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gince the core deformation scattering is negligible AF practically coin-
4des with deformation scattering of the valence shells.

niffraction by a crystal

q¢ three-dimensional infinite lattice can be represented (see Appendix
: A, p- 174) by the lattice function

+x

Liry)= 2 O0(r—ruvw)

®.u,w=—x

.nere & is the Dirac delta function and r,, ., = ua + vh + we (with u, v, w
-] -eng integers) is the generic lattice vector. Let us suppose that pu(r)
.escribes the electron density in the unit cell of an infinite three-dimensional
vstal. The electron density function for the whole crystal (see Appendix
t A, p- 183) is the convolution of the L(r) function with pu(r):

p=(r) = pu(r) * L(r). (3.23)

As a consequence of egns (3.A.35). (3.A.30), and (3.22) the amplitude of
e wave scattzred by the whole crystal is

ELr*) = Tlpm(n)] - T[L(P)]

1 &=
=FM(r')-; > S(rr—r)
| R
=—‘;FM(H) > 8(rr—r) (3.24)
hkil=—=

§ +here Viis the volume of the unit cell and rjy=ha* + kb* +lc* is the
:eneric lattice vector of the reciprocal lattice (see pp. 63-5).

- If the scatterer object is non-periodic (atom, molecule, etc.) the ampli-
ade of the scattered wave Fyu(r*) can be non-zero for any value of r*. On
he contrary, if the scatterer object is periodic (crystal} we observe a
ron-zero amplitude only when r* coincides with a reciprocal lattice point:

r=ra. (3.25)

The function F.(r*) can be represented by means of a pseudo-lattice: each
1 its points has the position coinciding with the corresponding point of the
eciprocal lattice but has a specific ‘weight’ Fy(H)/V. For a given node the
tiffraction intensity Jy will be function of the square of its weight.

Let us multiply eqn (3.25) scalarly by a, b, ¢ and introduce the definition
e} 38)of r*: we obtain

a-(s—s,)=hA b-(s—so)=kA c- (s —s0) = 1A (3.26)

The directions s which satisfy eqns (3.26) are called diffraction directions
L ="d_relations (3.26) are the Laue conditions.
e Finiteness of the crystal may be taken into account by introducing the
a rm function ©(r): ®(r) = 1 inside the crystal, @(r) = 0 outside the crystal.
T this case we can write

P = p=(r)®(r)

i i 4
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and, because of eqn (3.A.35), the amplitude of the diffracted wave is
F(r*)=Tlp.(r)]*[@®(r)] = F(r*)* D(r") (3.2

where
D(r*)= J ®(r)exp (2xir* - r)dr= J exp (2xwir* - rydr
5 Q

and Q is the volume of the crystal. Because of eqn (3.A.40) the relatiog
(3.27) becomes

+x

Fe) =R S 8= ri= D)

Lk i=+=>

1 =
=GR X D o). (3.28)
h ok {=—>

If we compare eqns (3.28) and (3.24) we notice that, going from an
infinite crystal to a finite one, the point-like function corresponding to each
node of the reciprocal lattice is substituted by the distribution function D
which is non-zero in a domain whose form and dimensions depend on the
form and dimensions of the crystal. The distribution D is identical for all
nodes.

For example, let suppose that the crystal is a parallelepiped with faces A,
Ag, A_q: then

A2 A2 Av2
D(r*)=j exp [2mi(x*x + y*y + z*z)] dx dy dz.
—Ay2 A2 S—AY2

If we integrate this function over separate variables, it becomes, 18
accordance with Appendix 3.A, p. 174

sin (A, x*) sin (A, y*) sin (mAsz*) (3.3

D)= ax* my* az*

Each of the factors in eqn (3.29) is studied in Appendix 3.A and shown 1

Fig. 3.A.1 (p. 174). We deduce:

1. The maximum value of D(r*) is equal to A,A2A,, i.e. to the volume g
of the crystal;

7. The width of a principal maximum in a certain direction is inversel}
proportional to the dimension of the crystal in that direction. Thus.

because of the finiteness of the crystals each node of the reciprocal latte

is in practice a spatial domain with dimensions equal to A", In Fig. 3

o F

some examples of finite lattices with the corresponding reciprocal lattees

are shown.

When we consider the diffraction by a crystal the function Fu(H) bears e

name of structure factor of vectorial index H (or indexes h, k, | if we
reference to the components of rjy) and it is indicated as:

N
= E fiexp (2xiry - r)
j=1

where N is the number of atoms in the unit ceil. In accordance

wih
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» 64 we write

N
Fa=2 fexp 2niHX,) = 4y + iB,, (3.30a)
i~
shere
N _ N .
Au=2 ficos2zAX;,  By=Y fsin 2xHX,. (3.30b)
=1 =1

According to the notation introduced in Chapter 2, we have indicated the
‘ector as ryy and the transpose matrix of its compounents with respect to the
‘eciprocal coordinates system as H = (hkl). In the same way r. is the jth
xsitional vector and the transpose matrix of its components with respect to
‘e direct coordinates system is X = [x; ¥; z]. In a more explicit form (3.30a)

nay be written
N
Fua= 2, f exp 2mi(hx, + ky; +1z,).
i=1
'n different notation (see Fig. 3.7)
by = [Fy| exp (ipn) where @, = arctan (Bu/Ay). (3.31)

Puis the phase of the structure factor Fy.
If we want to point out in eqn (3.30a) the effect of thermal agitation of
he atoms we write, in accordance with p. 149 and Appendix 3.B

N
Fa= 2 fo exp (27iAX; — 822U sin® 6/4%)

=1

Fig. 3.8. Direct and reciprocal Jattices for: (a)a
ohe-dimensional lattice: {b) a two-dimensional
lattice in the form of a rectangle; {c) a two-
dimensional lattice in the form of a circle; (d) a
cubic crystal in the form of a sphere; (el a cubic
crystal in tha form of a cube; (f) a crystal in the
form of a paraitelepiped (from Kitaigorodskii, A.
I. {1951). Tha theory of crystal structure analysis,
Consuitants Bureau, New York).
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Fig. 3.7. £, is represented in the Gauss plana for
a crystal structure with N =5, It is o = 2aHX,.
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Fig. 3.8. Reflection of X-rays from two lattice
planes belonging 10 the family H=(h, k, /). dis
the interplanar spacing.

Fig. 3.9. Reflection and limiting spheres.

or

N
Fu= fiy exp (2iAX; — 2°HUH)
=i
depending on the type of the thermal motion (isotropic or anisotropic)i j
the atoms. f; is the scattering factor of the jth atom considered at rest. Ly
us note explicitly that the value of Fy, in modulus and phase, depends oy
the atomic positions i.e. on the crystal structure. '
Details of the structure factors calculation from a known structural modg

are given on pp. 87-8 and Appendix 2.1. o
' i
Bragg's law ¥
3

A qualitatively simple method for obtaining the conditions for diffractiog
was described in 1912 by W. L. Bragg who considered the diffraction as the
consequence of contemporaneous reflections of the X-ray beam by varion
lattice planes belonging to the same family (physically, from the atoms lying
on these planes). Let 8 be (see Fig. 3.8) the angle between the primary
beam and the family of lattice planes with indices h, k. | (having no integer |
common factor larger than unity). The difference in ‘path’ between the

waves scattered in D and B is equai to AB + BC = 2d sin 6. If it is multiplk
of A then the two waves combine themselves with maximum positive
interference: ;

2dy sin 8 = na. (3.3

Since the X-rays penetrate deeply in the crystal a large number of latti
planes will reflect the primary beam: the reflected waves will intcrfere:
destructively if egn (3.32) is not verified. Equation (3.32) is the Bragg
equation and the angle for which it is verified is the Bragg angle: f
n=1,2,... we obtain reflections (or diffraction effects) of first orde
second order, etc., relative to the same family of lattice planes H. ‘

The point of view can be further simplified by observing that the family
fictitious lattice planes with indices k' = nh, k' = nk, {' = n{ has interplan
spacing dy = du/n. Now eqn (3.32) can be written as

Ady/n) sin 6 = 2y sin 6 = A 3.3

where k', k', I’ are no longer obliged to have only the unitary factor
common.

In practice, an effect of diffraction of nth order due to a refiection fro
lattice planes H can be interpreted as reflection of first order from the fami
of fictitious lattice planes H' = nH.

It is easy to see now that eqn (3.33) is equivalent to eqn (3.25). Indeed,
we consider only the moduli of eqn (3.25) we will have, because of ¢q
(2.14) and (3.6),

r*=2sin 8/A = 1/dn.

The reflection and the limiting spheres

Let us outline (see Fig. 3.9) a sphere of radius 1/A in such a way that
primary beam passes along the diameter 10. Put the origin of the recipr
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e at O. When the vector ry is on the surface of the sphere then the
i w[wsponding direct lattice planes wiil lie parailely to IP and will make an
jgnziﬂ ¢ with the primary beam. The relation

! OP =ry= l/dy = 1O'sin 8 = 2 sin 6/1
!

Boids. which coincides with Bragg's equation. Therefore: the necessary and
quicient condition for the Bragg equation to be verified for the tamily of
Epi.mﬂs (hik) is that the lattice point defined by the vector ry lies on the
qriace of the sphere called the reflection or Ewald sphera. AP is the
girection of diffracted waves (it makes an angle of 28 with the pnmary
peam): therefore we can suppose that she‘crystal 15 at A
. For X-rays and neutrons i =(0.3-2) A. which is comparable with the
gimensions of the umt cell (=10 A} the sphere then has appreciable
curvature with respect to the planes of the reciprocal lattice. If the primary
team is monochromatic and the crystal casually oriented, no point of the
rec:orocal lattice should be in contact with the surface of the Ewald sphere
except the (000) point which represents scattering in the direction of the
pnmary beam. It will be seen in Chapter 4 that the experimentai techniques
am 10 bring as many nodes of the reciprocal latuce as possible into contact
«ith the surtace of the redection sphere.
_in electron diffraction A =0.05 A: therefore the curvature of the Ewald
spere is small with respect to the planes of the reciprocal lattice. A very
high number of lattice points can simultaneously be in contact with the
surface of the sphere: for instance, all the points belonging to a plane of the
reciprocal lattice passing through O.
{1t ry>2/A (then dy < A/2) we will not be able to observe the redlection H.
This condition defines the so-cailed limiting sphere. with centre O and
fadius 2/A: only the lattice points inside the limiting sphere will be abie to
diffract. Vice versa if A > 2a.,,,. where d.,,, is the largest period of the unit
teil. then the diameter of the Ewald sphere will be smaller than ry,, (the
gmailest period of the reciprocal lattice). Under these conditions no node
gouid intercept the surface of the refiection sphere. That is the reason why
¥e can never obtain diffraction of visible light (wavelength =3000 A) from

vstals.

The wavelength determines the amount of information available from an

periment. In ideal conditions the wavelength should be short enough to
Bave out of the limiting sphere only the lattice points with diffraction

o

rtensities close to zero due to the decrease of atomic scattering factors.

Diffraction intensities

?:e theory so far described is called kinematic: basically it calculates
Merference effects between the elementary waves scattered inside the
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volume of the crystal. However, it neglects two important phenomenga; *
when the incident wave propagates inside the crystal its intensity decreasey
gradually because a part of its energy is transferred to the scattered beam o
it is absorbed: the diffracted waves interfere with each other and with the *
incident beam. L
The theory which takes into account all these phenomena and analyses )
the wave fieid set up as a whole is called the dynamic theory of diffraction,
[t was initiated by Ewald:"! later on Laue showed that Ewald’s theory is
equivalent to analysing the propagation of any electromagnetic field through
a medium having a petiodicalty varying complex dielectric constant. The
description of the dynamical theory is out of the scope of this book. The
reader is referred to specialist books or review articles’™? for exhaustive
information. Only 2 dynamical effect of particular importance for crystat
structure analysis, the Renninger effect, will be here described (in Appendix
3.B. p. 191) in any detail. Other dynamical interactions will be described on
the basis of the kinematical theory properly modified by Darwin and other
authors.
Dynamic effects develop gradually in a crystal: it may be shown that for
sufficiently small thicknesses the incident beam 1s not weakened con-’
siderably, the diffracted waves are not yet so strong as o give rise to:
remarkable interference effects with the incident beam and the effects of
absorption are negligible. Under these conditions (theoretically, thicknesses
<1073-10"* cm) the kinematic theory is a fairly accurate approximation w;
dynamic theory. However, in practice. corresponding equations proved {0
be valid even for crystals having dimensions of several tenths of 2
millimetre. This is due to the real crystal structures. :
A simplified model of real crystal was proposed by Darwin: 14-5) j¢ can be:
ideally schematized like a mosaic of crystalline blocks with dimensions 04
about 107> cm, tilted very slightly to ¢ach other for angles of the order
fractions of one minute of arc: each block is separated by fauits and cra
from other blocks. The interference between the waves only occurs inside,
every single block, whose dimensions satisfy the theoretical conditions %2
applicability of the kinematic theory. Because of the loss of coherencey
between the waves diffracted from different blocks. the diffracted intensitfy
from the whole crystal is equal to the sum over the intensities diffracted;
from every single block.
Real crystals, however, differ by ideal ones also because they may comnts
a large variety of defects. which are convenient to classify into the follo ' ‘
groups (see Chapter 9): transient defects. having lifetimes measured
microseconds {e.g. phonons, which are elastic waves propagating throuffy
the crystal and inducing atomic displacements); point defects, which can D&
missing (called vacancies), interstitial, or vicarious atoms; line defectiy
extending along straight or curved lines (e.g. dislocations); plane defecy
extending along planes or curved surfaces (e.g. small angle boundaricfg
stacking faults); volume defects, extending throughout small volumes in 123
crystal (e.g. inclusions, precipitates, voids). k
The importance of defects with respect 10 diffraction intensities depents -
on their nature and on their density. For example, a single point defect 405
not produce detectable effects on diffraction maxima but a large numberl g
them, as in the case of order—disorder transitions, strongly affeciy
diffraction. When agglomerated they can form voids or cracks in a c1ys

o
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ofs clustering along certain planes. they form two-dimensional precipitates.
Furthermore, individual dislocations have little effect on diffraction but they
may array themselves to form smail-angle boundaries separating two
cclatively perfect regions tilted relative to each other by about one minute
of arc (mosatc blocks).

we can therefore expect that any type of defect which disturbs the crystal

rodicity by lattice distortion or substitution or shift of atoms from the
2quilibrium position will produce some effect on diffracted intensities:
,mong others. it will cause a more rapid statistical decrease of diffraction
atensities with sin 8/A. In particuiar, the lattice distortions cause variations
. the unit cell dimensions and therefore modify the form and volume of the
-eciprocal lattice points (variations of the spacing dy bring variations in the
nodutus ry, variations in the orientation of the planes H cause modifications
.n the orientation of ry).

On the basis of these premises it is nonsense to affirm that a crystal is in
-he “exact’ Bragg position for a given family of lattice planes. Indeed,
~ecause of the finite size of the crystal, its mosaic structure, defects. and
ttice distortions, etc., each node of the reciprocal lattice will have a finite
\olume and will be in contact with the surface of the retlection sphere for a
7nite angle intecval. In addition the surface of the reflection sphere itself has
n practice to be substituted by a solid domain. Indeed, the incident X-ray
~eam does have an inevitable divergence and an imperfect monochromati-
aty. As a consequence (see Fig. 3.11) the spherical surface of radius 1/4 is
:eplaced by a family of spherical surfaces whose efficiency relative to
Jiffraction depends on the distribution of the intensities as a function of the
ingle divergence and of the wavelength of the incident beam.

According to the above remarks quantity of practical interest is the
ntegrated intensity and not the maximum intensity of the diffraction peak.
Experimental arrangements normally used to measure diffraction intensities
change the orientation of the crystal (see Chapter 4) so as to compel
reciprocal lattice points to cross progressively the Ewald sphere while
continuously recording the intensity of the diffracted beam. Thus the total
Jiffracted energy during a fixed time is measured. Equivalently, the same
‘otal energy may be measured by integrating the diffracted intensity over a
wvitable angular range around the ideal Bragg angle. According to eqns
'3.3) and (3.28) the integrated intensity is given by

I =k koo LPTE |Fyf? (3.41)

~here [, is the intemsity of the incident beam, k, =e*/(m’c?) takes into
iccount the universal constants existing in eqn (3.3). k,=A’Q/V? is a

Vs

Vi,
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Fig. 3.11. {a) Incident radiation with non-
vanishing divergence. (b) Non-monochromatic
incident radiation.
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Fig. 3.12 Multiple reflections from a fa
jattice planes.

mily of

constant for a given diffraction experiment (€2 is the valume of the crysta
V is the volume of the unit cetl), P is the polarization factor. defined 0[;
p. 143, T is the trans.nission factor and depends on the capacity of the
crystal to absorb the X-rays (see Chapter 4, p.304), L is the Lorentz factor
and depends on the diffraction technique (Chapter 4, p.301). E is the
extinction coeficient. It depends on the mosaic structure of the crystal and
has two components. The most important one, called secondary extinction,
takes into account tie fact that the lattice planes first encountered by the
primary beam will reflect a significant fraction of the primary intensity so
that deeper planes receive less primary radiation. That causes a weakening
of the diffracted intensity, mainly observabie for high-intensity reflections at
low sin 8/A values in sufficiently perfect crystals. If the mosaic blocks are
misoriented (as they usually are) then they do not diffract together and
shielding of deeper planes is consequently reduced. Secondary extinction i
equivalent to an increase of the linear absorption coefficient: thus it is
negligible for sufficiently small crystals. Reflections affected by secondary
extinction can be recognized in the final stages of the crystal structure
refinement when for some high-intensity reflection |Fps| < |Feal- A method
for inclusion of secondary extinction in least-squares methods is recalled
Chapter 2, p. 97.

The second component of the extinction coefficient, calied primary
extinction, takes into account the loss of intensity due to dynamic effects
inside every single block. This phenomenon can be understood intuitively
by means of Fig. 3.12. At the Bragg angle every incident wave can suffer
multiple reflections from different lattice planes: after an odd number of
reflections the direction will be the same as the diffracted beam: after aa
even number of reflections the direction will be the same as the primary
peam. Each scattering causes a phase lag of A/4. Thus, the unscattered
radiation having direction S, in Fig. 3.12 is joined by doubly scattered
radiation {with much smaller intensity) with a phase lag of 7: consequently
destructive interference will resuit. The same consideration holds for wavey
propagating along the direction of the diffracted beam: the result is that
both primary and diffracted beams are weakened because of dynamical
effects. 2

A theory describing the mutual transfer of intensity between incident and
diffracted beams was proposed by Zachariasen. !¢t If absorption is neglected
the intensity [, of the beam in the incident direction and the intensity o

of
the beam in the diffracted direction should be related by: 3
3l &
2= —oly+ ol &
oty !
9—1 =oly— ol
(St 0

where t, and ¢ are lengths in the direction of the primary and diffracte€
beams respectively, 0 is the diffracted power per unit distance and intensity-
The equations have to be soived subject to the boundary conditions: 8.
should be equal to the intensity of the primary beam when £, =0 and / SfJ
when ¢ = 0. The sum of the two equations is zero, which is the condition %%
the conservation of energy. Zachariasen's theory has been modified V%

other authors:7™! the introcuction of an extinction correction parameter
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reast-squares analysis may or may not have. according to circumstances. an
,ppreciable influence on the accuracy of the structural parameters included
«n the refinement. Indeed prior information on the mosaic structure is not
ysually available and therefore the corrections which have to be made are
10t easy to calculate a priori. An experimental (often efficient) way to
-educe extinction consists of rapid cooling of the crystal by means of
mmersion in liquid air: this reduces the dimensions of the mosaic grains.

Anomalous dispersion

it is well known that electrons are bound t0 the nucleus by forces which
iepend on the atomic fieid strength and on the quantum state of the
dectron. Therefore they have to be considered as oscillators with natural
requencies. [f the frequency of the primary beam is near to some of these
ratural frequencies resonance will take place. The scattering under these
onditions is cailed anomalous and can be analytically expressed by
-ubstitution of the atomic scattering factor £, defined earlier by a complex
Juantity

f=hL+Af +if' =f" +if"

Af"and f" are called the real and imaginary dispersion corrections. In order
‘0 have a simple insight into the problem (a rigorous auantum-mechanical
‘reatment was carried out by Honl) we recail that the classical differentiai
‘quation describing the motion of a particle of mass m and charge ¢ in an
sternating field intensity Eq exp (iwe) is

d2x+ + wix = Eq, exp (iwr)

—=+g—+ wirt=E, iw

di? T8 T WS Smexp

*here /2 is the frequency of the incident wave, @y is the natural angular
Tequency of the vibrating particle, g dx/dr expresses a damping force

roportional to the velocity. The steady-state solution of the above
‘quations is
x(£) = Xy exp (iwt)
there
eEn/m
Xo=——3—.
wj— 0 +igw

”, the displacement x(t) is multiplied by e the polarizability moment [ex(¢)]
' each dipole is obtained; the electrical susceptibility of a collection of Z
‘icoupled dipoles is then

_ZeXo_Ze2 1
x= Ex m wi— @ +igw

*hich j5 5 complex function of the frequency of the incident radiation. The
“ectric field produced by the dipole oscillator at a distance r > X, has a
38nitude (we neglect the polarization factor and the phase shift due to the
Avelling in r of the scattered wave) which is w?/(rc?) times its dipole

m
T

o

AT e e M = M ke oo

A i e e
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moment:

w’ex(t)  w’e’ exp (iwt)
3 - in

E = Eexp (iwt) = 5

= = ’ .
rco mrc Wy — w +Igw

If the electron is unrestrained and undamped then g = w, =0 and

-

—¢
Ey={Ejm=—=Eexp(iwt)
mrc

=——= Eyexp [i(wt + 1)
mrc

which well agrees with eqn (3.1) suggested by Thomson: x is the phase lag
between the scattered and the incident radiation.

Since g << w, when w >> w, the expression of £, is not very different frop
that of a free electron. Therefore Thomson scattering is only applicable
when w > wy,.

We define now the scattering factor for an electron as the ratio

Ew = of(w —wj) . gw’

fe=

= =
(Eoa)rs  (w™ —~ i) + g w” (@~ wp)” + g w”
=fLrife

While the imaginary term is always positive, the real term is negative whea
w < wy and positive when @ > w,. From the quantum-theory point of view,
the frequency w, coincides with that of a photon with just sufficient energy
to eject the electron from the atom. Such an energy corresponds to the
wavelength Ay = 2xc/w, corresponding to the absorption edge. Thus it may
be expected that a remarkable deviation from Thomson scattering will arise
when the primary beam wavelength is close to an absorption edge of the
atom being considered.

An important question is whether Af’ and f” vary with diffraction angle.
Existing theoretical treatments suggest changes of some per cent with
sin 8/4 but no rigorous experimental checks have been made so far
therefore in most of the routine applications Af’ and f" are considered to be
constant.

For most substances at most X-ray wavelengths from conventiona
sources dispersion corrections are rather small. Caiculated values for Crk,
(A=2.291A), CuK, (A=1542 A), and MoK, (1 =0.7107 A) are listed o
the International tables for x-ray crystallography, Vol. II1. In some specis
cases ordinary X-ray sources can also generate relevant dispersion effects.
For example, holmium has the L, absorption edge (=1.5368 A) very clost
to CuK, radiation: in this case the hoimium scattering factor is not the san®
for K, and K,, wavelengths. The following dispersion corrections ar
calculated:!'"!

CuK,(A=1.5406 A):  Af'=-1541 f'=3.70
CuK,(A=1.5444 A): Af'=-1409 f'=372
Furthermore, the holmium L, absorption edge (=1.3905 A) is very closef
the CuK, wavelength (i = 1.3922 A), so giving rise to )
Af'=-11.88, f'=8.75.

L .
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if synchrotron radiation is used, its intense continuous spectrum may be
‘hosen to high precision in order to provoke exceptionally large anomalous
<attering. Very large effects have been measured!'!) for rare-earth elements
a the trivalent state near L; absorption edges (corresponding wavelengths
se of crystallographic interest because edges span from 2.26 A for
anthanum to 1.34£ for lutetium}. In Fig. 3.13 we show the anomalous
<attering terms Af' and f” for gadolinium and samarium near the L,
sbsorption edge: spectacular effects as large as =30 electrons/atom couid be
Teasured.

Since anomalous dispersion may induce substantial variation of the
hfiracted intensities depending on the wavelength used, anomalous scatter-
Ag is an important tool for solving crystal structures (see Chapter 8).
several recent works suggest an important role for muitiple-wavelength
methods: the power of such methods depends on the distances between the
*orking points representing f in the complex plane.!'?! As an example, we
slot in Figs. 3.14 (a) and (b) the complex scattering factor Af' +if” near the
L edge for gadolinium and samarium respectively.

Now we will give only a few elementary ideas about the effects of
‘Momalous dispersion: we postpone the methodological aspects for crystal
‘ructure analysis until Chapter 8. Let suppose that a non-centrosymmetric
¥stal contains N atoms in the unit cell from which P are anomalous
“atterers and the remaining Q = N — P atoms are normal scatterers. Then

Fr'=Fo+Fa +iFp" =F'"" +iF}"

o s pee e e (3.42)
F =Fa+Fy +iFy =F"~ +iF}

;heﬂ‘« + and — indicate that the magnitudes are calculated for the vectors
f d —H respectively. The subscripts P and Q indicate that the structure
ors are calculated only with the contribution of P or ¢ atoms

Fig. 3.13. Anomalous scattering terms AFf' and
f" tor: {al gadolinium near the L, edge; (b)
samarium near the L, edge.

Sm .

1 | i I 1 I 1 0
Af' 30 -20 -10 0
b}
Fig. 3.14. Plot in the compiex plane of Af' +if”

near the L, edge for: {a) gadolinium near the L,
edge; {b} samarium near the L, adge.
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Fig. 3.15. (3 Relation betveen F, and F ., when
anomalous dispersion is present; (b} relation
batween £, and £y when anomalous
dispersion Is present.

imag.|
ans

real axis

real axig

)

respectively:

P P
Fir= > flexp2aibiX;:  FF = S frexp 2niHX;;
j=1 1=1

P+Q R
Fp= 2, fexp2aiHX,.

=P+l

The vectors F* and F™ are described in Fig. 3.15(a). In Fig. 3.15(b) F*
and (F7)* are shown: the latter is the complex conjugate of F~ and they are
symmetric with respect to the real axis: :

(F-y = Fp+ Fy —iFpr =F7 —iF;". (3.43)

The difference Al =|F 12 —|F7|* is known as the Bijvoet difference!™
and can be easily calculated by means of Fig. 3.15(b):

\Frit=F')+|Fpl* + 2|F'| |Fplcos @
|F~2=|F}+ |FalP —2|F'||1Fplcos @

from which
Al =41F’| |Fil cos @. (3.4

Furthermore ‘f
{IF*l”+1F‘12}/2=|F'\2+=.F;:12. 2

In general, as we can see, |Ful = |F_u| 1s O longer valid, i.e. the Friedd °
law is not satisfied in the presence of anomalous dispersion. The value of ¥

depends on the collineanty of Fi and F5. If they are collinear thet |

|[F*|=|F"|: but this happens by mere chance. Al is a maximum when i

and F are approximately at the right angles. %
The Friedel law is satisfied if: the structure is centrosymmetric—in theé

case |F*| and |F™} are always equal; the reflection is centrosymmetric €

if the structure is non-centrosymmetric; the crystal is constituted of only U‘

chemical eiement which is the anomalous scatterer. ”
As a last observation it should be mentioned that besides X-ray, neutr®

and gamma-ray anomalous dispersion are also very useful in Cﬂd -

structure analysis. Neutron anomalous dispersion technigues em
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quclear isotopes with resonances in the range of thermal-neutron energies
see p- 198 for further details).

(Gamma-rays are elastically scattered by the electrons of the atoms in the
.;:ystal- An elastic resonant scattering by the nucleus (Mossbauer effect) also
osccurs—the transition involves energies comparable with those employed in
-onventional X-ray diffraction. Since both the processes are coherent,
sattering by resonant nuclei (there are no other nuclear scattering ! ;
contributions) and by electrons can occur simultaneously and interfere with | ! : !l

zach other. i
An ideal nucteus for gamma-ray resonance is SFe; its 14.4 keV resonance O
i :
|

-orresponds to a wavelength of 0.86 A. A widely used experimental set-up
includes a radioactive source which emits the 14.4keV radiation in the
Jecay of the parent isotope $7Co. This produces a resonance effect in Fe
(this atom may naturally be present in the crystal or implanted by ; )
rechniques such as those used for isomorphous replacement) which s S
superimposed on the various Bragg reflections upon the gamma radiation
slastically scattered by all the atoms in the crystal, iron atoms included.
since “'Fe has a natural abundance of about 2.2 per cent, isotopic
cnrichment techniques must be applied in order to provide a sufficiently
large resonant scattering.

The frequency of the incident radiation may be modified by moving the
radiation source, at low velocity (some mm s”1), towards or away from the
crystal (linear Doppler effect).

The anomalous scattering amplitudes increase dramaticaily in going from
X-ray to neutron to gamma-ray. Conversely, the intensities of the radiation
sources decrease dramatically. This is the most severe drawback for the use
of gamma rays: relatively large signals are produced by relatively very weak
radiation sources.

The Fourier synthesis and the phase problem

if the structure factors are known in modulus and phase the atomic
positions are unequivocally determinable. Indeed, according to eqn
{3.A.16) the electron density is the inverse Fourier transform of F(r*):

p(r)= L‘ F(r*)exp (—2air” - rydr*

-1 S Fugexp[-2mi(hx +ky + 1)) (3.45)

hk ===

X =[x, y, z] are the fractional coordinates of the point defined by the vector
F Th_e atomic positions will correspond to the maxima of p(r).
If in eqn (3 45) we sum up the contributions of H and —H we will have

Fy exp (—2xiHX) + F_y exp (2xiHX)
= (Ay + iBy) exp (=2iHX) + (Ay — iBu) exp (2iAX)
=2[Ay cos 2zHX + By sin 27HX]
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o(r) o'

{a) b

Fig. 3.16. {a) Electron density p(r}); {b} electron
density obtained via a Fourier synthesis with
series termination errors.

from which

x f=—=

Apcos 2alhx + ky +1z) + By, sin 2m(hx + ky + {z))] (3-46)

—

is obtained. The nght-hand side of (3.46) is explicitly real and is a sum over
a haif of the available retlections.

The mathematical operation represented by the synthesis (3.46) can be
interpreted as the second step in the process of formation of an image in
optics. The first step consists of the scattering of the incident radiation
which gives rise to the diffracted rays with amplitudes Ay. In the second step
the diffracted beams are focused by means of lenses, and by interfering with
each other they create the image of the object. There are no physical
focusing lenses for X-rays but they can be substituted by a mathematical
lens (exactly, by Fourier synthesis {3.46)).

Because of the decrease of the atomic scattering factors the diffraction
intensities (and consequently |Fy|) weaken "on average’ with the increase of
sin @/ and can be considered zero for values above a given (sin 6/4)y,, =
1/(2d.n)- Since the reflections at high values of sin 6/A give the fine details
of the structure (small variations of the atomic coordinates can produce big
changes in high-angle structure factors) the quantity dy,, is adopted as a
measure of the natural resolution of the diffraction experiment. dg,
depends on different factors such as: the chemical composition of the crystal
(heavy atoms are good scatterers even at high values of sin g/4), the
chemical stability under the experimental conditions of temperature and
pressure, the radiation used (the resolution improves when we pass from
electrons to X-rays and neutrons), the temperature of the experiment.
Roughly speaking, for X-rays dm,, can reach the limit of 0.5 A in inorganic
crystals, 0.7-1.5 A in organic crystals, and 1.0-3 A in protein crystals.

Because of the limit of natural resolution or of an artificially introduced
limit (for instance in order to save time and calculations) the electron
density function will be affected by errors of termination of series. The
effect can be mathematically evaluated by calculating the function p'(r}
available via the function g

F'(e*) = F(r*)Yd(r*). E

®(r*) is the form function: ®(r*) = 1 inside the available reflection sphere;;
®(r*) = 0 outside this sphere. According to eqn (3.A.35) we have

p'(7) =T(F'(r*)] = p(r) = T[®(r")} (347,

If r* is the radius of the available reflection sphere, according ®
Appendix 3.A, p. 181, T{®(r*)] is a function with a maximum at r =0 2%
the subsidiary maxima of weight decreasing with 1/r“. The effect of the
convolution (3.47) is qualitatively represented in Fig. 3.16. In particulafvﬂ
even if p(r) is positive everywhere, p’(r) can be negative in more 0f 1. ’
extended regions: the atomic peaks can be broad and surrounded by a SCI"‘"
of negative and positive ripples of gradually decreasing amplitude. ﬂ‘l}

The number of reflections used in practice in eqn (3.46) varies
several tens or hundreds, for unit cells of small dimensions, to several
of thousands for macromolecules.

tend
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In order to reveal the atomic positions, p'(r) is sampled upon a
three-dimensional grid whose spacings along each of the unit-cell axes have
1o be fixed with some care. If the grid is too coarse the interpolation
petween grid points to find the maximum of the electron density may be
gncertain, if the grid is too fine a great deal of computing may be
unnecessary. In absence of symmetry, at a resolution 4, there are

4 4V
Nr = e— =
3d?ﬂin‘/ * 3d:1in

measurable {only N,/2 independent) reflections and the number of grid
points is N, = V/A® where A is the grid spacing (say 0.2-0.4 A in the three
directions). In practical cases N, and N, are rather large: for instance, for
y=1000 A%, i =0.8 A, A=0.25A, we have N, = 8180 and N, = 64 000.

if symmetry is present the amount of calculation is smaller. The number
of independent reflections to be measured is roughly N,/(tm) where 7 is the
centring order of the cell and m the multiplicity factor of the Laue class (this
is not strictly exact as the multiplicity factor refers to general reflections of
wpe (hkl) and may be different and less than m for certain zones of
rettections). Furthermore, it will be sufficient to sample p upon the grid
points lying inside the asymmetric unit for reconstructing the whole content
of the cell.

For instance, let P2/m be the space group with a=7.8 A, b =16.2 A and
c=8.1A and 8 =93". If we divide a and c into 33 and b into 66 intervals
the grid spacing will have a sufficient and almost identical resolution in all
three directions. The number of grid points lying inside the asymmetric unit
t1/4 of the unit cell) is now 33 X 33 x 17 = 18 513.

Very often the volume of the unit cell is much larger than 10° A3
iV >10° A® is not infrequent for macromolecules). Thus even with the use
of high-speed computers, the calculation of p is a fairly arduous task
mvolving time-consuming procedures. Different algorithms are used to
make calculations faster. The most convenient are the Beevers-Lipson
technique and the fast Fourier transform algorithm by Cooley and Tookey
‘see Chapter 2, pp. 88-90, and Appendix 2.I).

Unfortunately, it is not possible to apply eqn (3.47) only on the basis of
mnformation obtained directly from X-ray diffraction. Indeed, according to
qn (3.41), only the moduli |&,| can be obtained from diffraction intensities
Jecause the corresponding phase information is lost. This is the so-called
“ystallographic phase problem: how to identify the atomic positions
‘arting only from the moduli [Fy|. A general solution to the problem has
0t been found, but there are methods we can successfully apply {see
Chapters 5 and 8).

I




PROPERTIES OF SYNCHROTRON

RADIATION

HIGH INTENSITY

TUNEABLE WAVELENGTH

WHITE RADIATION

HIGH COLLIMATION

PULSED TIME STRUCTURE

POLARIZATION OF RADIATION

ADVANTAGES IN CRYSTALLOGRAPHY

RAPID DATA COLLECTION POSSIBLE

SMALL CRYSTALS CAN BE USED

WEAK, HIGH RESOLUTION DATA CAN BE
MEASURED

DATA CAN BE COLLECTED NEAR ABSORPTION
EDGES OF HEAVY ATOMS

HIGH RESOLUTION DATA CAN BE CCLLECTED
ON FILM OF MANAGEABLE SIZE

LAUE METHQD
VERY RAPID DATA COLLECTION
KINETIC MEASUREMENTS POSSIBLE

WELL DEFINED REFLECTIONS
HIGHER RESOLUTION DATA OBTAINABLE

USE IN KINETIC MEASUREMENTS

NOT YET USED IN CRYSTALLOGRAPHY






