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. General case:

* Basic theory A(c'j) _ Ae IP (F) e-;‘q’? dr

* Guinier's Law. Porod's Law. Invariant

. o A(S) g7 -
Crystalization in glasses p(F) = J‘ ; 4r dj
* Aggregation and gelation (fractal structures) ‘ ¢

* Phase-separation in glasses

) =AY = 42 [ o(F) = i
* Application of anomalous scattering IG)=|AG) = A; l p(F)e

* SAXS instrumentation
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Defining:

—

y(r):—% | n(@) n(ii + 7) dia
vR

— @) =nv[ yF)e T g7

For isotropic systems:

sin gr
qr

K@)=n?v]y(r) axr? dr

Assymptotic behaviors:

a) q->0 (Guiniers law)
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General case:
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Integral parameters

) _ | 2
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J 4% 1(q)dg =27 n*V c(1-c)

¢: volume fraction
V: irradiated volume
N: number of particles per unit volume

v: particle volume
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Dense system of identical particles:

I(h) = ¢ P() S(@)

For particles with center of simmetry:
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waxima clearly defined. In figure 2 these maxima seemed to be present
but they- could hardly be defined. A typical 100 second scan {5 shown
in figure 3-A, where it is befng compared with the average of four 200
second scans (curve B) in order to evaluate possible radiation damage
to the protein,
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Figure 3. Experimental X-ray scattering curves from G.paulistus
owthrocruorin obtained with synchrotron raagaﬁon.
(A) One_100 second scan. {B) Average of four 200 second
scans. The Toss of intensity seems to e due to radiation
damage suffered by the protein, Zero ar.?u corresponds to
channel 80, channe) width » D.000264 A-7. The inset shows
the distance distribution function calculated for a less
concentrated sample (c/20).

Guinier plot calculations from the Tow concentration scattering
curves {c/20 and ¢c/40) resulted in values for the radius of giration
in very good agresment with our previous calculations: 116 A. Data
treatment via the inverse transformation method (1P program) has

N



FABRICATION
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. The calculation of S (q) leads to:
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SPINODAL REGION

« Theory of spinodal decomposition (Cahn) Linear

theory (valid only for early stages).

« Reasonable agreement with experiments on alloys
(Al-Zn, Au-Pt).

« Poor agreement with experiments on glasses (B203-
PbO-Alz03, SiOz-Naz0).

NUCLEATION AND GROWTH

« Classical diffusion theory (*GP" zones in alloys and

“droplets” in glasses).
« Ambiguous comparisons between theory and

experiments.

NEW THEORIES

« Kinetical Ising model for simple cubic lattice.
« Calculations by computer simulation using Monte
Carto method.

_ e Scaling properties and "universality”.



Cahn's theory was applied to explain the kinetics
of SAXS from real phase separation systems under
isothermal conditicns and, we could say, that it has had

an only limited sucess for garly stages in alloys.

Its agreement with experimental results in glassy
systems was poorer, probably because of the intrinsic
impossibility for isolators of reaching high quanching
rates.

Recent new theoretical developments have
considerably simpilified the picture of phase separation.
They are based on the Ising model for ferromagnets
applied to binary alioys by using computer simulation
and the Monte Carlo method.

: This theories lead to scaling and "universality"
properties of the structure function.

The first theoretical study of the complex
phenomena of phase separation in solids was provided

by-the now classic theory of spinodal decomposition of
Cahn. Central to the theory is the fact that, within the

‘spinodal” reqgion, the homogeneous mixture is
unstable to small concentration fluctuations of the
system. The evolution equation of the Fourier
components of the atomic composition and,

consequently, of the small angle X-ray scattering
intensity could only be solved in closed form after

linearization. Therefore it can only be applied to very
early stages of phase separation.

Outside of the spinodal region, i.e. near the
boundary of the miscibility gap, the decomposition
process was described by the classical diffusion
theories of nucleation and growth of "GP zones” (in
alloys) or “droplets” (in glasses).

ry -



CONCLUSIONS

» Real space analysis (T.E.M.) does not allow
quantitative studies of phase separation.

« Cahn theory for spinodal decomposition is not a good
approximation for isothermically phase separating real
glasses.

« The statistical dynamic Ising model describes well the
advanced stages of phase separation in glasses.

» Some discrepancies related to the scaled structure
function have bean detected in the B203-PbO-Al203
_ system.
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ASAXS

The scattered intensity may be written as
*
Kg9)=2 2f; fi S (@
Sik = S;j is the partial structure factor
fi=17+ FE)+if;(E)

ff(q—)O):Zj

The ASAXS allows for the determination of the
partial structure function Sik.
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Binai I 1.2
KE,q) = F1(q,E)2 S11 + 2F1(E) F2(E) cos 9 S12

+ F2(E)2 S22

in order to obtain S11, S12 and Szz it is necessary
to perform three experiment at three different energies:
(I, F e S are function of q).

KE1) = F1(E1)2 S11 + 2F1(E1) F2(E1) cos ¢ S12
+ F2(E1)2 S22

I(E2) = F1(E2)2 811 + 2F4(E2) F2(E2) cos ¢ S12
+ F2(E2)2 S22

(E3)= F1(Ea)2 S11 + 2F1(E3) F2(E3) cos ¢ S12
+ F3(E3)2 S22

In matricial form:
MH=F)(O)

A method to estimate the errors propagation in
solving this equation uses the Turing relation:

"’fgsl"snml iy LA

T

where |l A Il are the norm of vectors and matrix:

1
I All=(Zay)?
ij



