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| PERFoRMANCE  LIMTATIONS
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Pamanent magnets
PURE PERMANENT MAGNET
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Pesformance. CompafiSon
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Power, and power density

for both undulators and multipole wigglers :

Ptot = 0633 Ezcev B02 L Ib kW
d2P/dQ2 = 10.84 E4Ggev Bo N G(K) Ip W/mrad2
137.11,'...,..'7;#
o e T
K ‘

e.g. L=3 m, Iy=100 mA

20=0.06, Bo=0.5 | Ao=0.14, Bo=1.5
E (GeV) Piot d2P/dQ__ Piot d2P/dQ |&w, kW/mrad?)
0.8 0.03 0.011 027 ! 0.014
1.5 0.11 0.14 096 | 0.17
60 | 17 |35.1 154 | 443

=> design of beamline components to handle the high power
and power density

= interlock system to prevent damage to vacuum chamber if
beam mis-steered
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ik is Possible to oxtend the tuning g somewhet
by means of harmonics
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Example : Insertion Devices for a 1.5 GeV ring

Type Aofem) N Bo(D K Por(W) Paen (W/mrad2)

U
U
U
W

7.2
5.0
3.7
12.5

41
60
81
23

0.79 5.3 526

0.54 2.5 248
0.35 1.2 103
1.5 17.5 1821

355
351
296
378

NB] assumes €x = 108, ¢y = 10-9, gmin=20 mm, L=3m, [;=200 mA

Brillionce [photons/s/mm’/mrod’/o. 1%bw]

Flux [photons/s/0.1%bw (/mrad)]
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Low energy undulator (€min = 20 eV)

lo_(c.ml N Bo(T) K Pror_(W) EdenM!IlLadzl

41 0.79 526 355
30 0.47 4.4 190 155
20 0.25 3.5 53 35
12 0.11 2.6 10 14
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High energy undulator (€min = 1 keV)
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Multi Wiggler

Usually the aim is to enhance the intensity at high photon
energy by increasing the field strength and the number of poles

Limitations :

® minimum magnet gap

e radiation power (and power density)

e opening angle of the radiation (KHY)

s cffects on the electron beam (focusing, emittance)

Trade-off between number of poles and field strength for
constant total power, ¢.g. ELETTRA : P...x.z lokW
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( —» there is an optimum field strength for a given photon energy )

However, the radiation opening angle may also be restricted
to reduce the power incident on the vacuum chamber walls :
ELETTRA - £ 4.5 mrad
SRS, 5 T wiggler - + 32 mrad, shorter straight section,
wider vacuum vessel



3. CONSTRUCTION ASPECTS

* choice of length :
flux ~ N
angular flux density ~ N2 (ideal) - N (emittance dominated)

brilliance ~ N, both ideal and emittance dominated

power, power density ~ N
=> no strong reason to increase length; 3-5 m typical

[unless very long, e.g. Tristan Super Light Facility - 70 m !]

* segmented or in one piece ?

segmented - easier construction, measurement etc.; flexibility
but attention has to be paid to phase differences between
sections and also magnetic interaction effects.

» "C"-frame or "H-frame" ? ‘
C-frame has easier access for magnetic measurements, and for
installation, but H-frame more rigid; depends on the length.

e pure permanent magnet or hybrid ?
- good results can be achieved with either - with Suficeat Cale

* gbtaining the minimum gap
- standard construction, external to fixed vacuum chamber :

gID = gint + 4 MM
- minimum thickness chamber, at the position of the poles :
gID = gint + 1 mm
- variable gap vacuum chamber, can be adjusted after beam
injected and stored in the ring
- in-vacvam insertion device . gD = Lint









Multi-undulators

« coverage of a wide spectral range using several magnet arrays
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Short period r

"short" < 30 mm

"mini-undulator" ~1-10 mm
"micro-undulator" < 1 mm

Aim : higher photon energies with given electron beam energy.

Much effort has gone into the development of short period
devices for use in FELs, based on permanent magnets, pulsed

electromagnets and superconducting magnets.

Limited application so far in storage rings, because of the need
for small gaps :

— variable vacuum vessel gap or in-vacuum
= possible changes to ring optics to reduce the vertical beam

size (By) at the undulator location

examples :

« smallest period in routine use (?), MAX, A, = 24 mm, PM
K=1.9 at g=7 mm (6 mm for e- beam) - variable vac. vessel

» PSGU under construction at NSLS, A, = 16 mm, PM
K=1.0 at g=6 mm (4 mm for e- beam) - variable vac. vessel

« constructed for FEL at NSLS, Ao = 8.8 mm, SC
K=0.36 at g=4.4 mm

NB] reduced tuneability, due to small K value



Tapered undulators e ., ﬁ___ B
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variation of magnet gap along undulator axis :
= variation in the output wavelength
=> broadened linewidth
T possibility to perform experiments over a range of
wavelengths (~ 10-20 %) without changing the undulator
U reduced intensity compared to standard case
gap variation required varies with K and Ao :
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NB] the spectrum is not smooth, particularly with low
emittance and low photon energy
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e.g. Measurement of the APS prototype undulator carried out at
CESR (Cornell) :
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FIG. 2. On-axis spectra measured during the first undulator rua.



4. COMPUTATION OF UNDULATOR RADIATION.
PROPERTIES A

Why ?

e more precise determination of peak angular flux density, by
correct convolution of ideal angular distribution and electron
beam divergence

e calculation of integrated flux over finite aperture ("pinhole”)
— define required aperture for given fraction of total flux

« calculation of power density and integrated power over finite
apertures, as a function of photon energy

— power loading on optical elements

NB the spectral and angular distribution can be important

¢ input for optical element design

etc. etc.

How ?
Various computer codes exist; two main types :

(D) ideal trajectory, plane sinusoidal or general elliptical,
in the far field — analytic expressions (Bessel functions)

(@) arbitrary field distribution and trajectory,
and/or near field — numerical integration, or FFT

options for - inclusion of emittance, energy spread
calculation of polarization properties

For design work, the most important effects can be calculated
using the first approach; e.g. URGENT

To evaluate the magnetic measurement results on real devices
requires the second approack.

~f



Examples of flux transmitted by various pinholes and
angular distributions of flux for an undulator on ELETTRA,
calculated with URGENT.
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Power densities for each individual harmonic for the same case
as above :
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Another example, showing the spectrum of flux transimitted
through a pinhole up to very high harmonic numbers :
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- solid line = wiggler approximation (no interference)



5. UNDULATOR FIELD ERRORS

® permanent magnet magnetization errors :

- variations from block-to-block of total magnetization strength
(£ 2.5 %) and angle (%2 o),

- inhomogeneity (up to 20 % between opposite faces of the
same block)

® mechanical tolerances

two effects :

(i/ deflection of the electron beam away from the axis
equivalent to observing the radiation off-axis
= introduction of even harmonics

(ij/ random phase errors
= loss of constructive interference

result :

ol
-
< aB/Bg> Ll

® reduced peak angular flux density and brilliance

® deterioration gets worse with increasing harmonic number
- limits the tuning range : for the new Synchrotron Radiation
Sources, up to the Sth harmonic was generally considered
useful....

® smoothing out of spectrum at high harmonics (— wiggler)



Initial work examined the effect in terms of the (rms) variation

in field amplitude from pole to pole.

However, it was later shown that the intensity is not well
correlated with this parameter :
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The intensities are however well correlated to the rms phase
error at the emitting poles :
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The phase of emission () at any point is given by :
b= wit-ory)

On-axis (n = 0) the expression becomes :

$= 2T < 4 X'z
A\ 2 2
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impl

Radiation amplitude for a series of N dipole magnets :
A ~ et‘b' + Q,“bl * eid"’ ,qfé"'

where ¢; are the phase errors at each pole.

The intensity is ther‘sfcr)qre :

TR 5 S

M=t m=t
ry

~ N +(N1-M)f,:%

i -S¢,
OE 3 %
In the ideal case (0g =0)ie. |Al" = N°
and hence the ratio of intensity to the ideal case is :
O
Q. N+HN-N
'N;‘
Thus, for no errors (0¢ = 0) R=1
large errors (G¢ — oo) R - I/N (wiggler)

In most cases N largg, and if g not too large, we have simply :
| R=¢ % i

Note that Gy is linearly proportional to the frequency, so
intensity reduces with harmonic number :

since

e.g. O¢= J5° ) o
Fi R s | 7 o ||
R [ 099 | 093 | 083 | 067 | 054 | 040
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Experience shows that careful construction can result in rms
phase errors of 50 or less, and hence even higher harmonics can

be used than thought previously :

e.g. ELETTRA Undulator US.6

E=15 GeV, gap=20 mm
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Combination of phase errors, emittance and energy spread

The effects of electron beam emittance (i.e. beam divergence),
energy spread, and undulator phase errors on the peak angular
flux density are to a good approximation jndependent :

th = R; X RAEIE X RQ

e.g. ELETTRA (1.5 GeV) US5.6, N=81

phase error, Rg 097 091 076 059 041
emittance, Re 098 084 071 062 054
energy spresd, Ragxg 097 079 060 048 0.39

i.e. effect of energy spread (often neglected) is important,
particularly for higher harmonics

NB] |

R¢  depends on undulator quality; independent of ring energy

Re  depends on ratio between beam divergence and natural
radiation opening angle, (A/L)1/2

RAE/E depends on ratio between energy spread and natural
linewidth, 1/iN






