, kI Q\ )
and the diffracted direction atdepth A/z2 O i, -
= O,A,.. O in MAXiMom
H-type fields : initial phase difference ¥ -~ ot A/, rHAXMom

at o.N, R A T

Ewald analogy PIIIIIIIIIIIYT.

coupled pendula
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Pendellosung fringes are very sensitive to crystal distortion



Borrmann effect
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some mechanism keeps the energy away from the absorbing atoms

DYNAMICAL THEORY predicts that a STANDING WAVE pattern should
exist inside the crystal

tie-pointon branch 1 ;. nodes are on the lattice plans
branch1 -> branch2 patterns are shiftedby R

=> type 1 fields will be less absorbed than type 2 fields

absorbing atoms Bommann effect :
only branch 1 wave-fields with pro,sagation direction along the plans survive

{when nodes becomes points of zero intensity)

Bragg case

P’y points out of the crystal and it is not a physical solution (for thick crystals)

total refiection

Darwin width

2= 2170

Siar 20 ,
the center is not on the Laue point
the shift is just the refraction correction
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rocking curves and integrated reflectivity
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infinitely thick; non-absorbing, symmelrical geometry
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DYNAMICAL THEORY

o the total wave-field inside the crystal is considered as a
single entity
enargy is swapped back and forth between them

e it is necessary whenever diffraction by perfect crystals is
invoived

impose cofrections to the kinematical theory (extinction)
e the process is coherent

® interesting effects :

Bragg total reflection

Borrmann effect
anomalous transmission

polarization
Pendellosung oscilations

very accurale values of structure factors have been obtained
Standing waves

® more general presentation :
asymmetry
multiple diffraction
extreme situations (6 = 0 or w/2)

backdiffraction



field equations in the two wave case
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Lavecase: b/lb) =1

relation between entrance points and tie-points

b=+1 symmetric
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and, in addition,
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A8 eftective absorption
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physical interpretation

in terms of the positional dependence of the eleciric field
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pharn L7 hor=2r2X plans of equal intensity h
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Borrmann G P=1 nodes are ZERO intensity
effect .t

P=cos 20 nodes are NOT ZERO intensity

Bragg case

e Bragg selects two tie points
on the same branch
but,
Qnly one Is excited
(Kohler, Ann.Physik 18, 265(1933))
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primary extinction

Bragg case with no absorptionand F = -z

5-7fklpine, [‘(Lt (YLL’L)H.]

within the region

i<t .=

standing waves

wave fields inside the crystal
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standing wave technique

o generation of a standing wave field by the interference of the incident
and reflected beams.
N .]_"
N/

/ e
Lzl:xmm

© structutal information is obtained by measuring the fluorescence yield
from foreign atoms, which depends on the position of such atoms
relative 1o the choses diffraction planes
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Relative energy (ev)

FIG. I. Relative Cu 3p-derived Auger-electron yieWd (short
dashed lines) from Cull 1)) as the photon energy i scanned
through the (111} Bragy reflection for incidence sngles of 0
{normal incidence), 10°, and 20* compared with theoretical
absorption profiles at 1he atomic planes incorporating tandom
anguler Mandard deviations of 0.01* (long dashed lines) and
0.1° Gsolid Lines). For 0° incidence the 1wo theoretical Yines
are indistinguishable.

G Buger
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FIG 2 Rclative Cu 2p-derived and €1 ly-derived Auger-
electron yields from CulH1(VIx VIR -Cl as the photon
encrgy is scanned through the (111) * - gp refection at normal
incidence. Also shown are theoretical sbsorplion curves fot ab-
sorption on the Cu atom planes and ot 17, E8, and 1.88 A
ahove the Tast Cu nlom plane of a perfect subsirate. In these
theoretical curves only BO% of the Cu or Cl absorbers are as-
sumed Lo be coherently positioned relative 10 the subsirare Iat-
lice.
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