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Cu -K-edlze Absorption Spectroscopy:
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In the cluster approach, the ground state of square planar cuprates
the admixture of configurations:

e ogl3d9+Pol3dion),
with ag2+Bo2 =1 and ag2>Bo2, because of the divalent character
A more explicit way of writing the admixture of configurations

o  aolCuls2.3d9,0 152..2p6) + o Cu.152..3d10,0 152...2p%).
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Cu K-edge specgum of Nd,,,Ce,Cu0, for x=0 and x={.15. The
differcnce berween the spectra evidences that the weight of the
34190, configurarion (B and M) increases under doping, leading
w0 a decrease of the weight of the 3d° configurarion (E and N).
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Angle-resolved Cu K-edge XAS spectra of LazCuQy4 single
crystal. Apant from an energy re-scaling to account for
differences in next neighbor distances, the anisowopy of the
relative intensity of the 3d!%L, and 3d° wransidons is induced by
the symmmetry of the photoelecron wavevector k relatgve w the O
2px.y ligand electron.
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in the final state of square planar CuO,. The photocieciron
deposiied with low kinetic energy in orbitals perpendicular to the
square plane (e.g. 4p;*) does not interfere with the charge-
ransfer process taking place in the planes, contary to the
photoelectron put into in-plane orbitals (e.g. 4px y*).
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Angle-resolved Ni K-edge XAS spectra of PryNiQs. Apan for 2
contraction of the energy scale due 1o slightly different distances
along x.y and z directions, one can observe that the dominant
configuradon is the fully relaxed one for both orieatanons,
conversely 1o what happens in cuprares.
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§ - Cu K XAS versus XPS

The major difference between XPS and XAS deals with the
status of the photoelectron ey.

- In XPS, the pﬁotmlccuon goes to the vacuum, with a large
kinetic energy.

K. ede In XAS, it stays in the probed material, with a low kinetic

energy when the photon comes just with the very threshold energy.

In Cu 2p XPS, one observes @lincs. a lorentzian-like main
line | 152, 2p...3d10L, ) and a satelliu:T 152.2p..3..¢k).
= =

Cu K-edge XAS signal = a convolution of the two lines
found in XPS times the Cu partial density of states

(XAS = XPS®Cump-DOS : m = 4, §, ...).
The convolution with the 4p states, the lowest lying ones, gives rise to the

resolved double features mentionned above. The transitions to mp (m>4)
appears as a continuum,

Photoelectron and its symmetry

The wavevector k has to be specified perpendicular (k,) or
parallel (kg) to the square planar unit, according to the direction of the
polarization of the incident photon,
In the final state admixture of configurations

| G 3d0.eh + ﬁfl €..3dL. .ek),

ki and kyleads to (ot and Byl) and (ct¢ and Be).
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XAS =XPS ® 4 (m) p DOS & '"photoelectron”

= 2 EXAFS or (4 for powders)

I & L
3d"L & 3d’
(E) & (E)
Il By
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=  needs for single crystal data

Multichannel problems are very general
" Linear and Circular Dichroisms"

Photons f or —» create different X A Spectra

O E






