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In Atomic and Molecular Physics the relevant potentials are:
Nuclear Potential Vnp
electron-electron Potential Ve

Problems will rise in including Vige in the model. Not even the simple 3
charged particle problem is exactely solvable.

Many-body properties of atoms and molecules is one of the main challenges
e-e interactions can be classifed as:
Bound State ( short & long range )
Continuous State ( short & long range )

Photoionisation is one of the most used tools ( single and double )
Near Threshold, Resonant, Direct

In each of these regimes e-e interactions have different relevance
To focalize attention on a specific form of interaction we need to:
tune continuously the photon energy
measure small cross sections
measure angular distributions
achieve high energy resolution

This implies Tunability, High Flux, Brightness
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Photoionization cross-section

Will concentrate on : Bt Py — €+ Fpwe-1)

Energy conservation

Lw+Eony=c+Epee-1)

In single particle scheme

e-e-interactions

electron spectroscopy

coincidence spectroscopy Yo+ Ery = ¢+ Ep(N-4D)
single photoionization ,
. . . ‘ . A ‘

Since the pioneering work of Madden and Codling ( Phys. Rev.Lett. 10 (1963) - AT e’y =— Q1A 5. b, , F T - R
516) on He photoabsorption, e-e interactions have been of prime relevance. & Cw) = = 2 £ K%l e 2;‘ & N)‘> \ S( 3(”) L %\ )
Resonances in the continuum in the 200 A region A
Recently, with a resolving power of 10000 major advances have been done in T‘,@ =< + J€.2. 2 | >
the field. Domke et al. (Phys. Rev. Lett. 66 (1991) 1306 ) have observed ¢ 4
more than 50 states 0.1 meV narrow in the same region. angular distribution
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Strong correlation effects in 5s Xe
— st

CQUPQ;»\% between <lectrous is evrdewt
v the GS/w-.Wte,Te/ \’o@zamej'ea [2> N4, QhQ?_s?/

- W]u\{h Lﬁj couPQ{ug . \ﬂS——’P-Elb Peﬁ@@ Wi @
hewce (3:'3

L \ﬁf;irlw (ﬂj C_OuPQ{ugr . SF‘“ sdlavt cm\‘a(’,;“a s covTinovw
Qeec\s‘l‘o G‘ﬁ% w ‘E;‘:gvz paaf.wwes

@\Ad-

’Rzef:’vzhe Re 73
zelalive ‘fﬂ'\dde-
lé&ﬁtc) —_— (3 1-{3

I

RL = adkal d""f"“-’\? '\l\-\'\’ea‘!gh A
ok \m‘«-a\a %m%\/ = 5(:%— ’-‘:’Rs By
near thyesh oldl Re /3, +Re P

Atomic & Molecular Physics with S.R.  November 17-18 93

f-PARAMETER

Strong correlation effects in 55 Xe
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Figere 3.7, Angular distribution parameter 8 for 5s photoionization in xenon. Hatched
region denotes mean experimental data, including error limits (from [WSK79, DScB3,
FCKB83a, WMSE61). The value at 40.3 eV from the first study of this problem [DDi76] has
been omitted because it could not be confirmed by later experiments; for data above 55 eV

see [WSK79, FCK83a, SBTB3]. Theoretical values: double-detted chain curve, RRPA
(4d + 55+ 5p) calculation [JCh78, JICh79); dotted curve, X-matnix {55+ 5p) (velocity form
results [HSt80]); broken and chain curve, RTDLDA with Gunnarsson-Lundqvist and
Perdew-Zunger exchange correlation potentiats, respectively [PJR84]; full curve, multi-
configurational pF (55+5p) calculation with full aceount of relaxation [Tul?9],
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Redistribution of 4d strenghth in Xe
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Shape resonance and wavefunction collapse in 4d Xe
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Shape resonance and wavefunction collapse in 4d Xe

6;“%?._?. Pa'a,“'\c.o.a_ \?‘“‘A'\‘\ 6‘\'20\4%

%!'lard' ZeSovigwnee =
‘ Pcﬁaa\s.‘f\'uov\

h? crtlaikaly focsted oulside the stowic 2egiom
ozkbitls Voy-peised v AuQ\oeuh

Acl o V\% C‘.XC;"’e—l’\.ov\ Q\ﬁse\fi—
41@\ —=npe P’lQJQ\A‘\"
r- .
4 1 \of Pem‘.d aa\a\*dq
STonisation Sy @PQ, 2p3onewc @ ‘D?_e..se_vd‘
Mok of Vaottel
. collapse

Atnmir & Mnlarnlar Phucice with €8 Navamhar 17218 '07



Shape resonance and wavefunction collapse in 4d Xe
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The missing Xe 4pq/2 photoline
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The missing Xe 4p1/2 photoline
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He an example of two electron processes
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He an example of two electron processes
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- Schematic representation of important electron correlations for discrete
satellites in helium belonging to ionization and simultaneous excitation to n=2 (see

From: MANDON T, €lectron .Spec_.
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binding energy of this satellite. A small inelastic-scattering and spectrometer background
. has been subtracted. The dotted curve indicates the unperturbed continuum intensity, the

full curve represents a fit of a Fano line profile to the experimental paines with the parameters
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Parametrization of resonances
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Two electron excited states He

T T

He (|sp.2ni]l’P° (a)

3+

Photoionization Yield

/2 Y WU S S V7 N T O S TS T W I
§2.79 62.70 6413 6408 G464 6467 GLO1 BL9E 65,04 B5.07

. Photon Bnergy (eV)

Figure 4.9. Poubly excited states of helium below the threshoid for Hc“(ﬂfz):

i overview; (b) magnification of the n> 6 region; (¢) sp2n — states. From ~

Atomic & Molecular Physics with S.R. Nevember 17-18 '93



The thréshold spectrometer
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DPI

DPI at threshold, Wannier region
Coincidence experiments started in 1972 with e-ion coincidence
( Danby and Efand, J. Mass Spectrom. lon Phys 8 , 153)

e-e coincidence experiments started in 1987 Close Yo threshold He DPI ideal case for
( Lablanquie et al. Phys. Rev. Lett. 58, 992)
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2 DPI at intermediate energies
DPI at threshold, Wannier region
%u) + LH (W) —= Lﬂa(:&-eﬁ rerve’
et ’ ) T o a first order approach
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Figure 2a: TPEsCO spectrum of Ne over the pholon energy range 62 10 100 eV
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DPI DCS the angular distributions
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polar representation with a normalization which is tcommon to
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DPI DCS the angular distributions
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DPI in molecules
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. Figure 4a: TPEsCO spectrum of NO2* over the photon energy range 38 to 42.3
eV. The lower spectrum in the figure is the sum of the threshold spectra

collected in both analyzers.

E(v) = To + o (v +1/2) - we xelv +1/2)2

Table 2: Molecular constants

(XY NENNER L, ¥ RESWICH J, A,

“Hand boak of S.RY ddgz
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exp. ref. 33 ref. 34
X2+ ToleV) 38.3%+0.05 3942 38.56
wWe(meV)  255%19 277 261
weXe{meV) 3%l 4 3
A1 ToleV) 39.8510.007 39.96 40.02
we(meV) 18614 170 184.
mexe(mev) 45404 3 4.6
B2r+ ToleV) 43.1610.015
we(meV) 272118
Wexa(meV) 204
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DPI at High energy: Correlation spectroscopy

In 1977 Neudatchin et al.( ) proposed the high energy (hv,2e) coincidence experiments
to investigate the double ionization of atoms and molecules. These experiments should

represent the natural generalization of impulsive (e,2e) experiments. The goal of the

proposal () was to develop a spectroscopy of doubly charged ions that would enable the
direct determination of the partial two-electron Fourier amplitude

3 ) _—
l”"f(kl'kZ)z2_,,.[d"ldleifif(fl-rz)el( rrtkyny)

of the many-electron wavefunction (r,,r;,
ATE ¢ % TR 1n) of the doubly charged ion

........ ) projected on an arbitrarily selected state

wif(rl,r2)=Idr3..dqu/F(r3,...rN)ufi(r;,...rN)

The importance of studying these quantities becomes clear when a two electron

considered. In this case y{k, k;) is merely the wave function of the two electron system in
the momentum space representation. It contains all the details of the structure of the
system and in particular the momentum distribution of the relative motion of the

electrons in the degree of freedom Iy2=I;- I; . This motion is dominated by electron-
electron correlations. In many-electron systems if the transition i—+f involves the knock-
out of two electrons from the same orbital then yif(ky,ka) characterizes the electron-
electron correlations in that orbital, viceversa if the transition involves electrons from
dilferent orbitals then wif(k,,k;) enables the study of electron-electron correlations in
different orbitals . The sensitivity of-the technique can be inferred from a theoretical stud

system is

Il

2 | %w-.: 236 oY
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*SoIeE,d, 00, fem’ st v
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DPI at High energy: Correlation spectroscopy
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Figore 1. Geometry of a possible experimental set-up for the (v, 2¢) process
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Inner shell photoionization and coincidence experiments Inner shell photoionization and coincidence experiments
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Cley.l5) colncldences in Inner-shell photolonlzation of CO.* - Left
part: Olls) Auger spectra taken with (bottom) and without (top) the ion
extraction fleld applied across the ionization reglon; right part: two
examples of Cle,.i;) coincidence spectra obtalned with Auger electrons
from the energy reglons A and C, respectively.
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