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- magnetic elements located in a straight section of a storage ring
= localized deflection of the electron beam

= emission of synchrotron radiation with special properties

Advantages over bending magnet sources :

¢ higher photon energies

k3
- higher field, and hence critical photon energy, E‘(MV)-MBE
e.g. 3-pole "wavelength shifter”, Wisconsin, (1971)
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superconducting devices - 3.5 T, VEPP3 (1979),
5.0T, SRS (1982)
others at DCI, Photon Factory, UVSOR, VEPP-2M etc.
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® increased brightness (photon flux per unit area and solid angle)

® increased photon flux
- many emitting poles, "mulripole wiggler” ;ntsel'?filrl:;ctze:?f:g:“%[h :ml}) i‘:‘f’d ereh pes e 0

e.g. 7-pole (3A) wiggler, SSRL, Stanford (1979)
electromagnet, period length = 34.3 cm, peak field 1.8 T

used in original experiments of Motz, Stanford, (1951} :

Applications of the Radiation from Fast Electron Beams
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Later multipole wigglers, with man y more poles, were - and in subsequent development of the Free-electron Laser

constructed with permanent magnet
gnets First use in storage ring, VEPP3, Novosibirsk (1979) and

SPEAR, Stanford, (1980) :

€.g. 55-pole (271) wiggler at SSRL, Stanford (1983) 30-periods of 6.1 cm; peak field of 0.28 T

period length = 7 cm, peak field 1.2 T  (1.2em g%p)
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@ different radiation polarization characteristics.

- circular, elliptical or variable

using different magnetic structures and hence electron
trajectories (part 3 of lectures)

At present > 50 Insertion Devices are in operation
in Synchrotron Radiation Sources worldwide.

Many more are being built for the most recent
"third generation" synchrotron radiation sources :
~ 10 IDs in 1-2 GeV rings, ~ 30 IDs in 6-8 GeV rings

2. Basic featues of ID radiaton.
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i) Electron Fest pame
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(+) Lnterference

- of radiation emitted by the same 2loctron
ot differeat points in the magnet
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Summary :
® radiation spectrum consists of a series of harmonics
@ number of harmonics increases rapidly with K

#® radiation wavelength varies with angle, 8
— spectrum integrated over a wide range of angles is broad

® at a given O, the wavelength variation is small
— selecting a narrow range of angles, with a "pinhole”
aperture, gives a quasi-monochromatic spectrum :
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- because of the interference that occurs within each period,
between the positive and negative poles :

\/
The complex angular distribution can be understood using a

simple model, consisting of a series of dipole magnets.

For a single dipole the energy radiated per unit frequency and
solid angle is :
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For two dipoles we have _
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where A is the phase difference between the poles.

Taking the modulus-square, and including N periods, the

intensity b:comczs : R . . e SNEWY
[l 1] = s [SgImd, cda il | Smee,

As the horizontal angle varies from zero to maximum (K/y) the

phase (A) varies from ix to i2n.

There is therefore a sinusoidal variation of intensity with A and

hence angle.

In fact the model of an undulator as a series of dipole magnets,
with an appropriate interference function, is quite accurate even
for small K value and small i :
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Flux in the ‘cantral cone’
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CompariSon with bnnding magnet Sewte
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Brightness
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b, Multipolo wigglers
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The spectrum of a mulipole wiggler is therefore complex, and
in general consists of three parts :

@ the fundamental and first few harmonics where there are
strong interference effects

@ the high photon energy part, at high harmonic number, where
the spectrum is essentialy smooth i.e. no interference effects

® an intermediate zone, with moderate spectral modulation

The limits of the various parts depend on the various
*smoothing" mechanisms discussed previously.

An example to illustrate the complexity of the spectrum,
(and the difficulties of calculating it !) :
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