INTERNATIONAL ATOMIC ENERGY AGENCY
UNITED NAT!ONS_ EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
G16/)93 L.CT.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CaBLE: CENTRATOM TRIESTE

v.'

¢,
Vi 5{: SMR.693 - 1
/.
0 000 000 024978 U

COLLEGE ON COMPUTATIONAL PHYSICS

(17 MAY - 11 JUNE 1993)

--

BACKGROUND MATERIAL
for lectures on

NUMERICAL TECHNIQUES

W.H. PRESS
Harvard College Observatory
Smithsonian Astrophysical Observatory
60 Garden Street
Cambridge, MA 02138
U.S.A

Y]] oy T -]] 1l i o s ol s i A s ok

These are preliminary lecture notes, intended only for distribution to participants.

:n‘hl\ BLILDING StRapa CosTizRa, 1l TEL. 22401 TeLEFax 224163 Tecex 460392 Apmramico Guest House Via GRIGN anO, 9 IEL. 224241 IELEH.\ 2245.}} Inn 4%?

Selections from

Numerical Recipes
in FORTRAN

The Art of Scientific Computing
Second Edition

William H. Press

Harvard-Smithsonian Center for Astrophysics

Saul A. Teukolsky

Department of Physics, Cornell University

William T. Vetterling

Polaroid Corporation

Brian P. Flannery

EXXON Research and Engineering Company

Reprinted for the exclusive use of
ICTP College on Computational Physics
17 May - 11 June, 1993

Published by the Press Syndicate of the University of Cambridge
The Pit Building, Trumpington Street, Cambridge CB2 IRP

40 West 20th Swreet, New York, NY 10011-4211, USA

10 Stamford Road, Oakleigh, Victoria 3166, Australia

Copyright © Cambridge University Press 1986, 1992

except for §13.10, which is placed inte the public domain,

and except for all other computer programs and procedures, which are
Copyright © Numerical Recipes Software 1986, 1992

All Rights Reserved.

Some sections of this book were originally published, in different form, in Computers
in Physics magazine, Copyright (© American Institute of Physics, 19881992,

First Edition originally published 1986; Second Edition originally published 1992.
This reprinting is corrected to software version 2.02,

Printed in the United States of Amerca
Typeset in TEX

The computer programs in this book are available, in FORTRAB, in several machine-
readable formats. There are also versions of this book and its software available in the
Pascal, C, and BASIC programming languages.

To purchase disketies in [BM PC or Apple Macintosh formats, use the order form at
the back of the book or write to Cambridge University Press, 110 Midland Avenue, Port
Chester, NY 10573. Also available from Cambridge University Press are the Numerical
Recipes Example Books and coordinated diskettes in FORTRAN, Pascal, C, and BASIC.
These provide demonstration programs that illustrate the use of each subroutine and
procedure in this bock. They too may be ordered in the above manner.

Unlicensed transfer of Numerica! Recipes programs from the abovementioned
IBM PC or Apple Macintosh diskettes to any other format, or 1o any compuier except
& single IBM PC or Apple Maciniosh or compatible for each diskette purchased, is
strictly prohibited. Licenses for authorized transfers (o other computers are available from
Numerical Recipes Software, P.O. Box 243, Cambridge, MA 02238 (fax 617 863-1739).
Technical questions, corrections, and requests for information on other available formats
should also be directed to this address.

Library of Congress Cataloging in Publication Data

Numerical recipes in FORTRAN : the ant of scientific computing / William H. Press
... [etal]. - 2nd ed.

Includes bibliographical references (p. } and index.

ISBN 0-521-43064-X

1. Numerical analysis—Compuier programs. 2. Science—Mathematics-Computer programs.
3. FORTRAN (Computer program language) [Press, William H.
QA29T.N8&6 1992
519.4'0285°53-dc20 92-8876

A catalog record for this bock is available from the British Library.

ISBN 0 521 43064 X Book

ISBN 0521 437210 Exampie book in FORTRAN

ISBN 0521437172 FORTRAN diskeue (IBM 525", 1.2M)
ISBN 0521437199 FORTRAN diskeue IBM 3.5", 720K)
ISBN 0521 43716 4 FORTRAN diskette (Mac 3.5", 800K)

4

12

18

13

Contents

Integration of Functions

4.0 Introduction

4.1 Classical Formulas for Equally Spaced Abscissas
4.2 Elementary Algorithms

4.3 Romberg Integration

4.4 Improper Integrals

4.5 Gaussian Quadratures and Orthogona! Polynomials

Evaluation of Functions

5.8 Chebyshev Approximation
5.9 Derivatives or Integrals of a Chebyshev-approximated Function

Fast Fourler Transform
12.3 FFT of Real Functions, Sine and Cosine Transforms

Integral Equations and Inverse Theory

18.0 Introduction

18.1 Fredholm Equations of the Second Kind

18.2 Volterra Equations

18.3 Integral Equations with Singular Kerels

18.4 Inverse Problems and the Use of A Priori Information
18.5 Linear Regularization Methods

18.6 Backus-Gilbert Method

18.7 Maximum Entropy Image Restoration

Fourier and Spectral Applications
13.10 Wavelet Transforms

i

4. Integration of Functions

4.0 Introduction

Numerical integration, which is also called quadrature, has a history extending
back to the invention of calculus and before. The fact that integrals of elementary
functions could not, in general, be computed analytically, while derivatives could
be, served 10 give the field a certain panache, and 1o set it a cut above the arithmetic
drudgery of numerical analysis during the whole of the 18th and 19th centuries.

With the invention of automatic computing, quadrature became just one numer-
ical task among many, and not a very interesting one at that. Automatic computing,
even the most primitive sort involving desk calculators and rooms full of “computers”
(that were, until the 1950s, people rather than machines), opened to feasibility the
much richer field of numerical integration of differential equations. Quadrature is
merely the simplest special case: The evaluation of the integral

b
I= f f(z)dz (4.0.1)
a
is precisely equivalent to solving for the value / = y(b) the differential equation
dy
-— 4.0.
& = (@) (4.02)
with the boundary condition
y(a) =0 {4.0.3)

Chapter 16 of this book deals with the numerical integration of differential
equations. In that chapter, much emphasis is given to the concept of “variable” or
“adaptive” choices of stepsize. We will not, therefore, develop that material here.
If the function that you propose to integrate is sharply concentrated in one or more
peaks, or if its shape is not readily characterized by a single length-scale, then it
is likely that you should cast the problem in the form of (4.0.2)(4.0.3) and use
the methods of Chapter 16.

The quadrature methods in this chapter are based, in one way or another, on the
obvious device of adding up the value of the integrand at a sequence of abscissas
within the range of integration. The game is to obtain the integral as accurately
as possible with the smallest number of function evaluations of the integrand. Just
as in the case of interpolation (Chapter 3), one has the freedom to choose methods

2 4. Integration of Functions

of various orders, with higher order sometimes, but not always, giving higher
accuracy, “Romberg integration,” which is discussed in §4.3, is a general formalism
for making use of integration methods of a variety of different orders, and we
recommend it highly.

Apart from the methods of this chapter and of Chapter 16, there are yet
other methods for obtaining integrals. One important class is based on function
approximation. We discuss explicitly the integration of functions by Chebyshev
approximation (“Clenshaw-Curtis” quadrature) in §5.9. Although not explicitly
discussed here, you ought to be able to figure out how to do cubic spline quadrature
using the output of the routine spline in §3.3. (Hint; Integrate equation 3.3.3
over z analytically. Seel1l)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) algorithm. This is discussed in §13.9.

Multidimensional integrals are another whole multidimensional bag of worms.
Section 4.6 is an introductory discussion in this chapter; the important technique of
Monte-Carlo integration is treated in Chapter 7.

CITED REFERENCES AND FURTHER READING:

Camahan, B., Luther, HA., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wilay), Chapter 2.

{saacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 7.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Stwoer, J., and Bulirsch, R. 1980, introduction to Numerical Analysis {New York: Springer-Verlag),
Chapter 3.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed, (New York:
McGraw-Hill), Chapter 4.

Dahlq;isl, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
7.4.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice Hall), Chapter 5.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Clitis, NJ. Prentice-Hall), 5.2, p. 89. [i]

Davis, P, and Rabinowitz, P. 1984, Methods of Numerical Integration, 2nd ed. (Orlando, FL:
Academic Press).

4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule™? The classical formulas for integrating a function whose value is known at
equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modem numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as the time
of Newton, if not farther. Alas, times do change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended

£ 1 Clrasleal Formutas for Equaliy Spacad Absclacas 3

Xg X, X3 X v+l

opan fonnolas oa thaes points

closad formnles wes thasa points

Tigurs 4.1.1. Quudniure larcubie wilth squully wpuced wbucivwus co mguis the oegmul of u fuoetian
bolween mp und Ty 3. Chuesd lomules evalusie Lbe fuoelion oo Lhe bouodury poiol, whils opea
forcwulew refiuio from doiog wo (usedul il Whe pvalbuatioo wbgoritho bred ks dowa oo the bouodur y poinia)

midpoint ruls,” cquation 4.1.19, sce 54.2 J. the classical formulas are zlmost entirely
usclzss. They awre muscum picces, but besutiful ones.

Somec notsation: We havc a scquence of abscissss, denoted 25,2, ..., 2y,
241 which are spaced apart by 1 constant step A,

Dy =g+ ik i:O,l,...,f\r+l (4.1.1)
A function f(.‘{.'} hat known values at the Z;'s,
flz)= fi (4.1.2)

We want to integrate the function f(z) between 1 lower limit & and an upper limit
b, wher @ and & xrc cach cqual to onc or the other of the 2;'s. An intcgration
formuls that uses the valuc of the function at the endpoint, f{a) or f(b). is called
a closed formula. Occasionally, wc want to integrate 2 function whose value at onc
or both endpoints is difficult to compute (c.g.. the computation of f goes to a limit
of 2er0 over zzro therm, or worse yet has an intzgrable singularity them). In this
cace we want an open formuls, which zatimates the integral using only Zi's strictly
between @ and b (sec Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over 3 small number of intervals. As that number increascs, we can find
rulex that s exact for polynomials of incrzasingly high order (Eeep in mind that
higher order does not always imply higher accuracy in real cases.) A sequence of
such closed formulss is now given.

Closed Newlon-Cotes Formulas

Trapezcidal rule:

j::f(f}dz = *’f»[;ﬁ + ;f::] +O(R ") (4.1.3)

Here the errer term O() significs that the truc answer differs from the cstimate by
an amount that is the product of some numerical coefficicnt imes A% timee the valee

4 4. Integration of Functions

of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evatuate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O(), instead of the coefficient.
Equation (4.1.3) is a two-point formula (z, and z-). It is exact for polynomials
up to and including degree 1, ie., f(z) = ». One anticipates that there is a
three-point formula exact up to polynomials of degree 2. This is true; moreover, by a
cancellation of coefficients due to left-right symmetry of the formula, the three-point
formula is exact for polynomials up to and including degree 3, i.e., flz) =z

Simpson’s rule:
T3 .01 4 1 5 ((4)
/ f(z)d:r—h §f1+-3-fz+§f3 +O(h b) (4.1.4)

Here f(*) means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an intervat
of size 2h, so the coefficients add up to 2.

There is no lucky cancetlation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

i e 3 .
Simpson’s 3 rule:

= 3 9 9 3
/ f(z)dz = h[gfl tglat gt gn] + O(h® f04h (4.1.5)
Ty
The five-point formula again benefits from a cancellation:
Bode's rule:
s .14 64 24 64 14 7 £(6)
fn f@Mz = h|gph+ gl it Ght] +0071®) @16

This is exact for polynomials up to and including degree 5.
At this point the formulas stop being named after famous personages, so we
will not go any further. Consult[1] for additional formulas in the sequence.

Extrapolative Formulas for a Single Interval
We are going to depart from historical practice for a moment. Many texts

would give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.”
Here is an example:

/ f(z)dz = h[%ﬁ + 25—4f2 + %fa + %—2)’4 + O(h%)

4.1 Classical Formulas for Equally Spaced Abscissas 5

Notice that the integral from a = x4 10 b = r5 is estimated, using only the interior
points zy, z3, 3, £4. In our opinion, formulas of this type are not useful for the
reasons that (i) they cannot usefully be strung together to get “extended” rules, as we
are about to do with the closed formulas, and (it) for all other possible uses they are
dominated by the Gaussian integration formulas which we will introduce in §4.5.

Instead of the Newton-Cotes open formulas, let us set out the formulas for
estimating the integral in the single interval from z, to z,, using values of the
function f at 1, z3,.... These will be useful building blocks for the “extended™
open formulas.

f lf(z)dz: =h{fi] +O(K:f) {4.1.7)
o 3 1 3 g1t

/ ﬂﬂﬁ=hbﬁ—§h] +O(K) (4.18)

f: f(z)dr = h[%ﬁ — %fa + %fa] + O(h* F3)) {4.1.9)

j l f(z)dz = h[gﬁ ~ %S:-fz + gfs - %—h] + O(R® £4)(4.1.10)

Perhaps a word here would be in order about how formulas like the above can
be derived. There are elegant ways, but the most straightforward is to write down the
basic form of the formula, replacing the numerical coefficients with unknowns, say
P, ¢, r, 8. Without loss of generality take x5 = Oand z; = 1, s0 h = 1. Substitute in
turn for f(z) (and for f, fa, fa, fs) the functions f(z) = 1, f(z) = z, f(z) = 22,
and f(z) = z% Doing the integral in each case reduces the lefi-hand side to a
number, and the right-hand side to a linear equation for the unknowns p, q, r, s.
Solving the four equations produced in this way gives the coefficients.

Extended Formulas (Closed)

If we use equation (4.1.3) N — 1 times, to do the integration in the intervals
(z1,22), (22, 23),...,(zn-1, zn), and then add the results, we obtain an “extended”
or “composite” formula for the integral from z, to zy.

Extended trapezoidal rule:

[e =hl3n+ns st
o (4.1.11)
b=apr)

“‘+.fN—1+%fN] +O(B

Here we have written the error estimate in terms of the interval — a and the number
of points N instead of in terms of h. This is clearer, since one is usually holding
a and b fixed and wanting to know (e.g.) how much the error will be decreased

6 4. Integration of Functions

by taking twice as many steps (in this case, it is by a factor of 4). In subsequent
equations we will show only the scaling of the error term with the number of steps.
For reasons that will not become clear until §4.2, equation (4.1.11) is in fact
the most important equation in this section, the basis for most practical quadrature
schemes.
The extended formula of order 1/N3 is:

fNﬂﬂh=4%ﬂ+%h+h+h+
1 (4.1.12)

13 5 1
g o YR v+ EfN] +0 (F)

{We will see in a moment where this comes from.)

If we apply equation (4.1.4) 1o successive, nonoverlapping pairs of intervals,
we get the extended Simpson's rule:

L f(z)dz = h[%h LR T

,) 1 1 (4.1.13)
ot gzt 3/v-1+ gfn] +0 (K,-;)

Notice that the 2/3, 4/3 alternation continues throughout the interior of the evalu-
ation. Many people believe that the wobbling altemation somehow contains deep
information about the integral of their function that is not apparent to mortal eyes.
In fact, the alternation is an artifact of using the building block (4.1.4). Another
extended formula with the same order as Simpson’s rule is

] ﬂﬂ#=hgh+gh+§ﬁ+h+ﬁ+

23 7 3
o fn_a+ fvoz+ '2—4fN-_2 + ng—l + ng] (4.1.14)

+0 ()
This equation is constructed by fitting cubic polynomials through successive groups
of four points; we defer details to §18.3, where a similar technique is used in the
solution of integral equations. We can, however, tell you where equation {4.1.12)
came from. It is Simpson’s extended rule, averaged with a modified version of
itself in which the first and last step are done with the trapezoidal rule (4.1.3). The
trapezoidal step is two orders lower than Simpson’s rule; however, its contribution

to the integral goes down as an additional power of N (since it is used only twice,
not N times). This makes the resulting formuta of degree ore less than Simpson.

4.1 Classical Formulas for Equally Spaced Abscissas 7

Extended Formulas (Open and Semi-open)

We can construct open and semi-open extended formulas by adding the closed
formulas (4.1.11)(4.1.14), evaluated for the second and subsequent steps, to the
extrapolative open formulas for the first step, (4.1.7)-(4.1.10). As discussed
immediately above, it is consistent to use an end step that is of one order lower
than the (repeated) interior step. The resulting formuias for an interval open at
both ends are as foilows:

Equations (4.1.7) and (4.1.11) give

/ flz)dz = h[gf2+f3+f4+' ot froat 'g‘fN-l] +0 (T\rl':a') (4.1.15)
Equations (4.1.8) and (4.1.12) give
N 23 7
/Il f(z)dz = h[ﬁfz +tgfatfatft
7 23
---+fN-3+ﬁfN~2+ EIN_;] {4.1.16)
+0 (X}_)
Equations (4.1.9) and (4.1.13) give
TN 27 i3 4
fx‘ f(z)dz = h[ﬁfz +0+ Efa; + “3*f5+
4 13 27
ot 5fN_4+ EfN—:s-’rOi- EfN—l] (4.1.17)

+0(37)

The interior points alternate 4/3 and 2/3. If we want to avoid this alternation,
we can combine equations (4.1.9) and (4.1.14), giving

[s = | g Gt Sk sk o
11 1 55
ot fues 4+ fu—a + ng-a - ng—a + ﬁqu]
+0 (%)

We should mention in passing another extended open formula, for use where
the limits of integration are located halfway between tabulated abscissas. This one is
known as the extended midpoint rule, and is accurate to the same order as (4.1.15);

(4.1.18)

/) f(z)dz = h[fspy + f5p2 + Szt

1 (4.1.19)

ot fu_appt fnoie]l +O (F)

8 4. Imntegration of Functions

- . N=1
- . i z
{_ <> <> : 3
} - - - * —f 4
- - - - - . - - -+ (total after N = 4)

Figure 4.2.1. Sequential calls to the routine t rapzd incorporate the information from previous calls and
evaluaie the integrand only at those new poinis necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routine qsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

There are also formulas of higher order for this situation, but we will refrain from
giving them,

The semi-open formuldas are just the obvious combinations of equations (4.1.11)-
(4.1.14) with (4.1.15)(4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end use the weights from
the latter equations. One example should give the idea, the formula with error term
decreasing as 1/N> which is closed on the right and open on the left:

f) f(z)dz = h[%fz + 'l%fa + fa+ fs+
1 (4.1.20)

13 5 1
R o I EfN—l + EfN] +0 (]_V—3)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Math-
ematics Series, vol. 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.4. [1]

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Mathods (New York: Wiley), §7.1.

4.2 Elementary Algorithms

Our starting point is equation (4.1.11), the extended trapezoidal rule. There are
two facts about the trapezoidal rule which make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

The obvious fact is that, for a fixed function f(z) to be integrated between fixed
limits a and b, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of
the trapezoidal rule is to average the function at its endpoints a and b. The first
stage of refinement is to add to this average the value of the function at the halfway
point. The second stage of refinement is to add the values at the 1/4 and 3/4 points.
And so on (see Figure 4.2.1).

Without further ado we can write a routine with this kind of logic to it:

4.2 Elementary Algorithms 9

SUBROUTINE trapzd(func,a,b,s,n)

INTEGER n

REAL a,b,s,func

EXTERNAL func
This routine computes the nth stage of refinement of an extended trapezoidal rule. func is
input as the name of the function to be integrated between limits a and b, also input. When
called with n=1, the routine returns as s the crudest estimate of f:f(r)dx. Subsequent

calls with n=2,3,... (in that sequential order} will improve the accuracy of 8 by adding on-2
additional interior points. 8 should not be modified between sequential calls.
INTEGER it,]
REAL del,sum,tnm,x
if (n.eq.1) then
8=0.5¢(b-a)*(func(ad+func(b))
else
it=2+¢s(n-2)
thm=it
del=(b~a)/tnm This is the spacing of the paints to be added.
x=a+0 5¢del
sum=0,
don j=1,it
sum=sum+func(x)
x=x+del
enddo 1t
220 5+ (a+(b-a)*aum/tnm} This replaces s by its refined value.
endif
return
EXD

The above routine (trapzd) is a workhorse that can be hamessed in several
ways. The simplest and crudest is to integrate a function by the extended trapezoidal
rule where you know in advance (we can't imagine how!) the number of steps you
want. If you want 2¥ + 1, you can accomplish this by the fragment

dou j=1 m+1
call trapzd(func,a,b,s,j)
enddo 11

with the answer returned as s.
Much better, of course, is to refine the trapezoidal rule until some specified
degree of accuracy has been achieved:

SUBRDUTINE qtrap(func,a,b,s}

INTEGER JMAX

REAL a,b,func,s ,EPS

BITERNAL func

PARAMETER (EPS=1.e-6, JNAX=20)

USES trapzd
Returns as s the integral of the function func from a to b. The parameters EPS can be set
to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by the trapezoidal rule.

INTEGER j

REAL olds

olds=-1.e30 Any number that is untikely to be the average of the function
don j=1,IMAX at its endpoints will do here.

call trapzd(func,a,b,s,j)
if (abs(s-olds).1lt .EPS+abs{olds)} return
olds=s

enddo 11

pausas ’'too many steps in qtrap?

END

10 4. Integration of Functions

Unsophisticated as it is, routine qtrap is in fact a fairly robust way of doing
integrals of functions that are not very smooth. Increased sophistication will usually
translate into a higher-order method whose efficiency will be greater only for
sufficiently smooth integrands. qtrap is the method of choice, ¢.g., for an integrand
which is a function of a variable that is linearly interpolated between measured data
points. Be sure that you do not require too stringent an EPS, however: If qtrap takes
oo many steps in trying to achieve your required accuracy, accumulated roundoff
€rTors may start increasing, and the routine may never converge. A value 10~¢
is just on the edge of trouble for most 32-bit machines; it is achievable when the
convergence is moderately rapid, but not otherwise.

We come now to the “deep” fact about the extended trapezoidal rule, equation
(4.1.11). It is this: The error of the approximation, which begins with a term of
order 1/NZ is in fact entirely even when expressed in powers of 1/N. This follows
directly from the Euler-Maclaurin Summation Formula,

f Nf(f)dxzh[%fl+f2+f3+'--+fN—1+%fN]

(4.2.1)
Bzh"’(f, Yy — e szh"’k((2k=1) (2%~-1)
~or Un=f1)~- m)!—f;v -5)=
Here By, is a Bernoulli number, defined by the generating function
t A
7= X;)B,,; (4.2.2)
with the first few even values (odd values vanish except for B; = —1/2)
1 1 1
Bo:l Bz:— B4:——- Be
) 6 5 30 691 12 (4.2.3)
Bs——'B—O' Bm—ai' E"12=—m

Equation (4.2.1) is not a convergent expansion, but rather only an asymptotic
expansion whose error when truncated at any point is always less than twice the
magnitude of the first neglected term. The reason that it is not convergent is that
the Bernoulli numbers become very large, e.g.,

_ 495057205241079648212477525
- 66

Bso

The key point is that only even powers of A occur in the error series of (4.2.1).
This fact is not, in general, shared by the higher-order quadrature rules in §4.1.
For example, equation (4.1.12) has an error series beginning with O(1/N?), but
continuing with all subsequent powers of N: 1/N4, 1 /N3, etc.

Suppose we evaluate (4,1.11) with N steps, getting a result Sy, and then again
with 2N steps, getting a result Sax. (This is done by any two consecutive calls of

4.2 Elementary Algorithms 11

trapzd.) The leading error term in the second evaluation will be 1/4 the size of the
error in the first evaluation. Therefore the combination

4 1
§= 35w — 35w (42.4)

will cance! out the leading order error term. But there is no error term of order
1/N3, by (4.2.1). The surviving error is of order t /N *, the same as Simpson’s rule.
In fact, it should not take long for you to sec that (4.2.4) is exactly Simpson’s rule
(4.1.13), alternating 2/3's, 4/3’s, and all. This is the preferred method for evaluating
that rule, and we can write it as a routine exactly analogous to qtrap above:

SUBROUTINE gqsimp{func,a,b,s)
INTEGER JMAX

REAL a,bh,func,s.EPS

EITERNAL func

PARAMETER (EPSw=1.e-6, JMAIw20)

USES trapzd
Returns as 8 the integral of the function func from a to b. The parameters EPS can be set

to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by Simpson’s rule.
INTEGER j
REAL os,ost,st
ost=-1.a30
oa= -1.e30
dou j=1,JEAX
call trapzd{func,a,b,st,j)
s=(4 est-ost) /3. Compare equation (4.2.4), above.
if (abs{(s-os).1lt .EPS+aba(os)) return
os=s
ostast
enddon
pPause 'too many steps in qsimp’
END

The routine qsimp will in general be more efficient than qtrap (i.e., require
fewer function evaluations) when the function to be integrated has a finite 4th
derivative (i.e., a coatirvous 3rd derivative). The combination of gsimp and its
necessary workhorse trapzd is a good one for light-duty work.

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numencal Analysis (New York: Springer-Verlag),
§33.

Dahiquist, G., and Bjorck, A. 1974, Numaerical Msthods (Englewood Cliffs, NJ: Prentice-Hall),
§§7.4.1-7.42

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.3.

12 4. Integration of Functions

4.3 Romberg Integration

We can view Romberg’s method as the natural generalization of the routine
gsimp in the last section to integration schemes that are of higher order than
Simpson’s rule. The basic idea is to use the results from & successive refinements
of the extended trapezoidal rule (implemented in trapzd) to remove all terms in
the error series up to but not including O(1/N?%). The routine qsimp is the case
of k = 2. This is one example of a very general idea that goes by the name of
Richardson's deferred approach to the limit: Perform some numerical algorithm for
various values of a parameter A, and then extrapolate the result to the continuum
limit A = 0.

Equation (4.2.4), which subtracts off the leading error term, is a special case of
polyromial extrapolation. In the more general Romberg case, we can use Neville's
algorithm (see §3.1) to extrapolate the successive refinements to zero stepsize.
Neville’s algorithm can in fact be coded very concisely withina Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation
by subroutine call to polint, already given in §3.1.

SUBROUTINE gromb{func,a,b,as)
INTEGER JMAX, JMAIP,K KX
REAL a,b,func,ss,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAI=20, JHAIP=JMAX+t, X=5, KM=K-1)
USES polint, trapzd
Returns as 83 the integral of the function func from a to b. Integration is performed by
Romberg's method of order 2K, where, e.g., K=2 is Simpson's rule.
Parameters: EPS is the fractional accuracy desired, as determined by the extrapolation
error estimate; JMAX limits the total number of steps; K is the number of points used in
the extrapclation.
INTEGER j
REAL dss h{IMAXP) ,s(IMAIP) These store the successive trapezoidal approximations
hi1)=1. and their relative stepsizes.
don j=1,JMAX
call trapzd(func,a,b,s(j},j)
if (j.ge.Kk)} then
call polint(h(j-KM),s(j~KM),K,0. 85, das)
if (abs{(dss) .le.EPS¢abs(ss))} return

endif

s(j+1)=a(§)

h(j+1)=0.25+¢h(j) This is a key step: The factor is 0.25 even though
enddo i the stepsize is decreased by only 0.5, This makes
pauseé 'too many steps in qromb’ the extrapolation a poiynomial in h? as allowed
END by equation (4.2.1), not just a polynomial in A,

The routine qromb, along with its required trapzd and polint, is quite
powerfut for sufficiently smooth (e.g., analytic) integrands, integrated over intervals
which contain no singularities, and where the endpoints are also nonsingular. qromb,
in such circumstances, takes many, many fewer function evaluations than either of
the routines in §4.2. For example, the integral

2
/ ztlog(x + V22 + 1)dz
0

4.4 Improper Integrals 13

converges (with parameters as shown above) on the very first extrapolation, after
Just 5 calls to trapzd, while gsimp requires 8 calls (8 times as many evaluations of
the integrand) and qtrap requires 13 calls (making 256 times as many evaluations
of the integrand).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, introduction to Numarical Analysis {(New York: Springer- Verlag),
§§3.4-35.

Dahiquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§87.4.1-7.42.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §4.10-2.

4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

* its integrand goes to a finite limiting value at finite upper and lower limits,

but cannot be evaluated right on one of those limits (eg,sinz/zatzr = ()

e its upper limit is co , or its lower limit is —oo
it has an integrable singularity at either limit (e.g., z~'/2 at z = 0)

e it has an integrable singularity at a known place beiween its upper and

lower limits

e it has an integrable singularity at an unknown place between its upper

and lower limits

If an integral is infinite (e.g., fl°° z~'dz), or does not exist in a limiting sense
(eg. [f‘; cos zdz), we do not call it improper; we call it impossible. No amount of
clever algorithmics will return a meaningful answer to an ill-posed problem.

In this section we will generalize the techniques of the preceding two sections
to cover the first four problems on the above list. A more advanced discussion of
Quadrature with integrable singularities occurs in Chapter 18, notably §18.3. The
fifth problem, singularity at unknown location, can really only be handled by the
use of a variable stepsize differential equation integration routine, as will be given
in Chapter 16.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
one which is an open formula in the sense of §4.1, i.e., does not require the integrand
to be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is
the best choice. The reason is that (4.1.19) shares with (4.1.1 1) the “deep” property
of having an error series that is entirely even in A. Indeed there is a formula, not as
well known as it ought to be, called the Second Euler-Maclaurin summation formula,

f fleyde = h(fapa+ fspn + frpa+ -+ N3+ fn-qya)

Bah?
+ ==)+ (a4.1)
Kk - _
+ By, (1- 2..%4.1)(}.!(\,2& 1 izk 1)) 4.

(2k)!

14 4. Integration of Functions

This equation can be derived by writing out (4.2.1) with stepsize h, then writing it
out again with stepsize 4 /2, then subtracting the first from twice the second.

It is not possible to double the number of steps in the extended midpoint rule
and still have the benefit of previous function evaluations (try it!). However, it is
possible to triple the number of steps and do so. Shall we do this, or double and
accept the loss? On the average, tripling does a factor v/3 of unnecessary work,
since the “right” number of sieps for a desired accuracy criterion may in fact fall
anywhere in the logarithmic interval implied by tripling. For doubling, the factor
is only /2, but we lose an extra factor of 2 in being unable to use all the previous
evaluations. Since 1.732 < 2 x 1.414, it is better to triple.

Here is the resulting routine, which is directly comparable to trapzd.

SUBROUTINE midpnt (func,a,b,s,n)
INTEGER n
REAL a,.b,s, func
EXTERNAL func
This routine computes the nth stage of refinement of an extended midpoint rule. func is
input as the name of the function to be integrated between limits a and b, also input. When
called with n=1, the routine returns as s the crudest estimate of f: S(z)dz. Subsequent
calls with n=2.3,... (in that sequential order) will improve the accuracy of = by adding
{2/3) x a0~ 1 additionat interior points. 8 should not be modified between sequential calls.
INTEGER it,j
REAL ddel ,del,sum,tnm,x
if (n.eq.1) them
s=(b-a)sfunc(0Q.5+(a+b))
else
it=3#*(n-2)
tnm=it
del=(b-a)/(3.+tnm)
ddel=del+del The added points alternate in spacing between del and ddel.
x=a+0.5edel
sum=0,
don j=1,it
sum=sum+func(x)
r=x+ddel
sum=sum+func (x)
x»x+del
enddo 1
s=(s+(b-a)vsum/tnm} /3. The new sum is combined with the old integrai to give a
endif refined integral.
Teturn
END

The routine midpnt can exactly replace trapzd in a driver routine like qtrap
(§4.2); one simply changes call trapzd to call midpnt, and perhaps also
decreases the parameter JMAX since 3JHAX-1 (from step tripling) is a much larger
number than 2TMAX-1 (qiep doubling).

The open formula implementation analogous to Simpson’s rule {qsimpin §4.2)
substitutes midpnt for trapzd and decreases JMAX as above, but now also changes
the extrapolation step to be

s=(9. eat-ost) /8.

4.4 Improper Integrals 15

since, when the number of sieps is tripled, the error decreases to 1 /9th its size, not
1/4th as with step doubling.

Either the modified qtrap or the modified qsimp will fix the first problem

on the list at the beginning of this section. Yet more sophisticated is to generalize
Romberg integration in like manner:

SUBROUTINE qromo(func,a,b,ss,choose)

INTEGER JMAX,JMAXP K, KM

REAL a,b,func,ss,EPS

EXTERNAL func,choose

PARAMETER (EPS=1.e-6, JMAXI=14, JHAXP=IMAX+1, K=5, KM=K-1)

USES polint
Romberg integration on an open interval. Returns as ss the integral of the function func
from a to b, using any specified integrating subroutine choose and Romberg’s method.
Normally choose will be an open formuta, not evaluating the function at the endpoints. it
is assumed that choose triples the number of steps on each call, and that its error series
contains only even powers of the number of steps. The routines midpnt, midinf, midaql,
midsqu, are possible choices for choose. The parameters have the same meaning as in
qromb.

INTEGER j

REAL dess,h(JNAXP) ,s{JMAIP)

h(1)=1,

donn j=1,JMAX
call choose(func,a,b,s{j),})
if (j.ge.X) then

call polint(h(j-XM),s(j-KN},K, 0., &%, das)
if (abs(dss).le.EPS+abs(sa)) return

endit

n(§+1)=8(4)

h(j+1)=h(j)/9. This is where the assumption of step tripling and an even
enddo 1 error series is used.
pause ‘too many steps in qromo’
END

The differences between qromo and qromb (§4.3) are so slight that it is perhaps
gratuitous to list gromo in full, It, however, is an excellent driver routine for solving
all the other problems of improper integrals in our first list {except the intractable
fifth), as we shall now see.

The basic trick for improper integrals is to make a change of variables to
eliminate the singularity, or to map an infinite range of inlegration to a finite one.
For example, the identity

-/: f(z)dr = /;1/0 lf(%) dt ab>0 (44.2)

n t?

can be used with either b — oc and a positive, or with a — —oc and b negative, and
works for any function which decreases towards infinity faster than 1/z2.

You can make the change of variable implied by (4.4.2) either analytically and
then use (e.g.) qromo and midpnt to do the numerical evaluation, or you can let
the numerical algorithm make the change of variable for you. We prefer the latter
method as being more transparent to the user. To implement equation {4.4.2) we
simply write a modified version of midpnt, called midint, which allows b to be
infinite (or, more precisely, a very large number on your particutar machine, such
as 1 x 10°%), or a to be negative and infinite.

16 4. Integration of Functions

SUBROUTINE midinf(funk,aa,bb,s,n)
IFTEGER n
REAL aa,bb,s,funk
EXITERNAL funk
This routine is an exact replacement for midpnt, i.e., returns as a the nth stage of refinement
of the integral of funk from aa to bb, except that the function is evaluated at evenly spaced
points in 1/x rather than in r. This allows the upper limit bb to be as large and positive
as the computer allows, or the lower limit aa to be as large and negative, but not both.
aa and bb must have the same sign.
INTEGER it,j
REAL a,b,ddel,del,sum,tnm,func,x
func(x}*funk(1./x)/x**2 This statement function effects the change of variable.
b=1./aa These two statements change the limits of integration ac-
a=1./bb cordingly.
if (n.eq.1) then From this point on, the routine is exactly identical to midpnt.
s=(b-a)*func(0.5«(a+b))
else
it=3+s(n-2)
tnm=it
del=(b-a)/(3.stnm)
ddel=del+del
x=a+0 5edel
sum=0 .
don j=1,it
sum=sum+func (x)
x=x+ddel
sum=sum+func(x)
x=x+del
enddo n
s={s+(b-a)*sum/tom) /3.
sndif
return
END

If you need to integrate from a negative lower limit to positive infinity, you do
this by breaking the integral into two pieces at some positive value, for example,

call qromo(funk,-5.,2.,s1,midpnt)
call qromo(funk,2.,1.e30,82,midinf}
answer=si+s2

Where should you choose the breakpoint? At a sufficiently large positive value so
that the function funk is at least beginning to approach its asymptotic decrease to
zero value at infinity. The polynomial extrapolation implicit in the second call to
qromo deals with a polynomial in 1/, not in z.

To deal with an integral that has an integrable power-law singularity at its lower
limit, one also makes a change of variable. If the integrand diverges as (z —a)”,
0 <7 < 1, near z = a, use the identity

b 1 O 2
/,, fz)dz = 1—:?]0 S FE fa)dt (b>a) (443)

If the singularity is at the upper limit, use the identity

[1 (¢—a)t™" e 1
fa f(z)dz = T—Tjo b -t)dt (b>a) (444)

4.4 Improper Integrals 17

If there is a singularity at both limits, divide the integral at an interior breakpoint
as in the example above.

Equations (4.4.3) and (4.4.4) are particularly simple in the case of inverse
Square-root singularities, a case that occurs frequently in practice:

[Vi-a
f f(z)dz :/ 20f(a+t)dt (b>a) (4.4.5)
a Q

for a singularity at a, and

b Vi—a
/ f(z)dz :/ Af(b—1t%)dt (b>a) (4.4.6)
a Q

for a singularity at b, Once again, we can implement these changes of variable
transparently to the user by defining substitute routines for midpnt which make the
change of variable automaticaily:

SUBROUTINE midsql{funk,aa,bb,s,n)
INTEGER n
REAL aa, bb,s,funk
EXITERNAL funk
This routine is an exact replacement for midpnt, except that it allows for an inverse square-
root singularity in the integrand at the lower limit aa.
INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=2.+x*funk{aa+xes2)
b=sqrt(bb-aa)
a=0.
if (n.eq.1) then
The rest of the routine is exactly like midpnt and is omitted.

Similarly,

SUBROUTINE midsqu{funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk
This routine is an exact replacement for midpnt. except that it allows for an inverse square-
root singularity in the integrand at the upper limit bb,
INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=2.sx+funk(bb-x*+2)
b=sqrt{bb-aa)
a=0,
if {n.eq.1) then
The rest of the routine is exactly like midpnt and is omitted.

One last example should suffice to show how these formulas are derived in
general. Suppose the upper limit of integration is infinite, and the integrand falls off
exponentially. Then we want a change of variable that maps e~ *dz into (+)dt (with
the sign chosen to keep the upper limit of the new variable larger than the lower
limit). Doing the integration gives by inspection

t=e"% or z=—logt (44.7)

18 4. Integration of Functions

s¢ that

r=oo t=e d
/_ f(z)dx:[f(—logt)Tt (4.4.8)

=a =0
The user-transparent implementation would be

SUBRQUTINE widexp(funk,aa,bb,s,n)
INTEGER n

REAL aa,bb,s,funk

EITERNAL funk

This routine is an exact replacement for midpnt, except that bb is assumed to be infinite
{value passed not actually used). It is assumed that the function funk decreases exponen-
tially rapidly at infinity.

INTEGER it,j

REAL ddel »del,sum,tnm,x ,func,a,b

Tunc (x)=funk{-log{x))/x

b=exp(-aa)

a=(0,

if (n.eq.1) them
The rest of the routine is exactly like midpnt and is omitted.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Dahlauist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.43, p. 294.

Stoer, J., and Butirsch, R. 1980, introduction to Numerical Analysis (New York: Springer-Verlag),
§3.7, p. 152

4.5 Gaussian Quadratures and Orthogonal
Polynomials

In the formulas of §4.1, the integral of a function was approximated by the sum
of its functional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we allowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea of Gaussian quadratures is to give ourselves the freedom to
choose not only the weighting coefficients, but also the location of the abscissas at
which the function is to be evaluated: They will no longer be equally spaced. Thus,
we will have twice the number of degrees of freedom at our disposal; it will tura out
that we can achieve Gaussian quadrature formulas whose order is, essentially, twice
that of the Newton-Cotes formula with the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a
familiar one, which cannot be overemphasized: High order is not the same as high
accuracy. High order translates to high accuracy only when the integrand is very
smooth, in the sense of being “well-approximated by a polynomial.”

4.5 Gaussian Quadratures and Orthogonal Polynomials 19

There is, however, one additional feature of Gaussian quadrature formulas that
adds to their usefulness: We can arrange the choice of weights and abscissas to make
the integral exact for a class of integrands “polynomials times some known function
W (z)" rather than for the usual class of integrands “polynomials.” The function
W (z) can then be chosen to remove integrable singularities from the desired integral.
Given W (z), in other words, and given an integer N, we can find a set of weights
w; and abscissas x; such that the approximation

b N
/ W(z)f(z)dzr ~ Y w; f(z;) (4.5.1)

is exact if f(z) is a polynomial. For example, to do the integral

! exp(—cos? 1)

-1 V1—1‘2

(not a very natural looking integral, it must be admitted), we might well be interested
in a Gaussian quadrature formula based on the choice

dr (4.5.2)

1

VI —z2

in the interval (—1, 1). (This particular choice is called Gauss-Chebyshev integration,
for reasons that will become clear shortly.)

Notice that the integration formula (4.5.1) can also be written with the weight
function W (z) not overtly visible: Define g(z) = Wiz)f(z)and v; = w; [W(z;).
Then (4.5.1) becomes

W(z) = (4.53)

N

)
f g(z)dz = Y " vig(z;) (4.54)

i=1

Where did the function W(z) go? It is lurking there, ready to give high-order
accuracy to integrands of the form polynomials times W (z), and ready to deny high-
order accuracy 10 integrands that are otherwise perfectly smooth and well-behaved.,
When you find tabulations of the weights and abscissas for a given W(z), you have
to determine carefully whether they are to be used with a formula in the form of
{4.5.1), or like (4.5.4),

Here is an example of a quadrature routine that contains the tabulated abscissas
and weights for the case W(z) = 1 and N = 10. Since the weights and abscissas
are, in this case, symmetric around the midpoint of the range of integration, there
are actually only five distinct values of each:

SUBROUTINE qgaus(func,a,b,ss)

REAL a,b,ss,func

EXTERNAL func
Returns as a8 the integral of the function func between a and b, by ten-point Gauss-
Legendre integration: the function is evaluated exactly ten times at intetior points in the
range of integration.

INTEGER j

20 4. Integration of Functions

REAL dx,xm,xr,w(5),x(5) The abscissas and weights.

SAVE w,x

DATA w/.2955242247,.2692667193, . 2190863625, .1494513491, . 0666713443/
DATA x/.1488743389,.4333953941, . 6754095682, . 8650633666, . 9739065285/
m=0 . 5 (b+a)

xr=0_5#(b-a)

s8=0 Will be twice the average value of the function, since the ten

don j=1,5 weights (five numbers above each used twice) sum to 2.
dx=xr+*x(j)
ss=ss+2 (j)*(func (xm+dx)+func(xm-dx))

enddo n

sa=XT*ss Scale the answer to the range of integration.

return

END

The above routine illustrates that one can use Gaussian quadratures without
necessarily understanding the theory behind them: One just tocates tabulated weights
and abscissas in a book (e.g., [t} or{2]). However, the theory is very pretty, and it
will come in handy if you ever need to construct your own tabulation of weights and
abscissas for an unusual choice of W (z). We will therefore give, without any proofs,
some useful results that will enable you 1o do this. Several of the results assume that
W (z) does not change sign inside (a, &), which is usually the case in practice.

The theory behind Gaussian quadratures goes back to Gauss in 1814, who
used continued fractions to develop the subject. In 1826 Jacobi rederived Gauss’s
results by means of orthogonal polynomials. The systematic treatment of arbitrary
weight functions W (z) using orthogonal polynomials is largely due to Christoffel in
1877. To introduce these orthogonal polynomials, let us fix the interval of interest
to be (a,b). We can define the “scalar product of two functions f and g over a
weight function W™ as

b
(Flg) = j W (z)f(z)g(z)dz (455)

The scalar product is a number, not a function of z. Two functions are said 1o be
orthogonal if their scalar product is zero. A function is said to be normalized if its
scalar product with itself is unity. A set of functions that are all mutually orthogonal
and atso all individually normalized is called an orthonormal set.

We can find a set of polynomials (i) that includes exactly one polynomial of
order j, called p;(z), foreach j = 0,1,2,..., and (ii} all of which are mutually
arthogonat over the specified weight function W(z). A constructive procedure for
finding such a set is the recurrence relation

r—1(z)=0
po(z) =1 (4.5.6)
pis1(x) = (2 — a;)pi(x) — bjpj-a(x) j=0,1,2,...

where
a.=M i=0,1,...
T (4.5.7)
bjz_ﬁifl i=12,...

(Pj—llpj—l)

4.5 Gaussian Quadratures and Orthogonal Polynomials 21

The coefficient by is arbitrary; we can take it to be zero.

The polynomials defined by (4.5.6) are monic, i.e., the coefficient of their
leading term [/ for p;(z)] is unity. If we divide each p;(z) by the constant
[{p;|p;}]*/? we can render the set of polynomials orthonormal. One also encounters
orthogonal polynomials with various other normalizations. You can convert from
a given normalization to monic polynomials if you know that the coefficient of
7 in p; is Aj, say; then the monic polynomials are obtained by dividing each pj
by ;. Note that the coefficients in the recurrence relation (4.5.6) depend on the
adopted normalization.

The polynomial p;(x) can be shown to have exactly j distinct roots in the
interval (a, b). Moreover, it can be shown that the roots of p;(z) “interleave” the
J — 1 roots of p;_ (), i.e., there is exactly one root of the former in between each
two adjacent roots of the latter. This fact comes in handy if you need to find all the
roots: You can start with the one root of p;(x) and then, in turn, bracket the roots
of each higher j, pinning them down at each stage more precisely by Newton’s rule
or some other root-finding scheme (see Chapter 9).

Why would you ever want to find ail the roots of an orthogonal polynomial
p;i{(x)? Because the abscissas of the N-point Gaussian quadrature formulas (4.5.1)
and (4.5.4) with weighting function W{(z) in the interval (a, b) are precisely the roots
of the orthogonal polynomial px (x) for the same interval and weighting function.
This is the fundamental theorem of Gaussian quadratures, and lets you find the
abscissas for any particular case.

Once you know the abscissas z1,...,zn, you need to find the weights w;,
J=1,...,N. One way o do this (not the most efficient) is to solve the set of

linear equations

po(z1} ... polzn) wy [P W(z)po(z)da
Pl(:rl) ‘- Pl(i.UN) 1{)2 _ 0 (458)
PN-;(-‘"l) e PN—I.(-TN) T-U‘N 0

Equation (4.5.8) simply solves for those weights such that the quadrature (4.5.1)
gives the correct answer for the integral of the first N orthogonal polynomials. Note
that the zeros on the right-hand side of (4.5.8) appear because py(z), ..., pn-1(2)
are all orthogonal to pg(z), which is a constant. It can be shown that, with those
weights, the integral of the next N — 1 polynomials is also exact, so that the
quadrature is exact for all polynomials of degree 2N — 1 or less. Another way to
evaluate the weights (though one whose proof is beyond our scope) is by the formula

_ Ae~n-ilon-t)
— pv-1(z;)P(zs) (4.59)

i

where ply(z;) is the derivative of the orthogonal polynomial at its zero z;.

The computation of Gaussian quadrature rules thus involves two distinct phases:
(i) the generation of the orthogonal polynomials py, . . ., py, i.€., the computation of
the coefficients a;, b; in (4.5.6); (ii) the determination of the zeros of py(z), and
the computation of the associated weights. For the case of the “classical” orthogonal
polynomnials, the coefficients a; and b; are explicitly known (equations 4.5.10 —

22 4. Intsgration of Functions

4.5.14 below) and phase (i) can be omitted. However, if you are confronted with a
“nonclassical” weight function W(z), and you don’t know the coefficients a; and
b;, the construction of the associated set of orthogonal polynomials is not trivial.
We discuss it at the end of this section.

Computation of the Abscissas and Weights

This task can range from easy to difficult, depending on how much you already
know about your weight function and its associated polynomials. In the case of
classical, well-studied, orthogonal polynomials, practically everything is known,
including good approximations for their zeros. These can be used as starting
guesses, enabling Newion's method (to be discussed in §9.4) to converge very
rapidly. Newton's method requires the derivative piy(z), which is evaluated by
standard relations in terms of py and py_;. The weights are then conveniently
evaluated by equation (4.5.9). For the following named cases, this direct root-finding
is faster, by a factor of 3 to 5, than any other method.

Here are the weight functions, intervals, and recurrence relations that generate
the most commonly used orthogonal polynomials and their corresponding Gaussian
quadrature formulas.

Gauss-Legendre:
Wiz)=1 -lcz<l
G+ 1P = (25 + DzFy - jPy_, (4.5.10)
Gauss-Chebyshev:
W(z)=(1-2z%)"Y? ~l<z<l
Tje1 = 22T — Ty, (45.11)

Gauss-Laguerre:
Wi(z) = z%~" 0<zr<oo
G+DLY =(-z+2i+a+ DLY - (j+e)Li, (4.5.12)
Gauss-Hermite:
Wiz)=e¢"" —o<r< oo
Hjp1=2zH; - 2j5H; (4.5.13)
Gauss-Jacobi:

W(z)=(1-2)*(1+2)? —l<czrcl

4.5 Gaussian Quadratures and Orthogenal Polynomials 23

"J'Pf(iiﬂ) = (d; + f’:-'v)P,-(“’m - ij,-‘f‘lm (4.5.14)
where the coefficients ¢j,dj, e, and f; are given by
G =20+D)0G+a+8+1)(2+a+p)
di = 2+ a + B8+ 1){(a? - 57
& =(Zj+a+N2i+a+08+ 2 +a+3+2)
=2+a)i+B)2+a+5+2)

(4.5.15)

We now give individual routines that calculate the abscissas and weights for
these cases. First comes the most common set of abscissas and weights, those of
Gauss-Legendre. The routine, due to G.B. Rybicki, uses equation (4.5.9) in the
special form for the Gauss-Legendre case,

2
w; = (1 . xf)[;v(zj)]:-) (4.5.16)

The routine also scales the range of integration from (z, , »») to (—1,1), and provides
abscissas z; and weights w; for the Gaussian formula

I3 N
/ f@)dz = S wif(z;) (4.5.17)
EN i=1

SUBROUTINE ganleg{xl,x2,x ,u,n)

INTEGER n

REAL x1,x2,x(n),u(n)

DOUBLE PRECISION EPS

PARANETER (EPS=3.4-14) EPS is the relative precision.
Given the lower and upper limits of integration x1 and x2, and given n, this routine returns
arrays x{1:n) and w(1:n) of fength n, containing the abscissas and weights of the Gauss-
Legendre n-point quadrature formula.

INTEGER i,j,m

DOUBLE PRECISIDE pl.p?,pa.pp,xl.n,z,zl
High precision is a good ides for this routine,

n=(n+1)/2 The roots are symmetric in the interval, so we
=0, 5d0% (x2+x1) only have to find half of them.

x1=0_5d0% (x2~x1)

do1z izl,m Loop over the desired roots.

z=coa(3.14159285&d0t(i—.25d0)l(n+.5d0))
Starting with the above approximation to the ith root, we enter the main foop of re-
finement by Newton’s method,

continune

pl=1.40

P2=0.40

don j=t.m Loop up the recurrence relation to get the Leg-
P3=p2 endre polynomial evaluated at z.
p2=p1
P1=((2.d0¢j-1.d0)+zep2-(j-1.d40)*p3) /§

enddo it

Pl is now the desired Legendre polynomial. We next compute pp, its derivative, by
a standard relation involving also P2. the polynomial of one lower order.
PP=n=(z%p1-p2) /{z+z-1.40)

24 4. Integration of Functions

zi=z
z=z1-p1/pp Newton's method.
if(abs{z-z1).gt .EPS)goto 1
x(i)=xm-xlez Scale the root to the desired interval,
x(n+1-i)=xméxlez and put in its symmetric counterpart.
w{i)=2.d0*x1l/({1.d0-z%z)+pp+pp) Compute the weight
w(n+i-i)=w(i) and its symmetric counterpart.
enddo tz
return
END

Next we give three routines that use initial approximations for the roots given
by Stroud and Secrest [2]. The first is for Gauss-Laguerre abscissas and weights, to
be used with the integration formala

o N
-/; z% " F f(z)dz = Z w; f(x;) {4.5.18)
J=t

SUBROUTINE gaulag(x,vw,n,alf)

INTEGER n MAXIT

REAL alf,w(n),x(n)

DOUBLE PRECISION EPS

PARANETER (EPS=3.D-14 MAXTIT=10) Increase EPS if you don't have this precision.

C USES gammin

Given alf, the parameter o of the Laguerre polynomials, this routine returns arrays x{1:n)
and ¥(1:n) containing the abscissas and weights of the n-point Gauss-Laguerre quadrature
formula. The smailest abscrssa is returned in x(1), the largest in x(n).

INTEGER i,its,j

REAL ai,gammln

DOUBLE PRECISION pi,p2,p3,pp,z,zl

High precision is a good idea for this routine.

do1s i=1,n Loop over the desired roots.
if(i.eq.1)then Initial guess for the smallest root.
z=(1.+alf)*(3.+.92%alf)} /(1. .42 4+n+1.8+alt)
else if(i.eq.2)then Initial guess for the second root.
z=z+(15,.+6.252a1f) /(1.+.9%21F+2 .5¢n)
alss Initial guess for the other roots.
ai=i-2
z=z+((1.+2.55¢ai)/(1.9+ai)+1.26%aivalt/
- (1.43.5%ai)) (z-x(i~-2))/(1.+.3%alf)
endif
doiz its=1 MAXTT Refinement by Newton's method.
pi=1.d0
p2=0.4d0
doit j=1,n Loop up the recurrence relation to get the Laguerre
p3=p2 polynomial evaluated at z.
p2>=pl
pla((2+j-1+alf-z)»p2- (j-1+alf)ep3)/j
enddon

Pl is now the desired Laguerre polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.
pp=(n+pt-(n+alf)+p2)/z
zi=z
z=z1-p1/pp Newton's formula.
if(abs(z-z1) .1e.EPS)goto 1
enddo 12

pause ’too many iterations in gaulag’
1 x{i)=z Store the root and the weight.

4.5 Gaussian Quadratures and Orthogonal Polynomials 25

w(i)=—exp(gammlin{alf+n)-gammin(float{n)))/(pp*n+p2)
anddo 13
return
E3D

Next is a routine for Gauss-Hermite abscissas and weights. If we use the
“standard™ normalization of these functions, as given in equation (4.5.13), we find
that the computations overflow for large N because of various factorials that occur.
We can avoid this by using instead the orthonomal set of polynomials H;. They
are generated by the recurrence

7o =0 Ho=— Fu = -3 i
H—I—O, Hﬂ—m, HJ+1—£ J-{—_IHJ— j+1HJ.,[(4.5.19)
The formula for the weights becomes
w; = ._2 (4.5.20)
(H})?

while the formula for the derivative with this normalization is
H = \/2jH;_, (4.5.21)

The abscissas and weights returned by gauher are used with the integration formula

oo N
f e fla)dr = > w; f(z;) (4.5.22)
i=1

-0

SUBROUTINE gauher(x,v,n)
INTEGER n MAXTT
REAL w{n},x(n)
DOUBLE PRECISION EPS,PIM4
PARAMETER (EPS=3,D-14,PIM4»_ 7511255444649425D0 ,MAXIT=10)
Given n, this routine returns arrays x(1:n) and w{1:n) containing the abscissas and
weights of the n-point Gauss-Hermite quadrature formula. The largest abscissa is returned
in x(1), the most negative in x(n).
Parameters: EPS is the relative precision, PIM4 = 1/x1/4 MAXIT = maximum iterations.
INTEGER i,its,j,m
DOVBLE PRECISION p1,p2,p3,pp,z,z1
High precision is a good idea for this routine.

m=(n+1}/2
The roots are symmetric about the origin, so we have to find only half of them.
dos i=1,m Loop over the desired roots.
if(i.eq.1)then Initial guess for the largest root.
zusqrt{float(2+n+1))-1.855754(2en+1) (- .16667)
else if{i.eq.2)then Initial guess for the second largest root.
Zmz-1.14%n%% . 426/z
else if (i.eq.3)then Initial guess for the third largest root.
z=1 .86ez- B6ex(1)
else if (i.eq.4)then Initial guess for the fourth largest root.
z=1 . 9lez~ 91+x(2)
elss Initial guess for the other roots.

zm2 #z-x(i-2)

26 4. Integration of Functions

endif
do 2 its=1 MAXIT Refinement by Newton's method.
pl=PIN4
p2=0.d0
dou j=1i,n Loop up the recurrence refation to get the Hermite poly-
p3=p2 nomial evaluated at z.
pa=p1
Pl=z¢sqrt(2.40/j)+*p2-sqrt(dble(j-1)/dble (j)y=p3
enddo i

P1 is now the desired Hermite polynomial. We next compute pp, its derivative, by
the relation (4.5.21) using p2, the polynomial of one lower order.
PP=sqri(2.d0sn)*p2

tl=g
z=z1-p1/pp Newton's formula.
if(abs(z-2z1).1e.EPS)goto 1
enddo 1z
pause ’too many iterations in gauher’
x(i)=z Store the root
x(n+i~i)mezg and its symmetric counterpart,
w(i)=2. .40/ (pp*pp) Compute the weight
win+t1-i)=w(i) and its symmetric counterpart.
enddo 13
return
END

Finally, here is a routine for Gauss-Jacobi abscissas and weights, which
implement the integration formula

1 N
/1(1 —z)*(1+ z)? f(2)dz = Z w; f(z;) (4.5.23)
- =t

SUBROUTINE gaujac(x,w,n,alf, bet)
IFTEGER n ,MAXIT
REAL alf,bet,w(n),x(n)
DOUBLE PRECISION EPS
PARAMETER (EPS=3.D~14 MAXIT=10) Increase EPS if you don't have this precision.
USES gammln
Given alf and bet, the parameters o and B of the Jacobi polynomials, this routine returns
arrays x(1:n) and #(1:n) containing the abscissas and weights of the n-point Gauss-Jacobi
quadrature formula. The largest abscissa is returned in x{1), the smallest in x{n).
INTEGER i,its,j
REAL alfbet,an,bn,r1 »¥2,r3 ,gammin
DOUBLE FPRECISION a,b,c »P1,92,p3,pp,temp,z,z1
High precision is a good idea for this routine.

don i=1,n Loop over the desired roots.
if(i.eq¢.1)then Initial guess for the largest root.
an=alf/a
ba=bet/n

ri=(1.+alf)*(2.78/(4.+nsn)+.768%an/n}
r2=1.+1.484an+.96+bn+. 452+an*an+ . 83+ansbn
z#1.-11/12

else if(i.aq.2)then Initial guess for the second largest root.
ri=(4.1+a1f)/({1.+a1f)+(1.+.156+alt))
r2=1.+.06¢(n-8.)+(1.+.12¢alf) /n
TI=1.+,012¢bets(1,+, 25«abs (alf))/n
z2z-(1.-z)er1er2er3

ealse if(i.eq.3)then Initial guess for the third largest root.
r1=(1.67+.28+a1f) /(1. .+, ITealt)
ri=1.+.22¢(n~8.}/n

4.5 Gaussian Quadratures and Orthogonal Polynomials 27
r3=1.+8 . *bet/((6.28+bet) *n*n}
z=z-(x(1)-z)eriexr2sr3
else if(i.eq.n-1)then Initial guess for the second smallest root.
ria(1.+.235%bet) /(. 766+.119%bat)
r2=1./(1.+.639%(n~4.)/(1.+.71%(n-4.}})
r3=1./(1.420.%alf/((7.5+alf) #n*n))
z=z+(z~x(n-3)}eriexr2sc3
else if(i.eq.n)then Initial guess for the smallest root.
ri=(1.+.37bet)/(1.67+ 28%bet)
r2=1./(1.+.22¢(n-8.) /n)
T3=1./(1.+8.%a1f/((6.28+alf)#nen))
z2z+(z-x(n-2)) sr1sr2er3
else Initial guess for the other roots.
z=3.ex(i~1)-3.ex{i-2)}+x(i-3)
endif
alfbet=alf+bat
do1z its=1 NMAXIT Refinement by Newton's method.
temp=2.d0+alfbet Start the recurrence with Fy and Py to avoid a divi-
pl=(alf-bet+tempez)/2.d0 sion by zero when o + = 0 or —1.
p2=1.d0
dou j=2,n Loop up the recurrence relation to get the Jacobi
p3=p2 polynomial evaluated at z.
pa=pl
temp*2+j+alfbet

a=2sjs (j+alfbet)=(temp-2.40)
b=(temp-1.d0)#(alf*alf-betsbat+temps
(temp-2.40)*z)

c=2.d0%(j-1+alf)+{j-1+bet) *temp
p1=(bep2-c+p3)/a

enddon

pp=(ne(alf-bet-tempez) +pi+2.d0*(n+alf)+

(n+bet)ep2) /(temp*(1.40-z*z))

P1 is now the desired Jacobi polynomial. We next compute pp, its derivative, by a

standard relation involving aiso p2, the polynomial of one lower order.

zl=z
z=z1-pt/pp Newton's formula.
if(abs(z-2z1).1e.EPS)goto 1

anddo 12

pause ’too many iterations in gaujac’

x(i)=z Store the root and the weight.

u(i)=exp(gammln{alf+n)+gammln(bat+n) -gammln(n+l,)-
gammln(n+alfbet+1.})stemps2.ssalfbet/(ppep2)

enddao 12
Teturn

END

Legendre polynomials are special cases of Jacobi polynomials witha = 2 = 0,
but it is worth having the separate routine for them, gauleg, given above. Chebyshev
polynomials correspond 10 a = 3 = —1/2 (see §5.8). They have analytic abscissas
and weights:

]
ey
li
(]
g
i
o
——
e,
=l
|~
p—
SN

(4.5.24)

28 4. Integration of Functions

Case of Known Recurrences

Turn now to the case where you do not know good initial guesses for the zeros of your
orthogonal polynomials, but you do have available the coefficients a, and b, that generate
them. As we have seen, the zeros of pn(z) are the abscissas for the N-point Gaussian
quadrature formula. The most usefui computational formula for the weights is equation
(4.5.9) above, since the derivative ply can be efficiently computed by the derivative of (4.5.6)
in the general case, or by special relations for the classical polynomials. Note that (4.5.9) is
valid as written only for monic polynomials; for cther normalizations, there is an extra factor
of AnfAN_1, where Ay is the coefficient of zV in py.

Except in those special cases already discussed, the best way to find the abscissas is not
1o use a root-finding method like Newton's method on py(z). Rather, it is generally faster
to use the Golab-Welsch (3] algorithm, which is based on a result of Wilf [4]. This algorithm
notes that if you bring the term zp, to the lefi-hand side of (4.5.6) and the term p, 41 to the
right-hand side, the recurrence relation can be written in matrix form as

Po as 1 Po 0

n b oap 1 P1 0

. . - .o . +

PN_2 bv_z an—2 1 PN_2 0

PN-1 bvo1 an—y PN_1 PN

or

tp=T-p+prnen_: (4.5.25)
Here T is a ridiagonal matrix, p is a column vector of po, p1, ..., pn—1, and ey is 8 unit

vector with a | in the (N — 1)st (last) position and zeros elsewhere. The mairix T can be
symmetrized by a diagonal similarity transformation D to give

Gn\/E
Vb oar Vhs

J=DTD ! = : : (4.5.26)
N-—-2 a2 VEN—I

N-1 AN-~1

The matrix J is called the Jacobi matrix {not 1© be confused with other matrices named
after Jacobi that arise in completely different problems!). Now we see from (4.5.25) that
pn(z,) = 0 is equivalent to z; being an eigenvalue of T. Since eigenvalues are preserved
by a similarity wransformation, z; is an eigenvalue of the symmetric tridiagonal matrix J.
Moreover, Wilf {4] shows that if v, is the eigenvector corresponding to the eigenvalue z,,
normalized so that v - v = 1, then

w, = pot’, {(4.5.27)

where
b
Ho =/ Wi(z)dz (4.5.28)

and where v, is the first component of v. As we shall see in Chapter 11, finding all
eigenvalues and eigenvectors of a symmetric tridiagonal matrix is a relatively efficient and
well-conditioned procedure. We accordingly give a routine, gaucef, for finding the abscissas
and weights, given the coefficients a, and b,. Remember that if you know the recurrence
relation for orthogonal polynomials that are not normalized to be monic, you can easily
convert it to monic form by means of the quantities A,.

4.5 Gaussian Quadratures and Orthogonal Polynomials 29

SUBROUTINE gancof(n,a,b,amul,x,)
INTEGER n,FMAX
REAL amu0,a(n),b(n),w(n),x(n)
PARAMETER (EMAXI=64)
USES eigsrt,tqli
Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi
matrix. On input, a(1:n) and b(1:n) are the coefficients of the recurrence relation for
the set of monic orthogonal polynomials. The quantity po = f W(z)dr is input as amu0.
The abscissas x{1:n) are returned in descending order, with the corresponding weights
in ¥(1:n). The arrays a and b are modified. Execution can be speeded up by modifying
tgli and eigsrt to compute only the first component of each eigenvector,
IBTEGER i,j
REAL z(NKAX NMAI)
do 12 i=1,n
if(i.ne.1)b(i)=eqrt(b(i)} Set up superdiagonal of Jacobi matrix.
dou j=i,n Set up identity matrix for tqli to compute eigenvectors.
if(i.eq.j)then
z(i,j)=1,
alse
z(i,j)=0.
endif
enddo 11
enddo 12
call tqli(a,b,n,WNAX,z)
call eigsrt(a,z,n,EMAL) Sort eigenvalues into descending order.
do1 i=1,n
x(i)=a(i)
w(i)=amnOez(1,i)es2 Equation (4.5.12).
enddo 13
Teturn
EXD

Orthogonal Polynomials with Nonclassical Weights

This somewhat specialized subsection will tell you what to do if your weight function
is not one of the classical ones dealt with above and you do not know the a;’s and &,%s
of the recurrence relation (4.5.6) w use in gaucof. Then, a method of finding the a,’s
and b,’s is needed.

The procedure of Stieltjes is o compute ey from (4.5.7), then pi{z) from (4.5.6).
Knowing po and p;, we can compule a; and &, from (4.5.7), and so on. But how are we
o compute the inner products in (4.5.7)7

The textbook approach is to represent each p;(z} expiicitly as a polynomial in z and
to compute the inner products by multiplying out term by term. This will be feasible if we
know the first 2V moments of the weight function,

b
By o= f ! W{z)de i=0.1,...,2N~1 (4.5.29)

However, the solution of the resulting set of algebraic equations for the coefficients a; and b;
in terms of the moments u; is in general extremely ill-conditioned. Even in double precision,
it is not unusual to lose all accuracy by the time N = 12. We thus reject any procedure
based on the moments (4.5.29).

Sack and Donovan [S] discovered that the numerical stability is greatly improved if,
instead of using powers of z as a set of basis functions to represent the p;’s, one uses some
other known set of orthogonal polynomials x,(z). say. Roughly speaking, the improved
stability occurs because the polynomial basis “samples” the interval (a, b) better than the
power basis when the inner product integrals are evaluated, especiaily if its weight function
resembles W(z).

30 4. Integration of Functions

So assume that we know the modified moments
b
vy = f xy(2)W(z)dz J=0.1,...,2N¥ -1 (4.5.30)

where the x,’s satisfy a recurrence relaticn analogous to (4.5.6),

1r_1(:|:) =0
m{z) =1 (4.531)
”J+1(z)=(¢‘“i)”}(£)‘ﬂ}’r}—l(’:) J=012...

and the coefficients a;, 3; are known explicitly. Then Wheeler [6] has given an efficient
O(N?) algorithm equivalent to that of Sack and Donovan for finding &, and b, via a set
of intermediate quantities

okt = (pxlm) k1> -1 (4.5.32)
Initatize
a_1r =0 I=1,2,... 2N -2
oo = I 1=0,1,...,2N -1

4.5,
a0 = ao + = (4.533)
Yo

bo =0
Then, for k = 1,2,..., N — 1, compute
Okt = Or_1,0-1 — (@k—1 ~ ar)oh_11 — br_10k_24 + Btoxy 1y

=k k+1,...,2N k-1
Tk—1.k +6k,k+1

Ak = ok —
Tk—1,k—1 Tk k
by = —TEk
Tkl k-1
(45.34)
Note that the normalization factors can also easily be computed if needed:
{polpo) = vo

(4.5.35)

(pJ!pi)zbJ (Pj—llpj—i) J= 192v'--

You can find a derivation of the above algorithm in Ref, [7].

Wheeler's algorithm requires that the modified moments (4.5.30) be accurately computed.
In practical cases there is often a closed form, or else recumrence relations can be used. The
algorithm is extremely successful for finite intervals (a, b). Forinfinite intervals, the algorithm
does not completely remove the ill-conditioning. In this case, Gautschi[8.9] recommends
reducing the interval to a finite interval by a change of variable, and then using a suitable
discretization procedure to compute the inner products. You will have to consult the
references for details.

We give the rostine orthog for generating the coefficients a; and b; by Wheeler's
algorithm, given the coefficients o ; and 3;, and the modified moments v;. To conform
to the usual FORTRAN convention for dimensioning subscripts, the indices of the & matrix
are increased by 2, ie., 8ig(k,1) = ox_2,1_2, while the indices of the vectors o, A3, a
and b are increased by 1.

4.5 Gaussian Quadratures and Orthogonal Polynomials 31

SUBROUTINE orthog(n,anu,alpha,beta,a,b)

INTEGER n,NMAX

REAL a{n),alpha{2#n-1),anu(2+n),b{n),beta(2*n-1)

PARAMETER (EMAXwmG4)
Computes the coefficients ay and b;, 7 = 0,...N —~ 1, of the recurrence relation for
monic erthogonal polynomials with weight function W () by Wheeler's algorithm. On input,
alpha(1:2#n-1) and beta(1:2%n~1) are the coefficients ayand 3;, 1=0,...2N -2,
of the recurrence relation for the chosen basis of orthagonal polynomials. The modified
moments v; are input in anu(1:2%n). The first n coefficients are returned in a{i:n) and
b{1:n).

INTEGER k,1

REAL sig(2«NMAX+1,2¢NNAI+1)

do i 1=3,2en Initialization, Equation {4.5.33).
aig(l,1)=0,

enddo 11

do 12 1=2,2*n+1
sig(2,1)=ana(1-1)

snddo 12

a(1)=alpha(1)+amm(2)/anu(1)

b(1)=0.

do 14 k=3 ,m+1 Equation (4.5.34).
do 1y 1=k, 2n-k+3

aiglk,1)=sig(k-1,1+1)+(alpha(l-1)-a(k-2))esig(k-1,1)-
b(k-?)‘sig(k-?.l)ﬂutl(l-l)'sig(k“l.1-1)

enddo 1y
a(k-1}=alphak-1)+aig(k,k+1)/sig(k, k) -aig(k-1,k) /ig(k-1,k-1)
b(k-1)=sig(k,x)/sig(k-1,k-1)

enddo 4

return

END

As an example of the use of orthog, consider the problem [7] of generating orthogonal
polynomials with the weight fanction W(z) = — log z on the interval (6, 1). A suitable set
of x,’s is the shifted Legendre polynomials

112
X, = (L;%.!p,(z; -1 (4.5.36)

The factor in front of P; makes the polynomials monic. The coefficients in the tecurrence
relation (4.5.31) are

a_,-=-;- I=0,1,...
| ' (4.537)
ﬂ,:m y=1,2,...
while the modified moments are
1 i=0
vi=¢ (=1Y(s)° 51 (4.5.38)

G 7=

A call to orthog with this input allows one 1o generate the required polynomials to machine
accuracy for very large N, and hence do Gaussian quadrature with this weight function. Before
Sack and Donovan's observation, this seemingly simple problem was essentially intractable.

Extensions of Gaussian Quadrature
There are many different ways in which the ideas of Gaussian quadrature have

been extended. One imponiant extension is the case of preassigned nodes: Some
points are required to be included in the set of abscissas, and the problem is to choose

32 4. Integration of Functions

the weights and the remaining abscissas to maximize the degree of exactness of the
the quadrature rule. The most common cases are Gauss-Radau quadrature, where
one of the nodes is an endpoint of the interval, either a or b, and Gauss-Lobatto
quadrature, where both e and b are nodes. Golub [10] has given an algorithm similar
to gaucot for these cases.

The second important extension is the Gauss-Kronrod formulas. For ordinary
Gaussian quadrature formulas, as N increases the sets of abscissas have no points
in common. This means that if you compare results with increasing N as a way of
estimating the quadrature error, you cannot reuse the previous function evaluations.
Kronrod [11] posed the problem of searching for optimal sequences of rules, each
of which reuses all abscissas of its predecessor. If one starts with N = m, say,
and then adds n new points, one has 2rn + m free parameters: the n new abscissas
and weights, and m new weights for the fixed previous abscissas. The maximum
degree of exactness one would expect to achieve would therefore be 2n + m — 1.
The question is whether this maximum degree of exactness can actually be achieved
in practice, when the abscissas are required to all lie inside {(a,b). The answer o
this question is not known in general.

Kronrod showed that if you choose n = m + 1, an optimal extension can
be found for Gauss-Legendre quadrature. Patterson [12) showed how to compute
continued extensions of this kind, Sequences such as ¥ = 10,21,43,87,... are
popular in automatic quadrature routines (13} that attempt to integrate a function until
some specified accuracy has been achieved.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Math-
ematics Seties, vol. 55 (Washington: National Bureau of Standards: reprinted 1968 by
Dover Publications, New York), §25.4. [1]

Stroud, AH, and Secrest, D. 1966, Gaussian Quadrature Formulas {Englewood Cliffs, NJ:
Prentice-Hall). [2]

Golub, G.H., and Welsch, J.H. 1969, Mathematics of Computation, vol. 23, pp. 221-230 and
A1-A10. [3]

Wilt, H.S. 1962, Mathematics for the Physical Sciences (New York: Wiiley), Problem 9, p. 80. [4]

Sack, R.A., and Donovan, A.F. 1971/72, Numerische Mathematik, vol. 18, pp. 465478, [5]

Wheeler, J.C. 1974, Rocky Mountain Journal of Mathematics. vol. 4, pp. 287-296. [6]

Gautschi, W. 1978, in Recent Advances in Numerical Analysis, C. de Boor and G H. Golub, eds.
(New York: Academic Press), pp. 45-72. [7]

Gautschi, W. 1981, in E.B. Christoffel, P.L. Butzer and F, Fehér, eds. (Basel: Birkhauser Verlag),
pp. 72-147. [8]

Gautschi, W. 1990, in Orthogonal Polynomials, P. Nevai, ed. {Dordrecht: Kluwer Academic
Publishers), pp. 181-216. [9]

Golub, G.H. 1973, SIAM Review, vol. 15, pp. 318-334. [10]

Kronrod, A.S. 1964, Doklady Akademii Nauk SSSR, vol. 154, Pp. 283-286 (in Russian). [11}

Patterson, TN.L. 1968, Mathematics of Computation, vol. 22, Pp. 847-856 and C1-C11; 1969,
op. cit, vol. 23, p. 892. [12]

Piessens, R., de Doncker, E., Uberhuber, C.W., and Kahaner, D.K. 1983, QUADPACK: A
Subroutine Package for Automatic Intagration (New York: Springer-Verlag). [13]

Swer.sJ., and Bulirsch, R. 1980, introduction to Numerical Analysis (New York: Springer-Verlag),

3.6.

Johnson, LW., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §6.5.

5.8 Chebyshev Approximation 33

Camahan, 8., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), §§2.9-2.10.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §§4.4-4.8.

5.8 Chebyshev Approximation

The Chebyshev polynomial of degree n is denoted T, (x), and is given by
the explicit formuia

Ta(z) = cos{n arccos z) (5.8.1)

This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomials and the discrete Fourier transform); however
(5.8.1) can be combined with trigonometric identities to yicld explicit expressions
for T,.(z) (see Figure 5.8.1),

To(z) = 1
Ti(z)=r¢

Ty(z) = 222 - 1

Ta(z) = 42 — 3z (5.8.2)

Ty(z) = 8z* — 8z + 1

Tas1(2) = 22Th(2) - Thoa(2) n2 1.

(There also exist inverse formulas for the powers of r in lerms of the T,,'s — see

equations 5.11.2-5.11.3.}
The Chebyshev polynomials are orthogonal in the interval [-1, 1] over a weight
(1 — £2)~Y/2, In particular,

1 0 it
t@Le, [0, F)
v At —{ /2 i;;ig (5.8.3)

The polynomial T,, () has n zeros in the interval [—1, 1], and they are located
at the points

-1
xr = cos (M) E=1,2,...,n (5.8.4)

a4 5. Evaluation of Furetons

I 1 | T 1 1T 1
1 | LI : — Iy)

: 7 f~ §

‘ } SO -
L T 1 I T]
4 -2 4] 2 4 .

=1 -3 -6 =

=y

T

1

Chabyshav polynomiala

—

X

Figurs 3.E.l. Chebysbsv polyoomink Th (a:) tbrougb Ta (z.-). Nots thut Ty bus ¥ mows io tbe iotsevuad
(—1,1) sod thut ull 1be polycomiuly we bouoded between 1.

In this same interval thers are 71 == 1 extrema (maxima 2nd minima), located at
z = ¢od (%) =01, .0 (5.8.5)

At all of the maxima T,,(z) = 1, whilkt at all of the minima T,,(.‘l.’} = =1
it is precisely this property that makes the Chebyshes polymomials sc useful in
polynomial approximation of functicns.

The Chebyshev polynomials satisfy a discrefe ortho gonality relation as well as
the continuous one (5.83): If 23 (k= 1,...,m) am the M =10k of Trm(Z) given
by (5.8.4), and if i,§ < m, then

~ 0 i#j
Z Ti(z2)T5(z2) = {m[Q i=j#0 (5.8.6)
¥=l m i=i=0

It is niot too difficult to combine equations (5.8.1), {5.8.4), and (5.8.6} to prove
the following thcorzm: If f(z) is an arbitrary function in the intcrval [—1, 1], and
if N cocfficicnis cj,j =1 A, are defined by

2 N
&= ngf (2x)T5-1(22)

3k (D (=)

k=l

{(5.8.7)

5.8 Chebyshev Approximation 35

then the approximation formula

ol 1
f(z) ~ [chn_l(z)] - 50 (5.8.8)

is exact for z equal to all of the NV zeros of Ty(x).

For a fixed N, equation (5.8.8) is a polynomial in z which approximates the
function f(z) in the interval [-1, 1] (where all the zeros of T (r) are located). Why
is this particular approximating polynomial betier than any other one, exact on some
other sct of N points? The answer is not that (5.8.8) is necessarily more accurate
than some other approximating polynomial of the same order N (for some specified
definition of “accurate™), but rather that (5.8.8) can be truncated to a polynomial of
lower degree m < N ina very graceful way, one that does yield the “most accurate”
approximation of degree m (in a sense that can be made precise). Suppose N is
so large that (5.8.8) is virtually a perfect approximation of f(z). Now consider
the truncated approximation

flx) = [Z c;,Tk_l(:c)J - %cl {5.8.9)

k=1

with the same c;'s, computed from (5.8.7). Since the Te(z)'s are all bounded
between +1, the difference between (5.8.9) and (5.8.8) can be no larger than the
sum of the neglected ¢;'s (k = m + 1,..., N), In fact, if the c;'s are rapidly
decreasing (which is the typical case}, then the error is dominated by ¢4 Tin(z),
an oscillatory function with m + 1 equal extrema distributed smoothly over the
interval [—1, 1]. This smooth spreading out of the error is a very important property:
The Chebyshev approximation (5.8.9) is very nearly the same polynomial as that
holy grail of approximating polynomials the minimax polynomial, which {among all
polynomials of the same degree) has the smallest maximum deviation from the true
function f(z). The minimax polynomial is very difficuit to find; the Chebyshev
approximating polynomial is aimost identical and is very easy to compute!

So, given some (perhaps difficult) means of computing the function f (z), we
now need algorithms for implementing (5.8.7) and (after inspection of the resulting
c¢'s and choice of a truncating value m) evaluating (5.8.9). The latter equation then
becomes an easy way of computing f(z) for all subsequent time.

The first of these tasks is straightforward. A generalization of equation (58.7)
that is here implemented is to allow the range of approximation to be between two
arbitrary limits a and b, instead of just —1 to 1. This is effected by a change of variable

x— %(b+a)
Tt-a)

y (5.8.10)

and by the approximation of f(z) by a Chebyshev polynomial in y.

SUBROUTINE chebft(a,b,c,n,func)

INTEGER n,NNAX

REAL a,b,c{n),func,PI

EXITERNAL func

PARAMETER (WNMAI=50, PI=3.14159265358979340)
Chebyshev fit: Given a function func, lower and upper limits of the interval [a.b]. and
a maximum degree n, this routine computes the n coefficients ¢; such that func(z) =

36 5. Evaluation of Functions

[22=1 €xTi1(y}] = c1/2. where y and r are related by (5.8.10). This routine is to be
used with moderately large n {e.g., 30 or 50), the array of c's subsequently to be truncated
at the smaller value m such that c,,4+; and subsequent elements are negligible.
Parameters: Maximum expected value of n, and .

INTEGER j .k

REAL bma,bps,fac,y,f(WNMAI)

DOUBLE PRECISION sum

bma=(, 5+ (b-a)

bpa=0.5s(b+a)

don k=1,n We evaluate the function at the n points required by (5.8.7).
y=cos (PI»(k-0.5)/n)
f{k)=func (y*bma+bpa)

enddon

fac=2./n

do1y j=t,n
sum=0.do We will accumulate the sum in double precision, a nicety that
do 1z k=1,n you can ighore.

sum=sum+f (k) scon ((PI+{j-1))*((k-0.5d0)/n})

enddo 12
c(j)=faceam

snddo 13

return

EED

(If you find that the execution time of chebft is dominated by the caiculation of
N? cosines, rather than by the N evaluations of your function, then you should look
ahead to §12.3, especially equation 12.3.22, which shows how fast cosine transform
methods can be used to evaluate equation 5.8.7.)

Now that we have the Chebyshev coefficients, how do we evaluate the approxi-
mation? One could use the recurrence relation of equation (5.8.2) to generate values
for Tp.(z) from Tp = 1,7y = z, while also accumulating the sum of (5.8.9). It
is better to use Clenshaw’s recurrence formula (§5.5), effecting the two processes
simultaneously. Applied to the Chebyshev series (5.8.9), the recurrence is

Gmyz =dmy1 =0

dj =22d;4) —djpa+c; j=mm-—1,...,2 (5.8.11)

1
f(I)Ed(]:xdz—da-l-'éCl

FUNCTION chebev(a,b,c,m,x)

INTEGER m

REAL chebarv,a,b,x,c{m)
Chebyshev evaluation: All arguments are input. c{1:m)} is an array of Chebyshev coeffi-
cients, the first m elements of ¢ output from chebft (which must have been called with
the same a and b). The Chebyshev polynomial E:=1 CkTi_1(y) — €1 /2 is evaluated at 2
point ¥ = [x — (b + a)/2]/[(b — a)/2]. and the result is returned as the function value.

IBTEGER j

REAL 4,dd,sv,y,y2

if ((z-a)*(x-b).gt.0.) pause ’x not in range in chebev’

d=0

dd=Q,

y=(2.+#x-a-b)/(b-a} Change of variable.
yi=2 . »y

dou j™m,2,-1 Clenshaw's recurrence.

sv=d
d=y2+d-dd+c(j)

5.8 Chebyshev Approximation 37

dd=av
enddo n
chebev=y*d-dd+0.5c(1) Last step is different.
return
END

If we are approximating an even function on the interval [=1,1], its expansion
will involve only even Chebyshev polynomials. It is wasteful to call chebev with
all the odd coefficients zero {1). Instead, using the half-angle identity for the cosine
in equation (5.8.1), we get the relation

Ton(z) = Tn(22% ~ 1) (5.8.12)

Thus we can cvaluate a series of even Chebyshev polynomials by calling chebev
with the even coefficients stored consecutively in the array c, but with the argument
z replaced by 222 — 1,

An odd function will have an expansion involving only odd Chebysev poly-
nomials. It is best 1o rewrite it as an expansion for the function f(z)/x, which
involves only even Chebyshev polynomials. This will give accurate values for
f(z)/x near z = 0. The coefficients ¢, for f(z)/z can be found from those for
f(z) by recurrence:

N1 =0
, , (5.8.13)
cn—1=26n_cﬂ+1, n=NN-2 ..

Equation (5.8.13) foltows from the recurrence relation in equation (5.8.2).

If you insist on evaluating an odd Chebyshev series, the efficient way is to once
again use chebev with z replaced by y = 2z? — 1, and with the odd coefficients
stored consecutively in the array c. Now, however, you must also change the last
formula in equation (5.8.11) to be

f(z) = z[(2y — 1)dy — da +] (5.8.14)

and change the corresponding line in chebev.

CITED REFERENCES AND FURTHER READING:

Clenshaw, C.W. 1962, Mathematical Tables, vol. 5, National Physical Laboratory, (London: HM.
Stationery Office). [1]

Goodwin, E.T. (ed.} 1961, Modern Computing Methods, 2nd ed. {(New York: Philosophical
Library), Chapter 8.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Clifis, NJ: Prentice-Hail),
§4.4.1, p. 104.

Johnson, LW., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §65.2, p. 334,

Camahan, B., Luther, HA., and Wilkes, J.0. 1968, Applied Numerical Methods (New York:
Wiley), §1.10, p. 39.

38 5. Evaluation of Functions

5.9 Derivatives or Integrals of a
Chebyshev-approximated Function

if you have obtained the Chebyshev coefficients that approximate a function in
a certain range (e.g., from chebft in §5.8), then it is a simple matter to transform
them to Chebyshev coefficients corresponding to the derivative or integral of the
function, Having done this, you can evaluate the derivative or integral just as if it
were a function that you had Chebyshev-fitted ab initio.

The relevant formulas are these: If ¢;, ¢ = 1,..., m are the coefficients that
approximate a function f in equation (5.8.9), C; are the coefficients that approximate
the indefinite integral of f, and ¢! are the coefficients that approximate the derivative
of f, then

o Gi-1 — Gt .
G="g =t (> (59.1)
Gy =€ +2qi~-1ea (i=m-1,m-2,...,2) (5.9.2)

Equation (5.9.1) is augmented by an arbitrary choice of C|, corresponding to an
arbitrary constant of integration. Equation (5.9.2), which is a recurrence, is started
with the values ¢/, = ¢}, ; = 0, corresponding to no information about the m + 1st
Chebyshev coefficient of the original function f,

Here are routines for implementing equations (5.9.1) and (5.9.2).

SUBROUTINE chder(a,b,c,cder,n)
INTEGER n
REAL a,b,c(n},cder(n)
Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of ¢ to be used), this routine returns the array cder{1:n), the
Chebyshev coefficients of the derivative of the function whose coefficients are ¢ {1:n).
INTEGER j
REAL con
cder(n)=0. n and n-1 are special cases.
cder{n~1)=2x(n-1)%c{n)
if(n.ge.3)then
don j=mn-2,1,-1
cder(j)=cder(j+2)+2¢jec(j+1) Equation (5.9.2).
enddo 1
endif
con=2./(b-a)
doiz j=t,n Normalize to the interval b-a.
cder(j)=cdex(j)econ
snddo 12
return
END

SUBROUTIBE chint(a,b,c,cint,n)

INTEGER n

REAL a,b,c(n),cint(n)
Given a,b,c(1:n), as cutput from routine chebft §5.8, and given n. the desired degree
of approximation (length of ¢ to be used), this routine returns the array cint(1:n), the

5.9 Derivalives or Integrals of a Chebyshev-approximated Function 39

Chebyshev coefficients of the integral of the function whose coefficients are c. The constant
of integration is set so that the integral vanishes at a.

INTEGER j
REAL con,fac,sum
con=0.25+(b~a) Factor that normalizes to the interval b-a.
sum=0. Accumulates the constant of integration.
fac=1. Will equai +1.
dou j=2,n-1
cint(j)=cone(c{j-1)-<(j+1))/(j-1) Equation {5.9.1).
sumsgum+facecint (j)
facu~fac
enddo 11
cint(n)=consc(n-1)/{n-1) Special case of {5.9.1) for n.
sum=sum+face*cint(n)
cint{1)=2 ¢sum Set the constant of integration.
return
END

Clenshaw-Curtis Quadrature

Since a smooth function’s Chebyshev coefficients ¢, decrease rapidly, generally expo-
nentially, equation (5.9.1) is often quite efficient as the basis for a quadrature scheme. The
routines chebft and chint, used in that order, can be foltowed by repeated calls to chebev
if [f(z)dz is required for many different values of z in the range & < z < b.

If only the single definite integral f: f(x)dz is required, then chint and chebev are
replaced by the simpler formula, derived from equation (5.9.1),

b f(z)z = (b 1 1 1 1
/; (e}dz = (b —a) |5 — 30 — 5o~ BRI DRESD T T
(5.9.3)
where the ¢;’s are as retumed by chebft. The series can be truncated when c2x41 becomes
negligible, and the first neglected term gives an error estimate.

This scheme is known as Clenshaw-Curtis quadrature [1]. It is often combined with an
adaptive choice of N, the number of Chebyshev coefficients calculated via equation (5.8.7),
which is also the number of function evaluations of f(z). If a modest choice of N does
not give a sufficiently small czx41 in equation (5.9.3), then a larger value is tried. In this
adaptive case, it is even better 10 replace equation (5.8.7) by the so-called “rapezoidal” or
Gauss-Lobano (§4.5) variant,

¢j = %i"f{m(%‘)] cos (ﬂ;—])ﬁ) J=1,....N (59.4)

k=0

where (N.B.!) the two primes signify that the first and last terms in the sum are to be
multiplied by 1/2. If N is doubled in equation (5.9.4), then half of the new function
evaluation points are identical to the old ones, allowing the previous function evaluations to be
reused. This feature, plus the analytic weights and abscissas (cosine functions in 5.9.4), give
Clenshaw-Curtis quadrature an edge over high-order adaptive Gaussian quadrature (cf. §4.5),
which the method otherwise resembles.

1f your problem forces you to large values of N, you should be aware that equation (5.9.4)
can be evaluated rapidly, and simultaneously for all the values of j, by a fast cosine ransform.
(See §12.3, especially equation 12.3.17.) (We already remarked that the nontrapezoidal form
(5.8.7) can also be done by fast cosine methods, cf. equation 12.3.22.)

CITED REFERENCES AND FURTHER READING:

Goodwin, ET. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical
Library), pp. 78-79.

Clenshaw, C.W., and Curtis, A.R. 1960, Numerische Mathematik, vol. 2, pp. 197-205. [1]

c

40 12. Fast Fourier Transform

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples f;, =0...N — 1. To use touri, we put these into a complex array
with all imaginary parts set (o zero. The resulting transform F,,, n=0...N — 1
satisfies Fv_n,* = F,,. Since this complex-valued array has real values for Fy
and Fy;,, and (N/2) — 1 other independent values Fy ... Fnya_y, it has the same
2(N/2 - 1)+ 2 = N “degrees of freedom” as the original, real data sct. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a betier way.

There are two better ways. The first is “mass production™ Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the program realft below.

Transform of Two Real Functions Simultaneously

First we show how to exploit the symmetry of the transform F, to handle
two real functions at once: Since the input data f; are real, the components of the
discrete Fourier transform satisfy

Fnp = (Fo)* (12.3.1)

where the asterisk denotes complex conjugation. By the same token, the discrete
Fourier transform of a purely imaginary set of ¢;'s has the opposite symmetry.

GN-n=—(Gn)* (123.2)

Therefore we can take the discrete Fourier transform of two real functions each of
length NV simultaneously by packing the two data arrays as the real and imaginary
parts, respectively, of the complex input array of four1. Then the resulting transform
array can be unpacked into two complex arrays with the aid of the two symmetries.
Routine twotft works out these ideas.

SUBROUTINE twofft(datal,data2 L2811, 212 ,n)
INTEGER n

REAL datai(n),data2(n)

CORPLEI f£ft1(n) ,f#t2(n)

USES fourl

Given two real input arrays data1(1:n) and data2{1:n), this routine calls fourt and
returns two complex output arrays, ££t1(1:n) and ££t2(1:n), each of complex length n

12.3 FFT of Real Functions, Sine and Cosine Transforms 41

(i.e., real length 2#n), which contain the discrete Fourier transforms of the respective data
arrays. n MUST be an integer power of 2.

INTEGER j,n2

COMPLEX hi1,h2,cl,c2

cl=cmplx(0.5,0.0)

c2»cmplx(0.0,-0.5)

don j=1i,n

Tft1(j)ucmplz(datal (j),data2(j)) Pack the two real arrays into one compiex
enddo n array.
call foauri(ffti,n,1) Transform the complex array.

£££2(1) =cuplx(aimag(£££1(1)),0.0)

11 (1) =cmplx(real (£1t1(1)),0.0)

n2=m+2

do12 j=2,n/2+1
hi=cle (£Lt1(j)+conjg{LLt1(n2-11)) Use symmaetries to separate the two trans-
h2ac2e(fLt1(j)-conjg(tLt1(n2-3))) forms.
21t1(j)=h1 Ship them out in two complex arrays.
f1t1(n2-j)=conjg(ht)
£2£2(§)=h2
f£t2(n2~j)=conjg(h2)

snddo 12

return

END

What about the reverse process? Suppose you have two complex transform
arrays, each of which has the symmetry (12.3.1), so that you know that the inverses
of both transforms are real functions. Can you invert both in a single FFT? This is
even casier than the other direction. Use the fact that the FFT is linear and form
the sum of the first transform plus i times the second. Invert using fouri with
isign = —1. The real and imaginary parts of the resulting complex array are the
two desired real functions.

FFT of Single Real Function

To implement the second method, which allows us to perform the FFT of
a single real function without redundancy, we split the data set in half, thereby
forming two real arrays of half the size. We can apply the program above to these
two, but of course the result will not be the transform of the original data. It will
be a schizophrenic combination of two transforms, each of which has half of the
information we need. Fortunately, this schizophrenia is treatable. It works like this:

The right way to split the original data is to take the even-numbered fi as
one data sct, and the odd-numbered f; as the other. The beauty of this is that
we can take the original real array and treat it as a complex array h; of half the
length. The first data set is the real part of this array, and the second is the
imaginary part, as prescribed for twofft. No repacking is required. In other words
hi = faj +ifajpr, F=0,...,N/2—=1. We submit this to fourl, and it will
retum a compiex array H, = F; +iF?, n=0,...,N/2 -1 with

Niz-1

F: - Z f2k e?rikn/(_N/?)
k=0
Nf2-1

F:: Z f2k+l e?tikn!(N/E)
k=0

(123.3)

42 12. Fast Fourier Transform

The discussion of program twof 1t tells you how to separate the two transforms
£ and F? outof H,. How do you work them into the transform £, of the original
data set f;? Simply glance back at equation (12.2.3):

Fo=Fr4e™nINpe n=0,. N_-1 (12.34)

Expressed directly in terms of the transform H, of our real {masquerading as
complex) data set, the result is

1 1 .
o= 5(-’{" + HN/Z-n*) - %(Hn - HN/E-n*)eZ'm/N n=0,...,N-1
(12.3.5)

A few remarks:

e Since Fy_,* = F, there is no point in saving the entire spectrum. The
positive frequency half is sufficient and can be stored in the same array as
the original data. The operation can, in fact, be done in place.

» Even so, we need values H,, n = 0,..., N/2 whereas four1returns only
the values n = 0,..., N/2 ~ 1. Symmetry to the rescue, Hpyya = Ho.

e The values F, and Fny2 are real and independent. In order to actually get
the entire F,, in the original array space, it is convenient 10 return Fprps
as the imaginary part of Fy,.

e Despite its complicated form, the process above is invertible. First peel
FN/Z out of Fy. Then construct

1 .
Fi=(Fa+ Fypn)
3 f2-n n=0,....N2-1 (1236)

F2 = 3o N (E, — Fyy)

and use four1 to find the inverse transform of H, = Fi + iF$,
Surprisingly, the actual algebraic steps are virtually identical to those of
the forward transform.

Here is a representation of what we have said;

SUBROUTINE realft(data,n,isign)

INTEGER isign,n

REAL data(n)

USES fourl
Calculatas the Fourier transform of a set of n real-valued data points. Replaces this data
{which is stored in array data(1:n)} by the positive frequency half of its complex Fourier
transform. The real-valued first and last components of the complex transform are returned
as elements data(1) and data(2), respectively. n must be a power of 2. This routine
also calculates the inverse transform of a complex data array if it is the transform of real
data. (Result in this case must be multiplied by 2/n.)

INTEGER i,11,12,13,14,n2p3

REAL ¢1,c2,h1i,h1r,h2i,h2r,vis,vxs

DOUBLE PRECISION theta,vwi,wpi,wpr,

wr,wtemp Double precision for the trigonometric recurrences.
theta=3.141592663589793d0/dble(n/2) Initialize the recurrence.
cl=0.5
if (isign.eq.1) then
c2=-0.5

call fourl(data,n/2,+1) The forward transform is here.

12.3 FFT of Real Functions, Sine and Cosine Transforms 43

alse
¢2%0.5 Otherwise set up for an inverse transform.
theta=-theta
endif
Ypr=-2.0d0*sin(0.5d0etheta)++32
wpi*ain(theta)
wr=1,0d0+upr
wi=gpi
n2p3=n+3
don i=2 n/4 Case i=1 done separately below.
i1=2ei-1
id=ii1+1
i3=n2p3-i2
i4=i3+1
wras=sngl (ur)
vis=angl (wi)
hir=cis(data(il)+data(i3)) The two separate transforms are separated out of
hiiscie(data(i2)~data(id)) data.
h2rm-cle(data{i2)+data(id))
h2i=c2e({datalil)-data(i3))
data(ii)=hir+wrseh2r-wissh2i Here they are recombined to form the true trans-
data(i2)=h1i+wrseh2i+wis+h2r form of the original real data.
data(i3)shir-wrs*h2r+vissh2i
data(id4)=-h1itwresh2i+winsh2r
wtamp=wr The recurrence.
ur=orswprewiswpi+er
vizwisupr+wtemprupitvi
enddo 11
if (isign.eq.1) then
hir=data(1)
data{1)=hir+data(2)
data(2)=hir-data(2) Squeeze the first and last data together to get
else them all within the original array.
hir=data(i)
data(1)=scis(hir+data(2))
data(2)=cie(hir-data(2))
call fourt{(data,n/2,-1) This is the inverse transform for the case isign=-1.
endif
raturn
END

Fast Sine and Cosine Transforms

Among their other uses, the Fourier transforms of functions can be used to solve
differential equations (see §19.4). The most common boundary conditions for the
solutions are 1) they have the value zero at the boundaries, or 2) their derivatives
are zero at the boundaries. In the first instance, the natural transform to use is the
sine transform, given by

N-1
Fp = z f; sin(wjk/N) sine transform (12.3.7)

i=1

where f;, j = 0,...,N — 1is the data array, and f, = 0.

At first blush this appears to be simply the imaginary part of the discrete Fourier
transform. However, the argument of the sine differs by a factor of two from the
value that would make this so. The sine transform uses sines only as a complete set

44 12. Fast Fourier Transform

+1]
RN XN
(a) 0
_1 5 3
+1 3 2 !
b o
4
5
-1
+1 1
2
€ 0
4
-1 5
0 2%

Figure 12.3.1. Basis functions used by the Fourier transform (a), sine transform (b), and cosine transform
(c), are plotted. The first five basis functions are shown in cach case. (For the Fourier transform, the real
and imaginary parts of the basis functions are both shown.) While some basis functions occur in more
than one transform, the basis sets are distinct. For example, the sine transform functions labeled (1), (3),
(5) are not present in the Fouricr basis. Any of the three sets can expand any function in the interval
shown; however, the sine or cosine transform best expands functions maiching the boundary conditions
of the respective basis functions, namely zero function values for sine, zero derivatives for cosine.

of functions in the interval from 0 to 27, and, as we shall see, the cosine ransform
uses cosines only. By contrast, the normal FFT uses both sines and cosines, but only
half as many of each. (See Figure 12.3.1.)

The expression (12.3.7) can be “force-fit” into a form that allows its calculation
via the FFT. The idea is to extend the given function rightward past its last tabulated
value. We extend the data to twice their length in such a way as to make them an
odd function about j = N, with fy = 0,

fan—j=—f; J=0,...,N—-1 (12.3.8)
Consider the FFT of this extended function:
2N -1 -
Fy= Y fedmiik/nN) (12.3.9)

i=0

The half of this sum from j; = N 0 j = 2N — 1 can be rewritten with the

12.3 FFT of Real Functions, Sine and Cosine Transforms 45

substitution j* = 2N — j

2N-1 N
Z fjezﬂjk/(?.N) — Z fZN_J_’eZn'(QN-j‘)k/QN)
7= T (123.10)
- Z fj'e—Qﬁj'k/(EN)
J'=0
50 that
N=
Fy = Z 5 [ezn'jk/r:w)_e-zﬁjk/(zN)]
v (12.3.11)
=2i) fsin(rjk/N)
}=0

Thus, up to a factor 2i we get the sine transform from the FFT of the extended
function,

This method introduces a factor of two inefficiency into the computation by
extending the data. This inefficiency shows up in the FFT output, which has
zeros for the real part of every element of the transform. For a one-dimensional
problem, the factor of two may be bearabie, especially in view of the simplicity
of the method. When we wark with partial differential equations in two or three
dimensions, though, the factor becomes four or cight, so efforts to eliminate the
inefficiency are well rewarded.

From the original reat data array f; we will construct an auxiliary array y; and
apply to it the routine realfrt. The output will then be used to construct the desired
transform. For the sine transform ofdata f;, j =1,..., N —1, the auxiliary array is

Yo =10
_ 1 (123.12)
y; = sin(jx/N)(f; +_fN__,-)+§(fJ-—fN_J-) j=1,... . N—-1

This array is of the same dimension as the original. Notice that the first term is
symmetric about j = N/2 and the second is antisymmetric. Consequently, when
realft is applied to y;, the result has real parts R and imaginary parts I; given by

N-1
Ri=) yjcos(2mjk/N)

il
(=]

—

(fi + fn—;)sin(jx/N) cos(2mjk/N)

LY
.zn
L=

2f;sin(jx/N)cos(2mjk/N)

il
L
I
(=]

2

J; [sin (2% -;-Vl)jar in (2k 7Vl)jw]

[
L}
o

46 12. Fast Fourier Transform

- F2k+1 - F?k-l (12.3.13)

N1

Z yj sin(2xjk/N)

=0

;f—l 1

- Z(fj - fN_j)§ sin(2xjk/N)

=1

N1

Z fisin(2njk/N)

=0

o (12.3.14)

I

Therefore Fi can be determined as follows:
ng,:I;- sz+1=F2k—1+Rk k:O,...,(N/Q—I) (12.3.15)

The even terms of F} are thus determined very directly. The odd terms reguire
a recursion, the starting point of which follows from setting k¥ = 0 in equation
(12.3.15) and using F), = —F_,:

Fi= >Ry (12.3.16)

1
2
The implementing program is

SUBROUTINE sinft(y,n)

INTEGER n

REAL y{n)

USES real ft
Calculates the sine transform of a set of n real-valued data points stored in array y(1:n).
The number n must be a power of 2. On exit ¥ is replaced by its transform. This program,
without changes, also caiculates the inverse sine transform, but in this case the output array
should be multipiied by 2/n.

INTEGER j

REAL sum,y1,y2

DOUBLE PRECISION theta,vwi,wpi,wpr,

or,vtemp Double precision in the trigonometric recurrences,

theta=3.141592653589793d0/dbla(n) Initialize the recurrence.

wr=1.0d40

wi=0 . 0d0

vpr=-2.0d0«sin(0.5d0%theta)s 2

wpi=sin(theta)

y(1)=0.0

dot j=1,n/2
Ytemp=yr
sr=grewpr-viswpitwr Calculate the sine for the auxiliary array.
viswisgprutempewpitei The cosine is needed to continue the recurrence.
yi=uin(y(j+1)+y(n~-j+1)) Construct the auxiliary array.
¥220.5«(y(j+1)-y(n-j+1))
y(j+1)=yl+y2 Terms 7 and N — ; are related.
y(n-j+1)=y1-y2

enddo i

call realft(y,n,+1) Transform the auxiliary array.

sum=0.0

y(1)=0. 5+y(1) Initialize the sum used for odd terms below.

¥(2)=0.0

12.3 FFT of Real Functions, Sine and Cosine Transforms 47

dowz j=1,n-1,23

sum=sum+y(j)
y(i)=y{(j+1) Even terms in the transform are determined directly.
y{j+1)=sum Odd terms are determined by this running sum.
enddo 12
return

END

The sine transform, curiously, is its own inverse. If you apply it twice, you get the
original data, but muitiplied by a factor of N/2.

The other common boundary condition for differential equations is that the
derivative of the function is zerc at the boundary. In this case the natural transform
is the cosine transform. There are several possible ways of defining the transform.
Each can be thought of as resulting from a different way of extending a given array
to create an even array of double the length, and/or from whether the extended array
contains 2N — 1, 2N, or some other number of points. In practice, only two of the
numerous possibilities are useful so we will restrict ourselves to just these two.

The first form of the cosine transform uses N + 1 data points:

N-1
1 .
Fe = glfo+ (=1)*fn]+ 3 fj cos(njk/N) (12.3.17)
i=1
It results from extending the given array to an even array about j = N, with
sz_j =fJ’ j:o,...,N—l (12.3.18)

If you substitute this extended array into equation (12.3.9), and follow steps analogous
to those leading up to equation (12.3.11), you will find that the Fourier transform is
just twice the cosine transform (12.3.17). Another way of thinking about the formula
(12.3.17) is to notice that it is the Chebyshev Gauss-Lobatto quadrature formula (see
§4.5), often used in Clenshaw-Curtis adaptive quadrature (see §5.9, equation 5.9.4).

Once again the transform can be computed without the factor of two inefficiency.
In this case the auxiliary function is

1 y ,
= E(fJ +fN—j) “Sll’l(jﬂ’/N)(fJ' - fN—j)] = U,.. .,N -1 (12.3.19)
Insicad of equation (12.3.15), realft now gives
sz——-Rk F2k+1=F2k-—1+Ik k'—"O,...,(N/?—l) (12320)

The starting value for the recursion for odd k in this case is

N-1

Fi=5(fo— fw) + 3 f; cos(jn/N) (12321)

izl

This sum does not appear naturally among the R; and /i, and s0 we accumulate it
during the generation of the array y;.

Once again this transform is its own inverse, and so the following routine
works for both directions of the transformation. Note that although this form of
the cosine transform has N + 1 input and output values, it passes an array only
of length N to realft.

48 12. Fast Fourier Transform

SUBRQUTINE coafti(y,n)

INTEGER n

REAL y(n+1)

USES realft
Calculates the cosine transform of a set y(1:n+1) of real-valued data points. The trans-
formed data replace the original data in array y. n must be a power of 2. This program,
without changes, also calculates the inverse cosine transform, but in this case the output
array should be multiplied by 2/n.

INTEGER j

REAL sum,y1,¥y2

DOUBLE PRECISION theta,wi,wpi,wpr,vr,vtemp For trig. recurrences.

theta=3.141592653689793d0/n Initialize the recurrence,

wr=1.040

wi=0, 040

wpr=~2.0d0*sin{0.5d0*thata)*»2

wpi=sin(theta)

sum=0_5=(y(1)-y(n+1))

y(1)»0 Se(y(1)+y{n+1))

don j=1,n/2-1 j=n/2 unnecessary since y(n/2+1) unchanged.
wtemp=yr
Wreyrevpr-wiswpiter Carry out the recurrence.
visgiswpr+wtempevpitvi
y1=0.5¢{y{j+1)+y(n~-j+1)) Calculate the auxiliary function.
y2=(y(j+1)-y{n-j+1))
y(j+1)myl-wisy2 The values for ; and N — ; are related.
y(n-j+1)=y1+giny2
sum=sum+erey2 Carry along this sum for later use in unfolding the
sndde n transform.
call realft(y,n,+1) Calculate the transform of the auxiliary function.
y(n+1)=y(2)
y(2)=zum sum is the vaiue of F in equation (12.3.21).
don j=4,n,2
sumwsum+y () Equation (12.3.20).
y{j)=sum
snddo 12
return
EED

The second important form of the cosine transform is defined by

N-1 .
nk(j + 1)
Fr = Z £ cos ———2- (12.3.22)
F=0
with inverse
N-1
2 ' Tk(j + 3)
fi= ﬁ;o Fi cos ————2- (12.3.23)

Here the prime on the summation symbol means that the term for £ = 0 has a
coefficient of 1 in front. This form arises by extending the given data, defined for
Jj=0,...,.N-L,woj=N,...,2N-1 in such a way that it is even about the point
N — § and periodic. (It is therefore also even about j = — L) The form (12.3.23)
is related to Gauss-Chebyshev quadrature (see equation 4.5.19), to Chebyshev
approximation (§5.8, equation 5.8.7), and Clenshaw-Curtis quadrature (§5.9).

This form of the cosine transform is useful when solving differential equations
on “staggered” grids, where the variables are centered midway between mesh points.
It is also the standard form in the field of data compression and image processing.

12.3 FFT of Real Functions, Sine and Cosine Transforms 49

The auxiliary function used in this case is similar to equation (12.3.19):

!
Yy = ';’(f:i + fN-j-1) —sin ”—(i%ﬁ(fj —fy-j-1) j=0,..,N~1

(12.3.24)

Carrying out the steps similar to those used to get from (12.3.12) 10(12.3.15), we find

k . wk
Fap = cos %Rt — sin %I;, (12.3.25)
. wk k
Fop_1 = sin %‘Rk + ¢cos %—Ik + F2k+1 (12.3.26)

Note that equation (12.3.26) gives

1
FN_1 = §RN/g (12.3.27)

Thus the even components are found directly from (12.3.25), while the odd com-
ponents are found by recursing (12.3.26) down from & = N /2 — 1, using (12.3.27)
f0 start.

Since the transform is not self-inverting, we have to reverse the above steps
to find the inverse, Here is the routine:

SUBROUTINE cosft2(y,n,isign)
IFNTEGER isign,n
REAL y(n)
USES realft
Calculates the “staggered” cosine transform of a set y{1:n) of real-valued data points.
The transformed data replace the original data in array ¥. n must be a2 power of 2. Set
isign to 41 for a transform, and to —1 for an inverse transform. For an inverse transform,
the output array should be multiplied by 2/n.
INTEGER 1
REAL sum,suml,yl,y2,ytemp
DOUBLE PRECISION theta,wi,wil »¥pi,wpr,er,url,wtemp,PI
Double precision for the trigonometric recurrences.
PARANETER (PI=3.14159265358979340)
theta=0, 5d0¢PI/n Initialize the recurrences.
wr=1.040
win0 . 0dO
wri=cos(theta)
wil*sin(theta)
wpr=-2.0d0suil»*2
wpi=sin(2.d0stheta)
if(isign.eq.1)then Forward transform.
do1t i=1 ,n/2
¥1=0 5+ {y{i)+y(n-i+1)) Calculate the auxiliary function.
y2=wile(y(i)-y(n-i+1))
y(i)wyl+y2
y{n-i+1)my1-y2
vtemp=wri Carry out the recurrence.
vriserlewpr-wilsgpiteri
vilewilegpr+wtempevpitwil
enddo n
call realft(y,n,1) Calculate the transform of the auxiliary function.
do1z i=3,n,2 Even terms,
wtemp=gwr
FrENTr*Ypr-viswpitur

50 12. Fast Fourier Transform

wiswisupr+wtempswpitui
Yi=y(i)ewr-y(i+1)#ui
y2=y{i+1)eurey(idewi
y(i)=y1
y{it+1)=y2
enddo 12
sum=0.5+y(2) Initialize recurrence for odd terms with %—RN,;,.
do1y imn, 2, -2 Carry out recurrence for odd terms.
sumi=aum
sum=sum+y (i)
y(i)=snm1
enddo 13
ealse if{ieign.eq.~1)then Inverse transform.
ytemp=y(n)
dow iwn,4,-2 Form difference of odd terms.
¥ =y (i-2)-y(1)
enddo 14
¥(2)=2. Osytemp
dots i=3.n,2 Caiculate Ry and /.
wtempeyr
VIeer*wpr-viswpiter
vimsiewprivtempswpitui
yi=y(i)eur+y(i+i)egi
y2=y(i+1)enx-y(i)eui
y(i)=y1
y(i+1)=y2
exnddo 1s
call realft{y,n,-1)
dows i=1 n/2 Invert auxitiary array,
yi=y(id+y(n-i+1)
¥2=(0.6/wi1)e(y(i)-y(n-i+1))
y(i)=0. 5+ (y1+y2)
¥{n-i+1)=0.5e(y1-y2}
vtemp=gri
srisvrisspr-wilswpisurt
wil=wilespr+vtempeupituil
enddo s
endif
return
END

An alternative way of implementing this algorithm is to form an auxiliary
function by copying the even elements of f; into the first N'/2 locations, and the
odd elements into the next NV /2 elements in reverse order. However, it is not easy
to implement the alternative algorithm without a temporary storage array and we
prefer the above in-place algorithm.

Finally, we mention that there exist fast cosine transforms for small N that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixed N of smatl dimension [1].

CITED REFERENCES AND FURTHER READING:

Brigham, E.Q. 1974, The Fast Fouriar Transform (Englewood Cliffs, NJ: Prentice-Hall), §10-10.

Sorensen, H.V., Jones, D.L., Heideman, M.T., and Burris, C.S. 1987, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. B49-863,

Hou, H.S. 1987, /EEE Transactions on Acoustics, Speach, and Signal Processing, vol. ASSP-35,
pp. 1455-1461 [see for additional references).

Hockney, R-W. 1971, in Methods in Computational Physics, vol. 9 (New York: Academic Press).
Ternperton, C. 1980, Joumnal of Computational Physics, vol. 34, pp. 314-320.

12.3 FFT of Real Functions, Sine and Cosine Transforms 51

Clarke, R.J. 1985, Transform Coding of images, (Reading, MA: Addison-Wesiey).
Gonzalez, R.C., and Wintz, P. 1987, Digital Image Processing, (Reading, MA: Addison-Waesley).

Chen, W., Smith, C.H., and Fralick, S.C. 1977, IEEE Transactions on Communications, vol. COM-
25, pp. 1004-1009. [1]

18. Integral Equations and
inverse Theory

18.0 Introduction

Many people, otherwise numerically knowledgable, imagine that the numerical
solution of integral equations must be an extremely arcane topic, since, until recently,
it was almost never treated in numerical analysis textbooks. Actually there is a
large and growing literature on the numerical solution of integral equations; several
monographs have by now appeared [1-3]. One reason for the sheer volume of this
activity is that there are many different kinds of equations, each with many different
possible pitfalls; often many different algorithms have been proposed to deal with
a single case.

There is a close correspondence between linear integral equations, which specify
lincar, integral relations among functions in an infinite-dimensional function space,
and plain old linear equations, which specify analogous relations among vectors
in a finite-dimensional vector space. Because this correspondence lies at the heart
of most computational algorithms, it is worth making it explicit as we recall how
integral equations are classified.

Fredholm equations involve definite integrals with fixed upper and lower limits.
An inhomogeneous Fredholm equation of the first kind has the form

)
a(t) = [K(t,s)f(s)ds (18.0.1)

Here f(t) is the unknown function to be solved for, while g(t) is a known “right-hand
side.” (In integral equations, for some odd reason, the familiar “right-hand side” is
conventionally writien on the left!) The function of two variables, K (2, 5) is calied
the kernel. Equation (18.0.1) is analogous to the matrix equation

K f=g (18.0.2)

whose solution is f = K~' . g, where K™! is the matrix inverse. Like equation
(18.0.2), equation (18.0.1) has a unique solution whenever g is nonzero (the
homogeneous case with g = 0 is almost never useful) and K is invertible. However,
as we shall see, this latter condition is as often the exception as the rule.

The analog of the finite-dimensional eigenvalue problem

(K-cl) . f=g (18.0.3)

52

18.0 Introduction 53

is called a Fredholm equation of the second kind, usually written

b
f(t) = ,\f K(t,s)}f(s)ds + ¢(t) (18.0.4)

Again, the notational conventions do not exactly correspond:) in equation ¢ 18.0.4)
is 1/o in (18.0.3), while g is —g/A. If g (or g) is zero, then the equation i3 said
to be homogeneous. If the kemel K (1, s) is bounded, then, like equation (18.0.3),
equation (18.0.4) has the property that its homogeneous form has solutions for
at most a2 denumerably infinite set A = A, n = 1,2,..., the eigenvalues. The
corresponding solutions f,(t) are the eigenfunctions. The eigenvalues are real if
the kemel is symmetric.

In the inhomogeneous case of nonzero g (or g), equations (18.0.3) and (18.04)
are soluble except when A (or o) is an eigenvalue — because the integral operator
(or matrix) is singular then. In integral equations this dichotomy is called the
Fredholm alternative.

Fredholm equations of the first kind are often extremely ill-conditioned. Ap-
plying the kernel to a function is generally a smoothing operation, so the sotution,
which requires inverting the operator, will be extremely sensitive to small changes
or errors in the input. Smoothing often actually loses information, and there is no
way to get it back in an inverse operation, Specialized methods have been developed
for such equations, which are often called inverse problems. In general, a method
must augment the information given with some prior knowledge of the nature of the
solution. This prior knowledge is then used, in one way or another, to restore lost
information. We will introduce such techniques in §18.4.

Inhomogeneous Fredholm equations of the second kind are much less often
ill-conditioned. Equation (18.0.4) can be rewritten as

]
f [K(t, 5) — ob(t ~)] f(5) ds = —g(t) (18.0.5)

where 5(t — s) is a Dirac delta function (and where we have changed from) to its
reciprocal o for clarity). If o is large enough in magnitude, then equation (18.0.5)
is, in effect, diagonally dominant and thus well-conditioned. Only if ¢ is small do
we go back to the ill-conditioned case.

Homogeneous Fredholm equations of the second kind are likewise not partic-
ularly ill-posed. If K is a smoothing operator, then it will map many f's to zero,
or near-zero; there will thus be a large number of degenerate or nearly degenerate
eigenvalues around o = 0 (A — o), but this will cause no particular computational
difficulties. In fact, we can now see that the magnitude of ¢ needed to rescue the
inhomogeneous equation (18.0.5) from an ill-conditioned fate is generally much less
than that required for diagonal dominance. Since the o term shifts all eigenvalues,
it is enough that it be large enough to shift a smoothing operator’s forest of near-
zero eigenvalues away from zero, so that the resulting operator becomes invertible
(except, of course, at the discrete eigenvalues).

Volterra equations are a special case of Fredholm equations with K(2,s) = 0
for s > t. Chopping off the unnecessary part of the integration, Volterra equations are
written in a form where the upper ltimit of integration is the independent variable ¢.

54 18. Integral Equations and inverse Theory

The Volterra equation of the first kind

1
g(t) = -/ K(t,s}f(s)ds (18.0.6)
a
has as its analog the matrix equation (now written out in components)
E
SN Kiifi =g (18.0.7)
i=1

Comparing with equation (18.0.2), we see that the Volterra equation corresponds to
a matrix K that is lower (i.c., left) triangular, with zero entries above the diagonai.
As we know from Chapter 2, such matrix equations are trivially soluble by forward
substitution. Techniques for solving Volterra equations are similarly straightforward.
When experimental measurement noise does not dominate, Volterra equations of the
first kind tend not (o be ill-conditioned; the upper limit to the integral introduces a
sharp step that conveniently spoils any smoothing properties of the kernel.
The Volterra equation of the second kind is written

14
1) = [K(t,5)f(s)ds + g(t) (1808)
whose matrix analog is the equation

K-1)-f=g (18.09)

with K lower triangular. The reason there is no A in these equations is that (i) in
the inhomogeneous case (nonzero g) it can be absorbed into &, while (ii) in the
homogeneous case (g = 0), it is a theorem that Volterra equations of the second kind
with bounded kernels have no eigenvalues with square-integrable eigenfunctions.

We have specialized our definitions to the case of linear integral equations.
The integrand in a nontinear version of equation (18.0.1) or (18.0.6) would be
K(t,s, f(s)) instead of K(t,s) J(s); a nonlinear version of equation (18.0.4) or
(18.0.8) would have an integrand K (¢, s, f (t), f(s)). Nonlincar Fredholm equations
are considerably more complicated than their linear counterparts. Fortunately, they
do not occur as frequently in practice and we shall by and large ignore them in this
chapter, By contrast, solving nonlinear Volterra equations usually involves onty a
slight modification of the algorithm for linear equations, as we shall see.

Almost all methods for solving integral equations numerically make use of
quadrature rules, frequently Gaussian quadratures. This would be a good time
for you to go back and review §4.5, especially the advanced material towards the
end of that section.

In the sections that follow, we first discuss Fredhoim equations of the second
kind with smooth kernels (§18.1). Nontrivial quadrature rules come into the
discussion, but we will be dealing with well-conditioned systems of equations. We
then return to Volterra equations (§18.2), and find that simple and straightforward
methods are generally satisfactory for these equations.

In §18.3 we discuss how to proceed in the case of singular kernels, focusing
largely on Fredholm equations (both first and second kinds). Singularities require

18.1 Fredholm Equations of the Second Kind 55

special quadrature rules, but they are also sometimes blessings in disguise, since they
can spoil a kernel’s smoothing and make problems well-conditioned.

In §818.4-18.7 we face up to the issues of inverse problems. §18.4 is an
introduction to this large subject.

We should note here that wavelet transforms, already discussed in §13.10, are
applicable not only to data compression and signal processing, but can also be used
to transform some classes of integral equations into sparse linear problems that allow
fast solution. You may wish to review §13.10 as part of reading this chapter.

Some subjects, such as integro-differential equations, we must simply declare
to be beyond our scope. For a review of methods for integro-differential equations,
see Brunner [4].

It should go without saying that this one short chapter can only barely touch on
a few of the most basic methods involved in this complicated subject.

CITED REFERENCES AND FURTHER READING:

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [1]

Linz, P. 1985, Analytical and Numerical Methods for Voitarra Equations (Philadelphia: S.LAM.).
2]

Atkinson, K.E. 1976, A Survey of Numerical Methods for the Solution of Fredholm Integral
Equations of the Second Kind (Philadelphia: S.1.A.M.). [3]

Brunner, H, 1988, in Numerical Analysis 1987, Pitman Research Notes in Mathematics vol. 170,
D.F. Griffiths and G.A. Watson, eds. (Harlow, Essex, U.K.: Longman Scientific and Tech-

nical), pp. 18-38. [4]
Smithies, F. 1858, Infegral Equations (Cambridge, U.K.. Cambridge University Press).
Kanwal, R.P. 1971, Linear Integral Equations (New York: Academic Press).
Green, C.D. 1969, integral Equation Methods {New York: Bames & Noble).

18.1 Fredholm Equations of the Second Kind
We desire a numerical solution for f(¢) in the equation
b
) = A] K(t,s)f(s)ds + g(t) (18.1.1)

The method we describe, a very basic onge, is called the Nystrom method. It requires
the choice of some approximate quadrature rule:

b N
/ w(s)ds = D wiy(s;) (18.1.2)

hd i=1

Here the set {w;} are the weights of the quadrature rule, while the N points {s; }
are the abscissas.

What quadrature rule should we use? It is certainly possible to solve integral
equations with low-order quadrature rules like the repeated trapezoidal or Simpson’s

56 18. Integral Equations and Inverse Theory

rules. We will see, however, that the solution method involves O(N?) operations,
and so the most efficient methods tend to use high-order quadrature rules to keep
N as small as possible. For smooth, nonsingular problems, nothing beats Gaussian
quadrature (e.g., Gauss-Legendre quadrature, §4.5). (For non-smooth or singular
kerneils, see §18.3.)

Delves and Mohamed [1] investigated methods more complicated than the
Nystrom method. For straightforward Fredholm equations of the second kind, they
concluded “. . . the clear winner of this contest has been the Nystrom routine . . . with
the N -point Gauss-Legendre rale, This routine is extremely simple. . .. Such results
are enough to make a numerical analyst weep.”

If we apply the quadrature rule (18.1.2) to equation {18.1.1), we get

N
F@) =2 wK(t,55)f(s;) + g(2) (18.1.3)

j=1

Evaluate equation (18.1.3) at the quadrature points:

N
FE) =23 wi K (ti,5;)f(s)) + g(ts) (18.1.4)

j=1
Let f; be the vector f(¢;), gi the vector g(t;), K, the matrix K'(t;, 5;}, and define
Kij = Kijw; (18.1.5)
Then in matrix notation equation (18.1.4) becomes
(1-XK) f=g (18.1.6)

This is a set of N linear algebraic equations in N unknowns that can be solved
by standard triangutar decomposition techniques (§2.3) — that is where the O(N?)
operations count comes in. The solution is usually well-conditioned, unless A is
very close 1o an eigenvalue.

Having obtained the solution at the quadrature points {t,}, how do you get the
solution at some other point ¢? You do not simply use polynomial interpolation.
This destroys all the accuracy you have worked so hard to achieve. Nystrom's key
observation was that you should use equation (18.1.3) as an interpolatory formula,
maintaining the accuracy of the solution.

We here give two subroutines for use with linear Fredholm equations of the
second kind. The routine £red?2 sets up equation (18.1.6) and then solves it by LU
decomposition with calls to the routines ludcmp and Lubksb. The Gauss-Legendre
quadrature is implemented by first getting the weights and abscissas with a call to
gauleg. Routine £red2 requires that you provide an external function that returns
¢(t) and another that retums AK;;. It then returns the solution f at the quadrature
points. It also returns the quadrature points and weights, These are used by the
second routine fredin to carry out the Nystrom interpolation of equation (18.1.3)
and return the value of f at any point in the interval [a,).

18.1 Fredholm Equations of the Second Kind 57

SUBRADUTINE fred2(a,a,b,t,f,v,g,ak)

INTEGER n ,EMAX

REAL a,b,f(n),t(n),w(n),g,ak

EXTERNAL ak,g

PARAMETER (EMAX»200)

USES ak, g, gauleg, lubksbh, ludcmp
Solves a linear Fredholm equation of the second kind. On input, a and b are the limits of
integration, and n is the number of points to use in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(t) and AK'(t,s). The routine
returns arrays t(1:n) and £ (1:n) containing the abscissas ¢, of the Gaussian quadrature
and the solution f at these abscissas. Also returned is the array w(1:n) of Gaussian weights
for use with the Nystrom interpolation routine fredin

INTEGER i,j,indx(NMAX)

REAL d,omk (YMAX EMAY)

if(n.gt .NAAX) pause ’increase EMAX in fred2’

call gauleg(a,b,t,w,n) Replace gauleg with another routine if not using
do 1z i"l,n Gauss-Legendre quadrature.
don j=1,n Form 1 - K.
if(i.eq.j)then
omk{i,ji=1.
alse
omk{i,j)=0.
endif
omk(i,{)=omk(i,j)-ak{t(i),t(j))*u(j)
enddo n
(i)=g(t(i))
enddo 12

call ludcmp(omk,n,WMAX,indx,d) Solve linear equations.
call 1ubksb{omk,n, WMAI, indx,?)

return

EFD

FUNCTION fredin(x,n,a,b,t,f,v,g,ak)

INTEGER n

REAL fredin,a,b.x,f(n),t(n),w(n),g,ak

EXTERFAL ak,g

USES ak, g
Given arrays t(1:n) and w(1:n) containing the abscissas and weights of the Gaussian
quadrature, and given the solution array £{1:n) from fred?2, this function returns the
value of f at X using the Nystrom interpolation formula. On input, a and b are the limits
of integration, and n is the number of points used in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(t) and AK(t,s).

INTEGER i

REAL sum

sum=0 .

don i=1i,n
sum=sum+ak(x , t (1)) »ul{i)ef (i)

enddo 1

fredin=g(x)+sum

return

EED

One disadvantage of a method based on Gaussian guadrature is that there is no
simple way to obiain an estimate of the error in the result. The best practical method
is to increase N by 50%, say, and treat the difference between the (wo estimates as a
conservative estimate of the error in the result obtained with the larger value of N.

58 18. Integral Equations and Inverse Theory

Tum now to solutions of the homogeneous eguation. If we set A = 1/¢ and
g = 0, then equation (18.1.6) becomes a standard eigenvalue equation

K-f=of (18.1.7)

which we can solve with any convenient matrix eigenvalue routine (see Chapter
11). Note that if our original problem had a symmetric kernel, then the matrix K
is symmetric. However, since the weights w; are not equal for most quadrature
rules, the matrix K (equation 18.1.5) is not symmetric, The matrix eigenvalue
problem is much easier for symmetric matrices, and so we should restore the
symmetry if possible. Provided the weights are positive (which they are for Gaussian
quadrature), we can define the diagonal matrix D = diag(w;) and its square root,
D'/? = diag(,/w;). Then equation (18.1.7) becomes

K:-D-f=of
Multiplying by DY/?, we get

(Duz K. 91/2) h = oh (18.1.8)

where h = D'/2 .1, Equation (18.1.8) is now in the form of a symmetric eigenvalue
problem.

Solution of equations (18.1.7) or (18.1.8) will in general give N eigenvalues,
where N is the number of quadrature points used. For square-integrable kemels,
these will provide good approximations to the lowest N eigenvalues of the integral
equation. Kernels of finite rank (also called degenerate or separable kernels) have
only a finite number of nonzero eigenvalues (possibly none). You can diagnose
this situation by a cluster of eigenvalues ¢ that are zero to machine precision. The
number of nonzero eigenvalues will stay constant as you increase N to improve
their accuracy. Some care is required here: A nondegenerate kemnel can have an
infinite number of eigenvalues that have an accumulation point at ¢ = 0. You
distinguish the two cases by the behavior of the solution as you increase N. If you
suspect a degenerate kernel, you will usually be able to solve the problem by analytic
techniques described in al} the textbooks.

CITED REFERENCES AND FURTHER READING:

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [1}

Atkinson, K.E. 1978, A Survey of Numerical Methods for the Solution of Frecholm Integral
Equations of the Second Kind (Philadeiphia: S.1.AM.).

18.2 Volterra Equations 59

18.2 Volterra Equations

Let us now turm to Volterra equations, of which our prototype is the Volterra
equation of the second kind,

f(t):/ K{t,s)f(s)ds + g(t) (18.2.1)

Most algorithms for Volterra equations march out from ¢ = a, building up the solution
as they go. In this sense they resemble not only forward substitution (as discussed
in §18.0), but also initial-value problems for ordinary differential equations. In fact,
many algorithms for ODEs have counterparts for Volterra equations.

The simplest way to proceed is to solve the equation on a mesh with uniform
spacing:
b—a

N

To do so, we must choose a quadrature rule. For a uniform mesh, the simplest
scheme is the trapezoidal rule, equation (4.1.1 1):

ti=a+th, i=0,1,.. N, h

]

(18.2.2)

/‘i K(t,', 8)f(8) ds =h (%I{,‘ofu + ‘i: [\','J'fj + %ff;‘,‘f.‘) (18.2.3)
@ i=1

Thus the trapezoidal method for equation (18.2.1) is:

fo=go

i—1 (18.2.4)
(1-3hKi)fi=h{1 .'ofo+ZK.‘jfj)+9h i=1..,N

i=1

(For a Volterra equation of the first kind, the leading 1 on the left would be absent,
and g would have opposite sign, with corresponding straightforward changes in the
rest of the discussion.)

Equation (18.2.4) is an explicit prescription that gives the solution in Q(N'2)
operations. Unlike Fredholm equations, it is not necessary to solve a system of linear
equations. Volterra equations thus usually involve less work than the corresponding
Fredholm equations which, as we have seen, do involve the inversion of, sometimes
large, linear systems.

The efficiency of solving Volterra equations is somewhat counterbalanced by
the fact that systems of these equations occur more frequently in practice. If we
interpret equation (18.2.1) as a vector equation for the vector of m functions f(t),
then the kernel K (¢, s) is an m x m matrix. Equation (18.2.4) must now also be
understood as a vector equation. For each i, we have 10 solve the m x m set of
linear algebraic equations by Gaussian elimination.

The routine voltra below implements this algorithm. You must supply an
external function that returns the kth function of the vector g(f) at the point ¢, and
another that returns the (&, !) element of the matrix K(¢, s) at (t,s). The routine
voltra then returns the vector f(t) at the regularly spaced points ¢;.

60 18. Integral Equations and Inverse Theory

SUBROUTINE volttl(n,l,to,h,t,!,g.lk)

INTEGER m,n,KMAX

REAL h,t0,f(m,n),t(n),g.ak

EITERNAL ak,g

PARAMETER (MMAX=5)

USES ak, g, lubksb, ludcmp
Solves a set of m linear Volterra equations of the second kind using the extended trapezoidal
rule. On input, t0 is the starting point of the integration and n-1 is the number of steps
of size h to be taken. g(k,t) is a user-supplied external function that returns 9k (t), while
ak(k,1,t,a) is another user-supplied external function that returns the (k. [} element
of the matrix K(¢,5). The solution is returned in £f(1:m,1:n), with the corresponding
abscissas in t{1:n).

INTEGER i,j.k,1, indx(MMAX)

REAL d,eum,a(MMAX,MNAX) ,b(MMAI)

t(1)=to
don k=1,m Initialize.
0k, 1) =g (k,t(1))
enddo n
dots i=2,n Take a step h.
t{i)=t(i-1)+h
do k=1, m
sum=g(k,t (1)) Accumulate right-hand side of linear equations in
don 1=1 . m aum.
sum=gum+0. Seheak(k,1,t(i),t(1))+£(1,1)
doz j=»2,i-1
sum=sum+heak(k,1,t(i),t(j))ef(1,§)
anddo 12
if(k.eq.1)then Left-hand side goes in matrix a.
alk, 1)=1,
eolae
a(k,1)=0.
endif
alk,1)=a(k,1)-0. Sehsak(k,1,t(i), t(i))
enddo 13
b(k)=sum
enddo 4
call ludcmp(a,m, MMAX,indx,d) Solve linear equations.
call lubksb(a,m,MMAI,indx,b)
do s k=1 ,m
£(k,1i)=b(k)
enddo 15
enddo 16
return
END

For nonlinear Volterra equations, equation (18.2.4) holds with the product K; f;
replaced by K;(f;), and similarly for the other two products of K's and F’s. Thus
for each i we solve a nonlinear equation for f; with a known right-hand side.
Newton’s method (§9.4 or §9.6) with an initial guess of fi-1 usuvally works very
well provided the stepsize is not too big.

Higher-order methods for solving Volterra eguations are, in our opinion, not as
important as for Fredholm equations, since Volterra equations are relatively easy to
solve. However, there is an extensive literature on the subject. Several difficulties
arise. First, any method that achieves higher order by operating on several quadrature
poinis simultaneously wiil need a special method to get started, when values at the
first few points are not yet known.

Second, stable quadrature rules can give rise to unexpected instabilities in
integral equations. For example, suppose we try to repiace the trapezoidal rule in

18.3 integral Equations with Singular Kernels 61

the algorithm above with Simpson’s rule. Simpson’s rule naturally integrates over
an interval 2A, so we easily get the function values at the even mesh points. For the
odd mesh points, we could try appending one panel of trapezoidal rule. But to which
end of the integration should we append it? We could do one step of rapezoidal rule
followed by all Simpson’s rule, or Simpson’s rule with one step of trapezoidal rule
at the end. Surprisingly, the former scheme is unstable, while the latter is fine!

A simple approach that can be used with the trapezoidal method given above
is Richardson extrapolation: Compute the solution with stepsize A and A/2. Then,
assuming the error scales with A%, compute

fe= 4_&’!&%_-_1‘(_@ (18.2.5)

This procedure can be repeated as with Romberg integration.

The general consensus is that the best of the higher order methods is the
block-by-block method (sec (1]). Another important topic is the use of variable
stepsize methods, which are much more efficient if there are sharp features in K or
f. Variable stepsize methods are quite a bit more complicated than their counterparts
for differential equations; we refer you to the literature [1.2] for a discussion.

You should also be on the lookout for singularities in the integrand. If you find
them, then look to §18.3 for additional ideas.

CITED REFERENCES AND FURTHER READING:

Linz, P. 1985, Analytical and Numerical Methods for Volterra Equations (Philadelphia: S.].AM.).
(1

Deives, L.M., and Mohamed, J.L. 1985, Computational Methods for integral Equations (Cam-
bridge, U.K.: Cambridge University Press). |2]

18.3 Integral Equations with Singular Kernels

Many integral equations have singularities in either the kernel or the solution or both,
A simple quadrature method will show poor convergence with N if such singularities are
ignored. There is sometimes art in how singularities are best handled.

We start with a few straightforward suggestions:

1. Integrable singularities can often be removed by achange of variable. For example, the
singular behavior K(¢,3) ~ s'/? or s™!/2 near s = 0 can be removed by the transformation
z = s'/2. Note that we are assuming that the singular behavior is confined to K, whereas
the quadrature actually involves the product K (¢, s)f(s), and it is this product that must be
“fixed.” Ideally, you must deduce the singular nature of the product before you try a numerical
solution, and take the appropriate action. Commonly, however, a singular kernel does not
produce a singular solution f(t). (The highly singular kernel K (¢, s) = §{t — s) is simply
the identity operator, for exampie.) . _

2. If K(¢,3) can be factored as w(s)K(t, s), where w(s) is singular and K(1,s) is
smooth, then a Gaussian quadrature based on w(s) as a weight function will work well. Even
if the factorization is only approximate, the convergence is often improved dramatically. All
you have to do is replace gauleg in the routine fred2 by another quadrature routine. Section
4.5 explained how o construct such quadratures; or you can find tabulated abscissas and
weights in the standard references [1.2]. You must of course supply & instead of &'

62 18. Integral Equations and Inverse Theory

This method is a special case of the product Nystrom method [3.4], where one factors oat
a singular term p(¢, s) depending on both ¢ and s from A and constructs suitable weights for
its Gaussian quadrature. The calculations in the general case are quite cumbersome, because
the weights depend on the chosen {t:} as well as the form of pf1, 3).

We prefer to implement the product Nystrom method on a uniform grid, with a quadrature
scheme that generalizes the extended Simpson’s 3/8 rule (equation 4.1.5) 1o arbitrary weight
functions. We discuss this in the subsections below.

3. Special quadrature formulas are also useful when the kemel is not strictly singular,
but is “‘almost” s0. One example is when the kernel is concentrated near t = s on a scale much
smaller than the scale on which the solution J(t) varies. In that case, a quadratre formula
can be based on locally approximating f(s) by a polynomial or spline, while calculating the
first few moments of the kernel K (1,5} at the tabulation points #,. In such a scheme the
narrow width of the kemel becomes an asset, rather than a liability: The quadrature becomes
exact as the width of the kemnel goes to zero.

4. An infinite range of integration is also a form of singularity, Truncating the range at
a large finite value should be used only as a last resort. If the kernel goes rapidly to zero, then
a Gauss-Laguerre [w ~ exp(—as}] or Gauss-Hermite [w ~ exp(—s?)] quadrature should
work well. Long-tailed functions ofien succumb 1o the transformation

20

bl # §
z41
whichmaps 0 < s < 00101 > z > —1 50 that Gauss-Legendre integration can be used.
Here o > 0 is a constant that you adjust to improve the convergence.

5. A common situation in practice is that K (t, 3) is singular along the diagonal line
t = s. Here the Nystrom method fails completely because the kernel gets evaluated at {ti,9:).
Subtraction of the singularity is one possible cure:

8=

(183.1)

b b &
fK(t,s)f(a)ds:f K(t,a)[f(s)-—f(t)]ds+/ K(t,s)f{t) ds
a s a (1832)

b
= [K - Fds + riny e

where r(t) = f: K (t,3)ds is computed analyticaily or numerically. If the first term on

the right-hand side is now regular, we can use the Nystrom method. Instead of equation
(18.1.4), we get

N
F=AY wK,lfi - fil+nfi+ (18.3.3)
=1
i
Sometimes the subtraction process must be repealed before the kernel is completely regularized.
See [3] for details. {And read on for a different, we think better, way to handle diagonal
singularities.)

Quadrature on a Uniform Mesh with Arbitrary Weight

It is possible in general 1o find n-point linear quadrature rules that approximate the
integral of a function f (z), tmes an arbitrary weight function w(), over an arbitrary range
of integration (a, b), as the sum of weights times n evenly spaced values of the function f(z),
sayatz = kk, (k+1)&,...,(k4+n—1)h. The general scheme for deriving such quadrature
tules is to write down the n Linear equations that must be satisfied if the quadrature rule is
to be exact for the n functions J(z) = const, £, 22, . .. ,z"~!, and then solve these for the
coefficients. This can be dofe analytically, once and for all, if the moments of the weight
function over the same range of integration,

b
W, = hi"'/- " w(z)dr (18.3.4)

18.3 Integral Equations with Singular Kernels 63

are assumed to be known. Here the prefacior ™" is chosen to make W,, scale as b if (as
in the usual case) b — a is proportional to h.
Carrying out this prescription for the four-point case gives the result

/ we)f @)z =
éf(kh)[(k + 1)(k+ 2)(k + 3)Wo — (3K7 + 12k + 1) W, + 3(k + 2)W; — wa]
+ %f{[k-i- l]h)[-— k(k + 2)(k+ 3)Wo + (3K% + 10k + s)w‘- — (3k+ 5)W, + w;,]
+ -;—_f([k + 2]h)[k(k + 1)(k + 3)Wo — (342 + 8Bk + 3)W, + (3k + 4)W; — Wa]

+ %f([k + 3]h)[— k(k + 1)(k+2)Wo + (3&% + 6k +)W, — 3(k + L)W, + Wa]
(18.3.5)
While the terms in brackets superficially appear to scale as &7, there is typically cancellation
at both O(k%) and O(k).

Equation (18.3.5) can be specialized to various choices of (a,). The obvious choice
is a = kh, b = (k + 3)A, in which case we get a four-point quadrature rule that generalizes
Simpson’s 3/8 rule (equation 4.1.5). In fact, we can recover this special case by setting
wiz} = 1, in which case (18.3.4) becomes

h
W, = n+1 [(k + 3)u+l - Ik“ﬂ-l] (18'3'6)

The four terms in square brackets equation (18.3.5) each become independent of k, and
(18.3.5) in fact reduces to

(k+3)h
[s = Raan+ e um+ 5 sk ram + 2 s +aim) (183)
Back to the case of general w(z), some other choices for a and b are also useful. For
example, we may want to choose (a,) 1o be ([k + 1}h, [k + 3]k} or ([k + 2]k, [k + 3]R),
allowing us to finish off an extended rule whose number of intervals is not a multiple
of three, without loss of accuracy: The integral will be estimated using the four values
F(kh), ..., f({k + 3]h). Even more useful is 10 choose (a, b) to be ([k + 1A, [k + 2]A), thus
using four points to integrate a centered single interval. These weights, when sewed together
into an extended formulg, give quadrawre schemes that have smooth coefficients, i.e., without
the Simpson-like 2, 4, 2, 4, 2 alternation. (In fact, this was the technique that we used to derive
equation 4.1.14, which you may now wish o reexamine.)
All these rules are of the same order as the extended Simpson's rule, that is, exact
for f(z) a cubic polynomial. Rules of lower order, if desired, are similarly obtained. The
three point formula is

/bw(:l:)f(z)dz = %f(kh) [(k + Dik +2)Wo — (2k + 3)W, + Wg]

+ f(lk + l]h)[- k(k + 2)Wo + 2(k + 1)) — W,] (18.38)
1
+ E'f({k + 2]h)[k(k + 1)Wo — (25 + 1)W, + Wz]
Here the simple special case is to take, w(z) = 1, so that
W = —2_[(k42)"1 _ k) (18.3.9)
n-+1
Then equation (18.3.8) becomes Simpson’s rule,

(k+D)h h 4h h
fk f(a)dz = = f(kh) + — f(Ik + 1k} + 2 ([+2]h) (183.10)

h

64 18. Integral Equations and Inverse Theory

For nonconstant weight functions w(z), however, equation (18.3.8) gives rules of one order
less than Simpson, since they do not benefit from the extra symmetry of the constant case.
The two point formula is simply

(k+1)A
f wiz)f(z)de = f(kR)(k+ 1)Wo — W]+ f{[k+ 1]R)[—kW, + W] (18.3.11)
kh

Here is a routine wwghts that uses the above formulas o return an exiended N-point
quadrature rule for the interval (a, $) = (0,[¥ — i]k). Inpul to wughts is a user-supplied
routine, kermom, that is called 1o get the first four indefinite-integral moments of w(zx), namely

v
Fniy) = j s wis)ds m=0,1,2,3 (18.3.12)

(The lower limit is arbitrary and can be chosen for convenience.) Cautionary note: When
cailed with N < 4, wughta returns a rule of lower order than Simpson; you should structure
your problem to avoid this.

SUBROUTINE wughts{vghts,n,h,kermom)

INTEGER n

REAL wghts(n),h

EITERIAL kermom

USES kermom
Constructs in wghts(1:n) weights for the n-point equai-interval quadrature from 0 to
{n—1)h of a function f(x) times an arbitrary (possibly singular) weight function w(r) whose
indefinite-integral moments F,,(y) are provided by the user-supplied subroutine kermon

ISTEGER j,k

DOUBLE PRECISION wold(4) ,wnew(4),u(4) ,hh hi,c,fac,a,b

hh=h Double precision on internal calculations even though
hi=1.d0/hh the interface is in single precision.
don j=i,n Zero all the weights so we can sum into them.
wghts(j)=0.
enddo n
call kermom{wold,0.d0,4) Evaluate indefinite integrals at lower end.
if (n.ge.4) then Use highest available order.
b=0.d0 For another problem, you might change this lower
do i j=1,n-3 limit.
cmi-1 This is called k in equation (18.3.5).
anb Set upper and lower limits for this step.
b=a+hh

if (j.eq.n-3) b=(n-1)shk Last interval: go all the way tc end.
call kermom{wnew,b,4)

fac®=1.d40

doiz k=1,4 Equation (18.3.4).
wik)=(wnew(k)-wold(k))sfac
facwfacehi

enddo iz

ughts (j)=wghts(j)+ Equation {18.3.5).

((c+1.d0)#(c+2.40)+(c+3.d0)*u (1)
=(11.d0+c*{12.d0+c+3.d0)) *w(2)
+3.d0%(c+2.40) +w(3)-w(4))/6.40
wghta(j+1)=ughts(j+1)+
(~c*(c+2.40)+(c+3.4d0)su(1)
+(6.d0+c* (10.d0+ce3.d0)) »u(2)
=(3.d0%c+5.d0) *u(3)+w(4))= 540
wghta(j+2)=wghta(j+2)+
(ce(cet.dO)e(c+3.d0)eu (1)
={3.d0+ce (8.40+c+3.40)) *u(2)
+(3.d0%c+4.d0) eu{3)-uw(4)) s 540
ughts(j+3)=wghts(j+3)+
(-co(c+1.d0) ¢ (c+2.d0)*w(1)
+(2.d0+c*(6.d0+c*3_d0)) »u(2)
~3.d0=(c+1.40)+w(3)+u(4))/6.40
dos k=1 4 Reset fower limits for moments.

18.3 Integral Equations with Singular Kernels 65

wold(X)=wnew (k)
enddo 11
anddo 14
else if (n.eq.3) then Lower-order cases; not recommended.
call kermom{wnew hh+hh,3)
w(1)=wnew(1)-wold(1)
w(2)=hi¢(wnew(2)~wold(2)})
w(3)=hivs2e(wnew(3)-vold(3))
wghts(1)=w(1)-1.5d0%w(2)+0.5d0+w(3)
wghts(2)=2 doew(2)-w(3)
wghts (3)=0. 5d0*(w(3)-v(2))
else if (n.eq.2) then
call kermom(wnew,hh,32)
wghte(2)mhis(wnew(2)-vold(2))
ughts(1)=wnew(1)-wold(1)-vghts(2)
endif
END

We will now give an example of how to apply wughts to 2 singular integral equation.

Worked Example: A Diagonally Singular Kernel
As a particular example, consider the integral equation
s+ [" K(z,u)f(y)dy = sin 1 (183.13)
with the (arbitrarily chosen) nasty kernel

K(z,y) =coszcosy x {l\’}%ﬂ z; z {18.3.14)
which has a logarithmic singularity on the left of the diagonal, combined with a square-root
discontinuity on the right.

The first step is to do (analytically, in this case) the required moment integrals over
the singular part of the kernel, equation (18.3.12). Since these integrals are done at a fixed
valoe of z, we can use £ as the lower limit. For any specified value of y, the required
indefinite integral is then either

v y—x
Fm(y; 2) =f (s —) ?ds =/ (z+0™'2dt ify>xr (183.15)
=z o

¥ r—y
Faly;z) = j 3" In(z — s)ds = j (z—)"Intde ify<z (18.3.16)
z 0

(where a change of variable has been made in the second equality in each case). Doing these
integrals analytically (actually, we used a symbolic integration package!), we package the
resuling formulas in the following routine. Note that w(j + 1) returns Fy(y;).

SUBROUTINE kermom(w,y,m)
Returns in w(1:m) the first m indefinite-integral moments of one row of the singular part
of the kernel. (For this example, m is hard-wired to be 4.) The input variable y labels the
column, while x (in COMMOR) is the row.
INTEGER m
DOUBLE PRECISIOR wi(m),y,x,d,df,clog,x2,x3,x4
COMNDE /momcom/ x
We can take x as the lower limit of integration. Thus, we return the moment integrals either
purely to the left or purely to the right of the diagonal.
if (y.ge.x)} then
d=y-x
df=2 .d0ssqrt{d)sd
w(1)=42/3.d0

66 18. Integral Equations and Inverse Theory

w(2)=d2e(x/3.d0+d/5.40)
w(3)=dr*((x/3.40 + 0.440%d)ex + de+*2/7.d0)
w(4)=dfe(({x/3.40 + 0.6d0%d)ax + 3,d0%d++2/7.30)sx
+ de+3/9.40)
else
x2=x*e2
x3=x2*x
x4=x2ex2
d=x-y
clog=lag{d)
w(1)=ds(clog-1.40)
w(2)»-0.25d0%(3.d0sx+y~2.d0%clogs (x+y))ed
w(3)=(-11_dOsx3+ys(6.d0sx2+y¢(3.d0sx+2.d0vy))
+6.30%clog*(x3-yes3))/18.40
w(4)=(-26.d0ex4+y* (12.40sx3+y+ (6, d0x2+y s
(4.d0*x+3.d40+y)))+12.d0eclog*(xd-ys44))/48.d0
andif
return
END

Next, we wrile a routine that constructs the quadrature matrix.

SUBROUTINE quadmx{a,n,np)
INTEGER n,np,NNAX
REAL a(np,np),PI
DOUBLE PRECISION xx
PARAMETER (PI=3.14159265,WMAI=257)
COMMON /momcom/ xx
EXITERNAL karmom
USES wwghts, kermom
Constructsin a(1:n,1:n) the quadrature matrix for an example Fredholm equation of the
second kind. The nonsingular part of the kernel is computed within this routine, while the
quadrature weights which integrate the singular part of the kernel are obtained via calls
to wughts. An external routine karmom, which supplies indefinite-integral moments of the
singular part of the kernel, is passed to wwghts.
INTEGER j.k
REAL h, wt(NMAX),x,cx,y
h=PI/(n-1)
donz j=1.,n
x={j~1)*h
xxmyx Put x in COMMOR for use by kermom.
call weghts(wt,n,h, kermom)
cxscos(x) Part of nonsingular kernel.
dou kal,n
y=(k-1)sh
a(j, k}=vt(k)ecxscos(y) Put together all the pieces of the kernel.
enddo i
a(j,jr=alj,ji+1. Since equation of the second kind, there is diagonal
enddo 12 piece independent of A.
return
EXD

Finally, we solve the linear system for any particular right-hand side, here sin «.

PROGRAM fredex

INTEGER EMAIX

REAL PI

PARAMETER (WMAX=100,PIx=3.14159265)
INTEGER indx(NMAX),j,n

REAL a(FMAI,NMAX),g(WMAI) ,x,d
USES quadmx, ludcmp, lubksb

18.3 Integral Equations with Singular Kerneis 67

lIII'illl]il'llI]l[ll"l]]]lllll

_5 jllIlllllllllll]llllIllllll]_ll

“o 5 1 1.5 2 2.5 3

X

Figure 18.3.1. Solution of the example integral equation (18.3.14) with grid sizes N = 10, 20, and
40. The tabulated solution values have been connected by straight lines; in practice one would interpolaie
a smalt N solution more smoothly.

This sample program shows how to solve a Fredholm equation of the second kind using
the product Nystrom method and a quadrature rule especially constructed for a particular,
singular, kernel,

n=40 Here the size of the grid is specified.

call quadmx(a,n, NAX) Make the quadrature matrix; all the action is here.

call ludcmp(a,n,NMAX,indx,d) Decompose the matrix.

dou j=i,m Construct the right hand side, here sinz.
x=(j-1)*P1/(n-1)
g(j)=sin(x)

enddo n

call lubksb(a,n,NMiI,indx,g) Backsubstitute,

doiz j=1,n Write out the solution.

x=(j-1)+P1/(n-1)

write (#,¢) j,x,g{j)
enddo 12
write (*,%) ‘normal completion’
END

With N = 40, this program gives accuracy at about the 10~5 level. The accuracy
increases as N* (as it should for our Simpson-order quadrature scheme) despite the highly
singular kernel. Figure 18.3.1 shows the solution obtained, also plotting the solation for
smaller values of N, which are themselves seen to be remarkably faithful. Notice that the
solution is smooth, even though the kemel is singular, a common occurrence.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, LA. 1964, Handbook of Mathematical Functions, Applied Math-
ematics Series, vol. 55 (Washington: National Bureau of Standards: reprinted 1968 by
Dover Publications, New York). [1]

Stroud, AH., and Secrost, D. 1966, Gaussian Quacrature Formulas {Englewood Cliffs, NJ;
Prentice-Hall). [2]

Delves, LM., and Mohamed, J.L 1985, Computational Methods for Integral Equations {Cam-
bricdge, U.K.: Cambridge University Press). [3]

Atkinson, K.E. 1976, A Survey of Numerical Methods for the Solution of Fredhoim integral
Equations of the Second Kind (Philadelphia: SJ.AM.). [4]

68 18. Integral Equations and Inverse Theory

18.4 Inverse Problems and the Use of A
Priori Information

Later discussion will be facilitated by some preliminary mention of a couple
of mathematical points. Suppose that u is an “unknown” vector that we plan to
determine by some minimization principle. Let Afu] > 0 and Blu} > 0 be two
positive functionals of u, so that we can try to determine u by either

minimize: Afu] or minimize: B[u] (184.1)

(Of course these will generally give different answers for u.) As another possibility,
now suppose that we want to minimize .4 [u] subject to the constraint that B[u] have
some particular value, say 4. The method of Lagrange multipliers gives the variation

S Al + 2 (Bla] ~ 8)) = 2 (Au] + 0 Bfu]) = 0 (1842)

where A, is a Lagrange multiplier. Notice that is absent in the second equality,
since it doesn’t depend on u.

Next, suppose that we change our minds and decide to minimize B[u] subject
to the constraint that A[u] have a particular value, a. Instead of equation (18.4.2)
we have

% {Blu] + A2(Alu] — a)} = 3‘% (Blu] + AaAlu]) = 0 (18.43)

with, this time, A, the Lagrange multiplier. Multiplying equation (18.4.3) by the
constant 1/, and identifying 1/A, with A;, we see that the actual variations are
exactly the same in the two cases. Both cases will yield the same one-parameter
family of solutions, say, u(A;). As A; varies from 0 to oo, the solution u{\,)
varies along a so-called trade-off curve between the problem of minimizing A and
the problem of minimizing B. Any solution along this curve can equally well
be thought of as either (i) a minimization of A4 for some constrained value of B,
or (ii) a minimization of B for some constrained value of A, or (iii) a weighted
minimization of the sum 4 + A B.

The second preliminary point has to do with degenerate minimization principies.
In the example above, now suppose that .A[u] has the particular form

Auj=|A - u—c)? (18.4.4)

for some matrix A and vector c. If A has fewer rows than columns, or if A is square
but degenerate (has a nontrivial nullspace, see §2.6, especiaily Figure 2.6.1), then
minimizing .A[u] will not give a unique solution for u. (To see why, review §15.4,
and note that for a “design matrix” A with fewer rows than columns, the matrix
AT . A in the normal equations 15.4.10 is degenerate.) However, if we add any
multiple A times a nondegenerate quadratic form B{u), for example u - H - u with H
a positive definite matrix, then minimization of .A[u] + AB[u] will lead to a unique
solution for u. (The sum of two quadratic forms is itself a quadratic form, with the
second piece guaranteeing nondegeneracy.)

18.4 Inverse Problems and the Use of A Priori Information 69

We can combine these two points, for this conclusion: When a quadratic
minimization principle is combined with a quadratic constraint, and both are
positive, only one of the two need be nondegenerate for the overall problem 1o be
well-posed. We are now equipped to face the subject of inverse probiems.

The Inverse Problem with Zeroth-Order Regularization

Suppose that u(x) is some unknown or underlying (u stands for both unknown
and underlying!) physical process, which we hope to determine by a set of N
measurements c;, 1 = 1,2,..., N. The relation between u(z) and the ¢;’s is that
each c; measures a (hopefully distinct) aspect of u(z) through its own linear response
kernel r;, and with its own measurement error »;. In other words,

Ci=si+n = /r;(z)u(r)d.r + % (18.4.5)

(compare this to equations 13.3.1 and 13.3.2). Within the assumption of linearity,
this is quite a general formulation. The ¢;’s might approximate values of u(z) at
certain locations z;, in which case r;(z) would have the form of a more or less
narrow instrumental response centered around z = ;. Or, the ¢;’s might “live” in an
entirely different function space from u(z), measuring different Fourier components
of u(z) for example,

The inverse problem is, given the c, s, the r;(z)’s, and perhaps some information
about the errors n; such as their covariance matrix

S,'J' = Covar[ni, nj] (18.4.6)

how do we find a good statistical estimator of u(z), call it a(z)?

It shouid be obvious that this is an ill-posed problem. After all, how can we
reconstruct a whole function (z) from only a finite number of discrete values ¢;?
Yet, whether formally or informally, we do this all the time in science. We routinely
measure “enough points” and then “draw a curve through them.” In doing so, we
are making some assumptions, either about the underlying function u(z), or about
the nature of the response functions r;(z), or both. Qur purpose now is to formalize
these assumptions, and (o extend our abilitics to cases where the measurements and
underlying function live in quite different function spaces. (How do you “draw a
curve” through a scattering of Fourier coefficients?)

We can’t really want every point z of the function #(z). We do want some
large number M of discrete points z,, 4 = 1,2,..., M, where M is sufficiently
large, and the z,,’s are sufficiently evenly spaced, that neither u(z) nor r;(z) varies
much between any z,, and z,,4,. (Here and following we will use Greek letters like
to denote values in the space of the underlying process, and Roman letters like i
to denote values of immediate observables.) For such a dense set of r,’s, we can
replace equation (18.4.5) by a quadrature like

6 = Z Ripu(z,) + n; (18.4.7)
"

where the N x M matrix R has components

Rip S ri(eulzus1 — 24-1)/2 (18.4.8)

70 18. Integral Equations and Inverse Theory

(or any other simple quadrature — it rarely matters which). We will view equations
(18.4.5) and (18.4.7) as being equivalent for practical purposes.

How do you solve a set of equations like equation (18.4.7) for the unknown
u(z,)'s? Here is a bad way, but one that contains the germ of some correct ideas:
Form a x* measure of how well a model () agrees with the measured data,

Af
= Z E [c, Z R,uu(z,‘)J [CJ‘ — E R,-,ﬁ(z,,)]
i=1 j=1 p=1 p=1

M e - sz Riyti(z,)
2[=

=1

(18.4.9)

2

-

(compare with equation 15.1.5). Here S~ is the inverse of the covariance matrix,
and the approxxmate equality holds if you can neglect the off-diagonal covariances,
with o; = (Covarli, i])*/2.

Now you can use the method of singular value decomposition (SVD) in §15.4
to find the vector # that minimizes equation (18.4.9). Don't try to use the method
of normal equations; since M is greater than N they will be singular, as we already
discussed. The SVD process will thus surely find a large number of zero singular
values, indicative of a highly non-unique solution. Among the infinity of degenerate
solutions (most of them badly behaved with arbitrarily large @(z,)'s) SVD will
select the one with smallest [u] in the sense of

Z[ﬁ(a:,,)]"' a minimum (18.4.10)

B

(look at Figure 2.6.1). This solution is often called the principal solution. It
is a limiting case of what is called zeroth-order regularization, corresponding to
minimizing the sum of the two positive functionals

minimize: x2[4] + A(4 - 0) (18.4.11)

in the limit of small A. Below, we will learn how to do such minimizations, as well
as more general ones, without the ad hoce use of SVD.

What happens if we determine U by equation (18.4.11) with a non-infinitesimal
value of A? First, note that if M >» N (many more unknowns than equations), then
u will often have enough freedom to be able to make x* (equation 18.4.9) quite
unrealistically small, if not zero. In the language of §15.1, the number of degrees of
freedom v = N — M, which is approximately the expected value of x> when v is
large, is being driven down to zero (and, not meaningfully, beyond). Yet, we know
that for the frue undertying function u(z), which has no adjustable parameters, the
number of degrees of freedom and the expected value of should be about v = N,

Increasmg A pulls the solution away from minimizing y? in favor of mmumzmg
u - u. From the preliminary discussion above, we can view this as minimizing u - &
subject to the constraint that x? have some constant nonzero value. A popular
choice, in fact, is to find that value of A which yields v> = N, that is, to get about as
much extra regularization as a plausible value of y? dictates, The resulting @(z) is
called the solution of the inverse problem with zeroth-order regularization.

18.4 Inverse Problems and the Use of A Priori Information 71

best smoothness
(independent of agreement)

+—— Better Agreement 4

%, A best agreement
%, (independent of smoothness)

4—— Better Smoothness 8

Figure 18.4.1. Almont all inverse problem methods involve & trade-off between two optimizations:
agreement between data and solution, or “sharpness” of mapping between true and estimated solution (here
denoted A), and smoothness or stability of the solution (here denoted B). Among all possible solutions,
shown here schematically as the shaded region, those on the boundary connecting the unconstrained
minimum of A and the unconstrained minimum of B are the “best” solutions, in the sense that every
other solution is dominated by at least one solution on the curve.

The value N is actually a surrogate for any value drawn from a Gaussian
distribution with mean N and standard deviation (2V)!/2 (the asymptotic x2
distribution). One might equally plausibly try two values of A, one giving y? =
N + (2N)/2, the other N — (2N)'/2,

Zeroth-order regularization, though dominated by better methods, demonstrates
most of the basic ideas that are used in inverse problem theory. In general, there are
two positive functionals, call them A and B. The first, A, measures something like
the agreement of a model to the data (e.g.. x?), or sometimes a related quantity like
the “sharpness” of the mapping between the solution and the underlying function.
When A by itself is minimized, the agreement or sharpness becomes very good
(often impossibly good), but the solution becomes unstable, wildly oscillating, or in
other ways unrealistic, reflecting that 4 alone typically defines a highly degenerate
minimization problem.

That is where B comes in. It measures something like the “smoothness” of the
desired solution, or sometimes a related quantity that parametrizes the stability of
the solution with respect to variations in the data, or sometimes a quantity reflecting
a priori judgments about the likelihood of a solution. B is called the stabilizing
functional ot regularizing operator. In any case, minimizing B by itself is supposed
to give a solution that is “smooth” or “stable” or “likely” — and that has nothing
at all to do with the measured data.

72 18. Integral Equations and Inverse Theory

The single central idea in inverse theory is the prescription

minimize: A+ AB (18.4.12)

for various values of 0 < A < oo along the so-called trade-off curve (see Figure
18.4.1), and then to settle on a “best” value of A by one or another criterion, ranging
from fairly objective (e.g., making x> = N) to entirely subjective. Successful
methods, several of which we will now describe, differ as to their choices of A and
B, as to whether the prescription (18.4.12) yields linear or nonlinear equations, as
10 their recommended method for selecting a final A, and as to their practicality for
computer-intensive two-dimensional problems like image processing.

They also differ as to the philosophical baggage that they (or rather, their
proponents) carry. We have thus far avoided the word “Bayesian.” (Courts have
consistently held that academic license does not extend to shouting “Bayesian” in a
crowded lecture hall.) But it is hard, nor have we any wish, to disguise the fact that
B has something to do with a priori expectation, or knowledge, of a solution, while
A has something to do with a posteriori knowledge. The constant A adjudicates a
delicate comprormise between the two. Some inverse methods have acquired a more
Bayesian stamp than others, but we think that this is purely an accident of history.
An outsider looking only at the equations that are actually solved, and not at the
accompanying philosophical justifications, would have a difficult time separating the
so-called Bayesian methods from the so-called empirical ones, we think.

The next three sections discuss three different approaches to the problem of
inversion, which have had considerable success in different fields. All three fit
within the general framework that we have outlined, but they are quite different in
detail and in implementation.

CITED REFERENCES AND FURTHER READING:

Craig, |.J.D., and Brown, J.C. 1986, Inverse Problems in Astronomy (Bristol, U.K.: Adam Hilger).

Twomey, S. 1977, Introduction fo the Mathematics of Inversion in Remote Sensing and Indirect
Measurements (Amsterdam: Elsevier).

Tikhonov, A.N., and Arsenin, VY. 1977, Solutions of Hi-Posad Problems (New York: Wiley).

Tikhonov, A.N., and Goncharsky, A.V. (eds.) 1987, ii-Posed Problams in the Natural Sciences
{Moscow: MIR).

Parker, R.L. 1977, Annual Review of Earth and Planetary Science, vol. 5, pp. 35-64.

Friedon, B.R. 1975, in Pictura Processing and Digital Fittering, T.S. Huang, ed. (New York:
Springer-Verlag).

Tarantola, A. 1987, Inverse Problem Theory (Amsterdam: Elsevier).

Baumneister, J. 1987, Stable Solution of Invarse Problems {Braunschweig, Germany: Friadr. Vieweg
& Sohn) [mathematically oriented].

Titterington, D.M. 1985, Astronomy and Astrophysics, vol. 144, pp. 381-387.

Jofirey, W., and Rosner, R. 1986, Astrophysical Journal, vol. 310, pp. 463-472.

18.5 Linear Regularization Methods

What we will call linear regularization is also called the Phillips-Twomey
method 1.2}, the constrained linear inversion method (3), the method of regulariza-
tion (4}, and Tikhonov-Miller regularization{5-7\. (It probably has other names also,

18.5 Linear Regularization Methods 73

since it is so obviously a good idea.) In its simplest form, the method is an immediate
generalization of zeroth-order regularization (equation 18.4.11, above). As before,
the functional A is taken to be the y? deviation, equation (18.4.9), but the functional
B is replaced by more sophisticated measures of smoothness that derive from first
or higher derivatives.

For example, suppose that your a priori belief is that a credible u(z) is not too
different from a constant. Then a reasonable functional to minimize is

M-1
B« /[ﬁ'(z)]’a'x x Z [ty — Hup1]? (18.5.1)

since it is nonnegative and equal to zero only when #(r) is constant. Here
Uy = G(zu), and the second equality (proportionality) assumes that the z,,’s are
uniformly spaced. We can write the second form of 5 as

B=B-a*=u-(BT B)-i=u-H- (18.5.2)

=)

where @ is the vector of components #,, x = 1,..., M, B is the M-1)x M
first difference matrix

-1 1 0 0 0 0 0 ... 0
0 -1 H O o o o --. 0
B = : : (18.5.3)
0 -~ 0 0 0 0 -1 1 o0
o .- 0 0 0 0 0 -1 1
and H is the M x M matrix
1 =1 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0

0 -1 2 -1 0 0 0 --- 0
H=8" B=| : : (18.5.4)

0 --- 0 0 0 -1 2 -1 9

¢ -~ 0 0 0 0 -1 2 —1

0o -- 0 0 0 0 0 -1 1

Note that B has one fewer row than column. It follows that the symmetric H
is degenerate; it has exactly one zero eigenvalue corresponding to the value of a
constant function, any one of which makes B exactly zero.

If, just as in §15.4, we write

Aip = Rip/fo bi=ci/o; (18.5.5)
then, using equation (18.4.9), the minimization principle (18.4.12) is
minimize: A+AB=|A - G-bl’+Xi-H @ (18.5.6)

This can readily be reduced to a linear set of normal equations, justas in §15.4: The
components #,, of the solution satisfy the set of A equations in M unknowns,

3 [(ZA.-,,A;,,) + ,\H,,,] U= Y Abi w=12...M (1857)

4

74 18. Integral Equations and Inverse Theory

or, in vector notation,
(AT A+ AH) i =AT b (18.5.8)

Equations {18.5.7) or {18.5.8) can be solved by the standard techmiques of
Chapter 2, e.g., LU decomposition. The usual warnings about normal equations
being ill-conditioned do not apply, since the whole purpose of the A term is to cure
that same ill-conditioning. Note, however, that the A term by itself is ill-conditioned,
since it does not select a preferred constant value. You hope your data can at
least do that!

Although inversion of the matrix (AT -A + AH) is not generally the best way to
solve for U, let us digress to write the solution to equation (18.5.8) schematicatly as

g1 4T, -1, i !
U= (AT A TR A A) A b (schemaltic only!) (18.5.9)
where the identity matrix in the form A - A~! has been inserted. This is schematic
not only because the matrix inverse is fancifully written as a denominator, but
also because, in general, the inverse matrix A~ does not exist. However, it is
illuminating to compare equation (18.5.9) with equation (13.3.6) for optimal or
Wiener filtering, or with equation (13.6.6) for general linear prediction, One sees
that A7 - A plays the role of S?, the signal power or autocorrelation, while AH
plays the role of N2, the noise power or autocorrelation. The term in parentheses
in equation (18.5.9) is something like an optimal filter, whose effect is to pass the
ill-posed inverse A~! - b through unmodified when AT - A is sufficiently large, but
to suppress it when AT - A is small.

The above choices of B and H are only the simplest in an obvious sequence of
derivatives. If your a priori belief is that a lirear function is a good approximation
to u(x), then minimize

M-2

B / @)z & 3 [~ + 241 — psa)? (18.5.10)
u=1
implying
-1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 .-~ 0
B = : : (18.5.11)
0 0 0 0 -1 2 -1 0
0 6 0 0 0 -1 2 -1
and
(1 -2 1 0 0o 0 0 0
2 5 -4 1 0 0 0 0
1 -4 6 -4 1 0 0 0
0 1 -4 6 -4 1 0 - 0
H=BT .B= : - : (18.5.12)
0 0 1 -4 6 -4 1 0
0 0 0 1 -4 6 —4 1
0 6 0 0 1 -4 5 —2
\ o o 0 o0 0 1 -2 1/

18.5 Linear Reguiarization Methods 75

This H has two zero eigenvalues, corresponding to the two undetermined parameters
of a linear function.

If your a priori belief is that a quadratic function is preferable, then minimize

M-3
B / [@"(2)Pdz o S (= + Bypt = Fhuye + Gppa]® (185.13)
u=1
with
-1 3 -3 1 0 0 o - 0
0 -1 3 -3 1 0 0o --- 0
B=| : : (18.5.14)
0 0 0 -1 3 -3 1 0
0 0 0 0 -1 3 -3 1
and now
1 -3 3 -1 0 0 0 0 o0 0
3 10 -12 6 -1 0 0 o o 0
3 -12 19 -15 6 -1 0 0 0 0
-1 6 -15 20 -—-15 6 -1 0 0 0
0 -1 6 -—15 20 -15 6 -1 0 0
H=| : : :

-1 6 —-15 20 -15 6 -1 0

0 -1 6 -13 20 -15 6 -1
0 0 -1 6 -15 19 -12 3
0
0

0 0 -1 6 -12 10 -3
\ o 0 o0 -1 3 -3 1/
(18.5.15)

(We'll leave the calculation of cubics and above 10 the compulsive reader.)

Notice that you can regularize with “closeness to a differential equation,” if
you want. Just pick B to be the appropriate sum of finite-difference operators (the
coefficients can depend on z), and calculate H = BT - B. You don’t need to know
the values of your boundary conditions, since B can have fewer rows than columns,
as above; hopefully, your data will determine them. Of course, if you do know some
boundary conditions, you can build these into B too.

With all the proportionality signs above, you may have lost track of what actual
value of A to try first. A simple trick for at least getting “‘on the map” is to first try

oo o o
oo oo

A =Tr(AT - A)/Tr(H) (18.5.16)

where Tr is the trace of the matrix (sum of diagonal components). This choice
will tend to make the two parts of the minimization have comparable weights, and
you can adjust from there.

As for what is the “correct” value of A, an objective criterion, if you know
your errors ¢; with reasonable accuracy, is to make y? (that is, |A - @ — b|?) equal
to N, the number of measurements. We remarked above on the twin acceptable
choices N & (2N)/2, A subjective criterion is to pick any value that you like in the

76 18. Integral Equations and inverse Theory

range 0 < A < oo, depending on your relative degree of belief in the g priori and a
posteriori evidence. (Yes, people actually do that. Don’t blame us.)

Two-Dimensional Problems and Ilterative Methods

Up to now our notation has been indicative of a one-dimensional problem,
finding u(z) or G, = #(z,). However, all of the discussion easily generalizes to the
problem of estimating a two-dimensionat set of unknowns Uy, t=1,.... M, k=
l,..., K, comresponding, say, to the pixel intensities of a measured image. In this
case, equation (18.5.8) is still the one we want to solve.,

In image processing, it is usual to have the same number of input pixels in a
measured “raw” or “dirty” image as desired “clean” pixels in the processed output
image, 50 the matrices R and A (equation 18.5.5) are square and of size M K x M K.
A is typically much too large to represent as a full matrix, but often it is either (i)
sparse, with coefficients blurring an underlying pixel (4, j) only into measurements
(i:hfew,j;{:few).or(ii)n'anslationallyinvariam.solhat Atiinaw) = Ali—p, j—v).
Both of these situations lead to tractable problems.

In the case of translational invariance, fast Fourier transforms (FFTs) are the
obvious method of choice. The general linear relation between underlying function
and measured values (18.4.7) now becomes a discrele convolution like equation
(13.1.1). If k denotes a two-dimensional wave-vector, then the two-dimensional
FFT takes us back and forth between the transform pairs

Ali—p,j—v) <= Ak) byj) < b(k) iy, <= u(k) (18.5.17)
We also need a regularization or smoothing operator B and the derived H = BT - B,
One popular choice for B is the five-point finite-difference approximation of the
Laplacian operator, that is, the difference between the value of each point and the
average of its four Cartesian neighbors. In Fourier space, this choice implies,

E(k) o sin?(mky /M) sin®(7ky/ K)

~ (18.5.18)
H(k) o sin*(7ky /M) sin*(7k2/K)
In Fourier space, equation (18.5.7) is merely algebraic, with solution
T
(k) = — (b(K) (18.5.19)

|A(K)[2 + AH (k)

where asterisk denotes complex conjugation. You can make use of the FFT routines
for real data in §12.5.

Turn now to the case where A is not translationally invariant. Direct solution
of (18.5.8) is now hopeless, since the matrix A is just too large. We need some
kind of iterative scheme.

One way to proceed is to use the full machinery of the conjugate gradient
method in §10.6 to find the minimum of A4 + A5, equation (18.5.6). Of the various
methods in Chapter 10, conjugate gradient is the unique best choice because (i)
it does not require storage of a Hessian matrix, which would be infeasible here,

18.5 Linear Regularization Methods 77

and (ii) it does expioit gradient information, which we can readily compute: The
gradient of equation (18.5.6) is

V(A + AB) = 2[(AT -A + JH) - i - AT - b) (18.5.20)

{cf. 18.5.8). Evaluation of both the function and the gradient shouid of course take
advantage of the sparsity of A, for example via the routines sprsax and spratx
in §2.7. We will discuss the conjugate gradient technique further in §18.7, in the
context of the (nonlinear) maximum entropy method. Some of that discussion can
apply here as well.

The conjugate gradient method notwithstanding, application of the unsophis-
ticated steepest descent method (see §10.6) can sometimes produce useful results,
particularly when combined with projections onto convex sets (see below). If the

solution after k iterations is denoted 8'*’, then after k + 1 iterations we have
D = [1— (AT - A + AH)] -5 + (AT b (18.5.21)

Here ¢ is a parameter that dictates how far to move in the downhill gradient direction.
The method converges when ¢ is small enough, in particular satisfying

2

- T (18.5.22)
max eigenvalue (A° - A + AH)

0<e<

There exist complicated schemes for finding optimal values or sequences for e,
see [7]; or, one can adopt an experimental approach, evaluating (18.5.6) to be sure
that downhill sieps are in fact being taken.

In those image processing problems where the final measure of success is
somewhat subjective (e.g., “how good does the picture look?™), iteration (18.5.21)
sometimes produces significantly improved images long before convergence is
achieved. This probably accounts for much of its use, since its mathematical
convergence is extremely slow. In fact, (18.5.21) can be used with H = 0, in which
case the solution is not regularized at all, and full convergence would be disastrous!
This is called Van Ciitert's method and goes back to the 1930s. A number of
iterations the order of 1000 is not uncommon [7].

Deterministic Constraints: Projections onto Convex Sels

A set of possible underlying functions (or images) {u} is said to be convex if,
for any two elements i, and U} in the set, all the linearly interpolated combinations

(1 - p)u, + nu 0<n<1 (18.5.23)

are also in the set. Many deterministic constraints that one might want to impose on
the solution 4 to an inverse problem in fact define convex sets, for example:

» positivity

e compact support (i.c., zero value outside of a certain region)

78 18. Integral Equations and Inverse Theory

known bounds (i.e., ug(x) < u{r) < up(a) for specified functions uy,
and ug).

(In this last case, the bounds might be related to an initial estimate and its error bars,
e.g., uo(x) yo(z), where v is of order ! or 2.) Notice that these, and similar,
constraints can be either in the image space, or in the Fourier transform space, or
(in fact) in the space of any linear transformation of i.

If C; is a convex set, then P; is called a nonexpansive projection operator onto
that set if (i) P; leaves unchanged any u already in C, and (ii) P; maps any u outside
C; to the closest element of C;, in the sense that

|Pit — @] < [G, — 6] forallii, in C; (18.5.24)

While this definition sounds complicated, examples are very simple: A nonexpansive
projection onto the set of positive U’s is “set all negative components of U equal
10 zero.” A nonexpansive projection onto the set of #i(z)’s bounded by ug(z) <
(z) < uy(x) is “set all values less than the lower bound equal to that bound, and
set all values greater than the upper bound equal to thar bound.” A nonexpansive
projection onto functions with compact support is “zero the values outside of the
region of support.”

The usefulness of these definitions is the following remarkable theorem: Let C
be the intersection of m convex sets Cy, Co, ..., C. Then the iteration

ﬁ(k+l) = (Plpz c Py)G{H (18.5.25)

will converge to C from all starting points, as ¥ — oc. Also, if C is empty (there
is no intersection), then the iteration will have no limit point. Application of this
theorem is called the method of projections onto convex sets or sometimes POCS [7).

A generalization of the POCS theorem is that the P;’s can be replaced by
a set of 7;’s,

LT=1+8:(Pi-1) 0< B <2 (18.5.26)

A well-chosen set of §;'s can accelerate the convergence to the intersection set C.

Some inverse problems can be completely solved by iteration (18.5.25) alone!
For example, a problem that occurs in both astronomical imaging and X-ray
diffraction work is to recover an image given only the modulus of its Fourier
transform (equivalent to its power spectrum or autocorrelation) and not the phase.
Here three convex sets can be utilized: the set of all images whose Fourier transform
has the specified modulus to within specified error bounds; the set of all positive
images; and the set of all images with zero intensity outside of some specified region.
In this case the POCS iteration (18.5.25) cycles among these three, imposing each
constraint in turn; FFTS are used to get in and out of Fourier space each time the
Fourier constraint is imposed.

The specific application of POCS to constraints alternately in the spatial and
Fourier domains is also known as the Gerchberg-Saxton algorithm [8). While this
algorithm is non-expansive, and is frequently convergent in practice, it has not been
proved to converge in all cases (8]. In the phase-retrieval problem mentioned above,
the algorithm often “gets stuck™ on a plateau for many iterations before making
sudden, dramatic improvements. As many as 10* to 10° iterations are sometimes

18.6 Backus-Gilbert Method 79

necessary. (For “unsticking” procedures, sce [10].) The uniqueness of the solution
is also not well understood, although for two-dimensional images of reasonable
complexity it is believed to be unique.

Deterministic constraints can be incorporated, via projection operators, into
iterative methods of linear regutarization. In particular, fearranging terms somewhat,
we can write the iteration (18.5.21) as

5 = [1- aaH) - 0™ + AT (b —A -5 (18.5.27)
If the iteration is modified by the insertion of projection operators at each step
G5+ = (PyPy - Pl — eAH) - 8% 4+ AT . (b — A w%) (18.5.28)

{or, instead of P;’s, the 7; operators of equation 18.5.26), then it can be shown that
the convergence condition (18.5.22) is unmodified, and the iteration will converge
to minimize the quadratic functional (18.5.6) subject 1o the desired noniinear
deterministic constraints. See [7] for references to more sophisticated, and faster
converging, iterations atong these lines.

CITED REFERENCES AND FURTHER READING:

Phillips, D.L. 1962, Journal of the Association for Computing Machinery, vol. 9, pp. 8497, ik}

Twomey, S. 1963, Jouna/ of the Association for Computing Machinery, vol. 10, pp. 87-101. [2)

Twomey, S. 1977, Introduction 1o the Mathematics of Inversion in Remote Sansing and Indirect
Measurements (Amsterdam: Elsevier). [3]

Craig, 1.J.D., and Brown, J.C. 1886, lnvarse Problems in Astronomy (Bristol, U K- Adam Hilger).
(41

Tikhonov, A.N., and Arsenin, V.Y. 1977, Solutions of ii-Posad Problems (New York: Wiley). [5]

Tikhorov, A.N., and Goncharsky, A.V. (ads.) 1987, If-Posed Problems in the Natural Sciences
(Moscow: MIR),

Miller, K. 1970, SIAM Journal on Mathematical Analysis, vol. 1, pp. 52-74. [6]

Schafer, R.W., Mersereau, R.M.,, and Richards, M.A. 1981, Froceedings of the IEEE, vol. 69,
pp. 432-450.

Biemond, J.. Lagendijk, R.L., and Merseraau, R.M. 1990, Procesdings of the IEEE, vol. 78,
pp. 856-883. [7]

Gerchberg, R.W., and Saxton, W.0O. 1972, Optik, vol. 35, pp. 237-246. 18]

Fienup, J.R. 1982, Applied Opfics, vol. 15, pp. 2758-2769. 9]

Fienup, J.R., and Wackerman, C.C. 1986, Journa! of the Optical Sociaty of Amaerica A, vol. 3,
pp. 1897-1907. [10]

18.6 Backus-Gilbert Method

The Backus-Gilbert method [1.2] (see, e.g., [3] or [4] for summaries) differs from
other regularization methods in the nature of its functionals .4 and B. For B, the
method seeks to maximize the stability of the solution %(z) rather than, in the first
instance, its smoothness. That is,

8 = Var{u(z)] (18.6.1)

80 18. Integral Equations and inverse Theory

is used as a measure of how much the solution () varies as the data vary within
their measurement errors. Note that this variance is not the expected deviation of
u(z) from the true u(z) — that will be constrained by .4 — but rather measures
the expected experiment-to-experiment scatter among estimates #(z) if the whole
experiment were to be repeated many times.

For A the Backus-Gilbert method looks at the relationship between the solution
#(z) and the true function u(z), and seeks to make the mapping between these as
close to the identity map as possible in the limit of error-free data. The method is
linear, so the relationship between #(z) and u(z) can be written as

i(z) = fa“(x.x')u(x')dx' (18.6.2)

for some so-called resolution function or averaging kernel 6(x,z'). The Backus-
Gilbert method seeks to minimize the width or spread of & (that is, maximize the
resolving power). A is chosen to be some positive measure of the spread.

While Backus-Gilbert's philosophy is thus rather different from that of Phillips-
Twomey and related methods, in practice the differences between the methods are
less than one might think. A stable solution is almost inevitably bound to be
smooth. The wild, unstable oscillations that result from an unregularized solution
are always exquisitely sensitive to small changes in the data. Likewise, making
(z) close to u(z) inevitably will bring error-free data into agreement with the
model. Thus .4 and B play roles closely analogous to their corresponding roles
in the previous two sections.

The principal advantage of the Backus-Gilbert formulation is that it gives good
control over just those properties that it seeks to measure, namely stability and
resolving power. Moreover, in the Backus-Gilbert method, the choice of A (playing
its usual role of compromise between A and B) is conventionally made, or at least
can easily be made, before any actual data are processed. One’s uneasiness at making
a post koc, and therefore potentially subjectively biased, choice of A is thus removed.
Backus-Gilbert is often recommended as the method of choice for designing, and
predicting the performance of, experiments that require data inversion.

Let's see how this all works. Starting with equation (18.4.5),

G =si+n; = /r,-(::)u(x)da: + n; (18.6.3)

and building in linearity from the start, we seek a set of inverse response kernels
¢i(z) such that

(x) =) ail2)es (18.6.4)

is the desired estimator of u(xz). It is useful to define the integrals of the response
kernels for each data point,

R = /r,-(.r)d.r (18.6.5)

18.6 Backus-Gitbert Method 81

Substituting equation (18.6.4) into equation (18.6.3), and comparing with equation
(18.6.2), we see that

8(z,2) =Y gilz)ri(z) (18.6.6)
We can require this averaging kernel to have unit area at every r, giving
1= /Is‘(x, 2')dz’ = Zq;(z)frg(x')dz’ = ()R, =q(z)-R (186.7)

where q(z) and R are each vectors of length N, the number of measurements.
Standard propagation of errors, and equation (18.6.1), give

B = Varlii(z)] = 3~ 4i(2)Sijq;(2) = q(z) - S - q(2) (18.6.8)
L

where 5;; is the covariance matrix (equation 18.4.6). If one can neglect off-diagonal
covariances (as when the errors on the ¢;'s are independent), then S;; = §;; o?
is diagonal. R

We now need to define a measure of the width or spread of 5(z, ') at each
value of . While many choices are possible, Backus and Gilbert choose the second
moment of its square. This measure becomes the functional A,

A=w(z)= /(z' — z)*[8(x, ")) 2dx’

18.6.9)
= E Z'Is‘(x)m_f(:r)qj(a:) = q(z) - W(z) -q(z) (

where we have here used equation (18.6.6) and defined the spread matrix W(z) by
Wii(z) = _/ (2" ~ 2)2ri(2")r; (x")d2’ (18.6.10)

The functions g¢;(z) are now determined by the minimization principle
minimize: A+ AB = q(z) - [W(z) + AS] - q(z) (18.6.11)

subject to the constraint (18.6.7) that q(z) -R = 1.
The solution of equation (18.6.11) is

_ _W(z)+2s]"! R
A(2) = o Wis) 15T R (186.12)

(Reference [4] gives an accessible proof.) For any particular data set ¢ (set of
measurements c;), the solution #(z) is thus

_ ¢ [W(z)+ AS]"L-R

i(z) = R [W(z)+ A§]-T R (18.6.13)

82 18. Integral Equations and Inverse Theory

(Don't let this notation mislead you into inverting the full matrix W(z) + AS. You
only need to solve for some y the linear system (W(x)+ AS) -y = R, and then
substitute y into both the numerators and denominators of 18.6.12 or 18.6.13.)

Equations (18.6.12) and (18.6.13) have a completely different character from
the linearly regularized solutions to (18.5.7) and (18.5.8). The vectors and matrices in
{18.6.12) all have size N, the number of measurements. There is no discretization of
the underlying variable z, so M does not come into play at all. One solves a different
N x N set of linear equations for each desired value of z. By contrast, in (18.5.8),
one solves an M x M linear set, but only once. In general, the computational burden
of repeatedly solving linear systems makes the Backus-Gilbert method unsuitable
for other than one-dimensional problems.

How does one choose A within the Backus-Gilbert scheme? As already
mentioned, you can (in some cases should) make the choice before you see any
actual data. For a given trial value of A, and for a sequence of r’s, use equation
(18.6.12) to calculate q(z); then use equation (18.6.6) to plot the resolution functions
3(.1:, z') as a function of z’. These plots will exhibit the amplitude with which
different underlying values =’ contribute to the point () of your estimate. For the
same value of A, also plot the function /Var[u(x)] using equation (18.6.8). (You
need an estimate of your measurement covariance matrix for this.)

As you change A you will see very explicitly the trade-off between resolution
and stability. Pick the value that meets your needs. You can even choose A to be a
function of z, A = A(z), in equations (18.6.12) and (18.6.13), should you desire to
do so. (This is one benefit of solving a separate set of equations for each z.) For
the chosen value or values of A, you now have a quantitative understanding of your
inverse solution procedure. This can prove invaluable if — once you are processing
real data — you need (o judge whether a particular feature, a spike or jump for
example, is genuine, and/or is actually resolved. The Backus-Gilbert method has
found particular success among geophysicists, who use it t0 obtain information about
the structure of the Earth (e.g., density run with depth) from seismic travel time data.

CITED REFERENCES AND FURTHER READING:

Backus, G.E., and Gilbert, F. 1968, Geophysical Journal of the Royal Astronomical Sociaty,
vol. 16, pp. 160-205. [1]

Backus, G.E., and Gilbert, F. 1870, Philasophical Transactions of the Royal Society of London
A, vol. 266, pp. 123-192. [2]

Parker, R.L. 1977, Annual Raview of Earth and Planetary Sciance, vol. 5, pp. 35-64. [3]

Loredo, T.J., and Epsein, R.\. 1989, Astrophysical Joumal, vol. 336, pp. 896-919. [4]

18.7 Maximum Entropy Image Restoration

Above, we commented that the associalion of certain inversion methods
with Bayesian arguments is more historical accident than intellectual imperative.
Maximum entropy methods, so-called, are notorious in this regard; to summarize
these methods without some, at least introductory, Bayesian invocations would be
to serve a steak without the sizzle, or a sundae without the cherry. We should

18,7 Maximum Entropy Image Restoration 83

also comment in passing that the connection between maximum entropy inversion
methods, considered here, and maximum entropy spectral estimation, discussed in
§13.7, is rather abstract. For practical purposes the two techniques, though both
named maximum entropy method or MEM, are unrelated.

Bayes’ Theorem, which follows from the standard axioms of probability, relates
the conditional probabilities of two events, say A and B:

Prob(B|4)

Brob(5} (18.7.1)

Prob(A|B) = Prob(A)

Here Prob(.A|B) is the probability of A given that B has occurred, and similarly for
Prob(3[A), while Prob{A} and Prob(B) are unconditional probabilities.

“Bayesians™ (so-called) adopt a broader interpretation of probabilities than do
so-called “frequentists.” To a Bayesian, P(A|B) is a measure of the degree of
plausibility of A (given B) on a scale ranging from zero to one. In this broader view,
A and B need not be repeatabie events; they can be propositions or hypotheses.
The equations of probability theory then become a set of consistent rules for
conducting inference [1.2]. Since plausibility is itself always conditioned on some,
perhaps unarticulated, set of assumptions, all Bayesian probabilitics are viewed as
conditional on some cellective background information 1.

Suppose H is some hypothesis. Even before there exist any explicit data,
a Bayesian can assign to H some degree of plausibility Prob{ H{I), called the
“Bayesian prior.” Now, when some data D, comes along, Bayes theorem tells how
to reassess the plausibility of H,

Prob(D; |H 1)

Pt DT} (18.7.2)

Prob(H|D,I) = Prob(H|I)

The factor in the numerator on the right of equation (18.7.2) is calculable as the
probability of a data set given the hypothesis (compare with “likelihood”™ in §15.1).
The denominator, called the “prior predictive probability” of the data, is in this case
merely a normalization constant which can be calculated by the reguirement that
the probability of all hypotheses shoutd sum to unity. (In other Bayesian contexts,
the prior predictive probabilities of two qualitatively different models can be used
to assess their relative plausibility.)

If some additional data D, comes along tomorrow, we can further refine our
estimate of H's probability, as

Prob(D |H Dy 1)

Brot (DD 1) (18.7.3)

Prob(H| D, D1 I) = Prob(#{D, I)

Using the product rule for probabilities, Prob(AB|C) = Prob(A|C)Prob{ B|AC),
we find that equations (18.7.2) and (18.7.3) imply

Prob(D, Dy |H T)

Prob(D2 D1[T) (18.7.4)

which shows that we would have gotten the same answer if all the data D, D,
had been taken together.

84 18. Integral Equations and Inverse Theory

From a Bayesian perspective, inverse problems are inference problems [3.4].
The underlying parameter set u is a hypothesis whose probability, given the measured
data values ¢, and the Bayesian prior Prob(ufl) can be calculated. We might want
to report a single “best” inverse u, the one that maximizes

Prob(ufl)
Prob(c|])

over all possible choices of . Bayesian analysis also admits the possibility of
reporting additional information that characterizes the region of possible u's with
high relative probability, the so-called “posterior bubble” in u.

‘The calculation of the probability of the data ¢, given the hypothesis u proceeds
exactly as in the maximum likelihood method. For Gaussian errors, e.g., itis given by

Prob(uljc/) = Prob(c|u/) (18.7.5)

Prob(clul) = exp(—%x?’)Aul Aug- - Auyy (18.7.6)

where x? is calculated from u and ¢ using equation (18.4.9), and the Au,’s are
constant, small ranges of the components of u whose actual magnitude is irrelevant,
because they do not depend on u (compare equations 15.1.3 and 15.1.4).

In maximum likelihood estimation we, in effect, chose the prior Prob(u|l) to
be constant. That was a luxury that we could afford when estimating a small number
of parameters from a large amount of data. Here, the number of “parameters”
(components of u) is comparable to or larger than the number of measured values
{components of ¢}; we need to have a nontrivial prior, Prob{u]7), to resolve the
degeneracy of the solution.

In maximum entropy image restoration, that is where entropy comes in. The
entropy of a physical system in some macroscopic state, usually denoted S, is the
logarithm of the number of microscopically distinct configurations that all have
the same macroscopic observables {i.e., consistent with the observed mMacroscopic
state). Actually, we will find it useful to denote the negative of the entropy, also
called the negentropy, by H = —S (a notation that goes back to Boltzmann). In
situations where there is reason 10 believe that the a priori probabilities of the
microscopic configurations are all the same (these situations are called ergodic), then
the Bayesian prior Prob(u|/) for a macroscopic state with entropy S is proportional
o exp(S) or exp(~H).

MEM uses this concept to assign a prior probability to any given underlying
function u. For example [5-7], suppose that the measurement of luminance in each
pixel is quantized to (in some units) an integer value, Let

M
U=Yu, (18.7.7)

p=t

be the total number of luminance quanta in the whole image. Then we can base our
“prior” on the notion that each luminance quantum has an equal a priori chance of
being in any pixel. (See [8] for a more abstract Justification of this idea.) The number
of ways of getting a particular configuration u is

(24 1
m o exp [~ gu#ln(u“/[f) + 3 (luU - ;ln u,,)] (18.7.8)

18.7 Maximum Entropy Image Restoration 85

Here the left side can be understood as the number of distinct orderings of all
the luminance quanta, divided by the numbers of equivalent reorderings within
each pixel, while the right side follows by Stirling’s approximation to the factorial
function. Taking the negative of the logarithm, and neglecting terms of order log U/
in the presence of terms of order [/, we get the negentropy

M
H(w) =) uuln(u,/U) (18.7.9)

u=1

From equations (18.7.5), (18.7.6), and (18.7.9) we now seek to maximize
1
Prob(ul¢) o exp [-—EXQJ exp[—H (u)] (18.7.10)
or, equivalently,

M
minimize: — In [Prob(ulc)] = %xz[u] + H(u) = %x'"’{u] + Z:u,, In(u, /U)
s=1

(18.7.11)

This ought to remind you of equation (18.4.1 1), or equation (18.5.6), or in fact any of
our previous minimization principles along the lines of A + AB, where AB = } (u)
is a regularizing operator,. Where is A? We need to put it in for exactly the reason
discussed following equation (18.4.1 1): Degenerate inversions are likely to be able
to achieve unrealistically small values of x2. We need an adjustable parameter to
bring x? into its expected narrow statistical range of N + (2N)12, The discussion
at the beginning of §18.4 showed that it makes no difference which term we attach
the A to. For consistency in notation, we absorb a factor 2 into A and put it on
the entropy term. (Another way 1o see the necessity of an undetermined A factor
is t0 note that it is necessary if our minimization principle is to be invariant under
changing the units in which u is quantized, €.g., if an 8-bit analog-to-digital converter
is replaced by a 12-bit one.) We can now also put “hats” back to indicate that this
is the procedure for obtaining our chosen statistical estimator:

M
minimize: A+ AB = x*[@] + AH(@) = @] + 28, 1n(8,) (187.12)

pe=1

(Formally, we might also add a second Lagrange multiplier AU/, to constrain the
total intensity U/ to be constant.)

It is not hard to see that the negentropy, H(u), is in fact a regularizing operator,
similar to U - § (cquation 184.11)or G- H - & (equation 18.5.6). The following of
its properties are noteworthy: N

1. 'When U is held constant, H (4) is minimized for &, = U//M = constant, so it
smooths in the sense of trying to achieve a constant solution, similar to equation

(18.5.4). The fact that the constant solution is a minimum follows from the fact

that the second derivative of uIn u is positive.

86 18. Integral Equations and Inverse Theory

2. Unlike equation (18.5.4), however, H(u) is local, in the sense that it does not
difference neighboring pixels. It simply sums some function f, here

flu)=ulnu (18.7.13)

over all pixels; it is invariant, in fact, under a complete scrambling of the pixels

in an image. This form implies that /(@) is not seriously increased by the

occurrence of a small number of very bright pixels (point sources) embedded
in a low-intensity smooth background.

3. H(u) goes to infinite slope as any one pixel goes to zero. This causes it (0
enforce positivity of the image, without the necessity of additional deterministic
constraints,

4. The biggest difference between H (i) and the other regularizing operators that
we have met is that H (i) is not a quadratic functional of i, so the equations
obtained by varying equation (18.7.12) are nonlinear. This fact is itself worthy
of some additional discussion.

Nonlinear equations are harder to solve than linear equations. For image
processing, however, the large number of equations usually dictates an iterative
solution procedure, even for linear equations, so the practical effect of the nonlinearity
is somewhat mitigated. Below, we will summarize some of the methods that are
successfully used for MEM inverse problems.

For some problems, notably the problem in radio-astronomy of image recovery
from an incomplete set of Fourier coefficients, the superior performance of MEM
inversion can be, in part, traced to the nonlinearity of H(ii). One way to see this [5]
is to consider the limit of perfect measurements o; — 0. In this case the y2 term in
the minimization principle (18.7.12) gets replaced by a sct of constraints, each with
its own Lagrange multiplier, requiring agreement between model and data; that is,

minimize: z Aj [c,- - Z Rj,uiiu] + H{(u) (18.7.14)
j B

(cf. equation 18.4.7). Setting the formal derivative with respect 1o i, to zero gives

oH
= =) =) \Rj, (18.7.15)
3

i

or defining a function & as the inverse function of f*,

i,=G (Z Aj Rju) (18.7.16)
J

This solution is only formal, since the A;’s must be found by requiring that equation
(18.7.16) satisfy all the constraints built into equation (18.7.14). However, equation
(18.7.16) does show the crucial fact that if G is linear, then the solution Gicontains only
a linear combination of basis functions R, , comresponding to actual measurements
. This is equivalent to setting unmeasured c¢;’s to zero. Notice that the principal
solution obtained from equation (18.4.11) in fact has a linear G.

18.7 Maximum Entropy Image Restoration 87

In the problem of incomplete Fourier image reconstruction, the typical R;,
has the form exp(—27ik; - x,,), where x,, is a two-dimensional vector in the image
space and k,, is a two-dimensional wave-vector. If an image contains strong point
sources, then the effect of seiting unmeasured c;'s to zero is to produce sidelobe
ripples throughout the image plane. These ripples can mask any actual extended,
low-intensity image features lying between the point sources. If, however, the slope
of G is smaller for smail values of its argument, larger for large values, then ripples
in low-intensity portions of the image are relatively suppressed, while strong point
sources will be relatively sharpened (“superresolution™). This behavior on the slope
of G is equivalent to requiring f*'(u) < 0. For f(u) = uInu, we in fact have
f'"u) = —1/u? < 0.

In more picturesque language, the nonlinearity acts to “create” nonzero values
for the unmeasured ¢,’s, 50 as to suppress the low-intensity ripple and sharpen the
point sources.

Is MEM Really Magical?

How unique is the negentropy functional (18.7.9)7 Recall that that equation is
based on the assumption that luminance elements are a priori distributed over the
pixels uniformly. If we instead had some other preferred a priori image in mind, one
with pixel intensities m,,, then it is easy to show that the negentropy becomes

M
H(u) =" u,In(u,/m,) + constant (18.7.17)
B=1

(the constant can then be ignored). All the rest of the discussion then goes through.

More fundamentally, and despite statements by zealots to the contrary [7], there
is actually nothing universal about the functional form f (4) = ulnu. In some
other physical situations (for example, the entropy of an electromagnetic field in the
limit of many photons per mode, as in radio-astronomy) the physical negentropy
functional is actually f(u) = —Inu (see (5] for other examples). In general, the
question, “Entropy of what?” is not uniquely answerable in any particular sitnation.
(See reference [9] for an attempt at articulating a more general principle that reduces
10 one or another entropy functional under appropriate circumstances.)

The four numbered propertics summarized above, plus the desirable sign for
nonlinearity, f*'(u) < 0, are all as true for f(u) = —Inu as for f(u) = ulnw. In
fact these properties are shared by a nonlinear function as simple as f () = —/u,
which has no information theoretic justification at all (no logarithms!). MEM
reconstructions of test images using any of these entropy forms are virtually
indistinguishable [5].

By all available evidence, MEM seems to be neither more nor less than one
usefully nonlinear version of the general regularization scheme A + AB that we have
by now considered in many forms. Its peculiarities become strengths when applied
10 the reconstruction from incomplete Fourier data of images that are expected
to be dominated by very bright point sources, but which also contain interesting
low-intensity, extended sources. For images of some other character, there is no
reason {0 suppose that MEM methods will generally dominate other regularization
schemes, either ones already known or yet to be invented.

88 18. Integral Equations and Inverse Theory

Algorithms for MEM

The goal is to find the vector 4 that minimizes A + AB where in the notation
of equations (18.5.5), (18.5.6), and (18.7.13),

A=p-A-u° B=>3f(i,) (18.7.18)
I
Compared with a “general” minimization problem, we have the advantage that

we can compute the gradients and the second partial derivative matrices (Hessian
matrices) explicitly,

VA=2(AT -A .- AT .b) a'“‘lﬁ = (247 -A),,
g, 04,
Jeye (18.7.19)
[VB’]# = f'(ﬁ,.) PO 6uﬂf”(aﬂ)
0, 0,

It is important to note that while .4's second partial derivative matrix cannot be
stored (its size is the square of the number of pixels), it can be applied to any vector
by first applying A, then AT, In the case of reconstruction from incomplete Fourier
data, or in the case of convolution with a translation invariant point spread function,
these applications will typically involve several FFTs. Likewise, the calculation of
the gradient V.A wilt involve FFTs in the application of A and AT,

While some success has been achieved with the classical conjugate gradient
method (§10.6), it is often found that the nonlinearity in f(u) = ulnu causes
problems. Attempted steps that give i with even one negative value must be cut in
magnitude, sometimes so severely as to slow the solution to a crawl. The underlying
problem is that the conjugate gradient method develops its information about the
inverse of the Hessian matrix 2 bit at a time, while changing its location in the search
space. When a nonlinear function is quite different from a pure quadratic form, the
old information becomes obsolete before it gets usefully exploited.

Skitling and collaborators [6.7.10,11] developed a complicated but highly suc-
cessful scheme, wherein a minimum is repeatedly sought not along a single search
direction, but in a small- (typically three-) dimensional subspace, spanned by vectors
that are calculated anew at each landing point. The subspace basis vectors are
chosen in such a way as to avoid directions leading to negative values. One of the
most successful choices is the three-dimensional subspace spanned by the vectors
with components given by

e = Gu[V.Al,
3512) = u,[VB],
o3 _ Un X (01 A/08,08,)5,[VB], T, (8°A4/05,08,)i,[V A,

’ Vv, (V8] VI, % (VAL
(18.7.20)

(In these equations there is no sum over x.) The form of the /) has some justification
if one views dot products as occurring in a space with the metric Guv = b4 fuy,
chosen to make zero vatues “far away”; see (6],

18.7 Maximum Entropy Image Restoration 89

Within the three-dimensional subspace, the three-component gradient and nine-
component Hessian matrix are computed by projection from the large space, and
the minimum in the subspace is estimated by (trivially) solving three simultaneous
linear equations, as in §10.7, equation (10.7.4). The size of a step Al is required
to be limited by the inequality

> (AT, /i, < (0.1100.5)U (18.7.21)
I
Because the gradient directions V.4 and VB are separately available, it is possible
to combine the minimum search with a simultaneous adjustment of A so as finally to
satisfy the desired constraint. There are various further tricks employed.

A less general, but in practice often equally satisfactory, approach is due to
Comnwell and Evans [12]. Here, noting that 5’s Hessian (second partial derivative)
matrix is diagonal, one asks whether there is a useful diagonal approximation to
A’s Hessian, namely 2A7 - A. If A, denotes the diagonal components of such an
approximation, then a useful step in U would be

1
Ay + A5 ()
(again compare equation 10.7.4). Even more extreme, one might seek an approx-
imation with constant diagonal elements, A, = A, so that
1

A+ A (5,)

Since AT - A has something of the nature of a doubly convolved point spread
function, and since in real cases one often has a point spread function with a sharp
central peak, even the more extreme of these approximations is often fruitful. One
starts with a rough estimate of A obtained from the A,,'s, e.g.,

A~ <Z[A.-,,]=’> (18.7.24)

An accurate value is not important, since in practice A is adjusted adaptively: If A
is too large, then equation (18.7.23)'s steps will be too small (that is, larger steps in
the same direction will produce even greater decrease in .4 + AB). If A is too small,
then attempted steps will Jand in an unfeasible region (negative values of #,), or will
result in an increased .4 + AB. There is an obvious similarity between the adjustment
of A here and the Levenberg-Marquardt method of §15.5; this should not be too
surprising, since MEM is closely akin to the problem of nonlinear least-squares
fitting. Reference [12] also discusses how the value of A -+ Af”(#,) can be used to
adjust the Lagrange multiplier A so as 10 converge to the desired value of y2.

All practical MEM algorithms are found to require on the order of 30 to 50
iterations to converge. This convergence behavior is not now understood in any
fundamental way.

Adi, = (VA +AVB) (18.7.22)

Adi, = (VA + AVB) (18.7.23)

“Bayesian” versus “Historic” Maximum Entropy

Several more recent developments in maximum entropy image restoration
g0 under the rubric “Bayesian” to distinguish them from the previous “historic”
methods. See [13] for details and references.

90 13. Fourier and Spectral Applications

¢ Better priors: We already noted that the entropy functional {(equation
18.7.13) is invariant under scrambling all pixels and has no notion of
smoothness. The so-called “instrinsic correlation function” (ICF) model is
similar enough to the entropy functional to allow similar algorithms, but it
makes the values of neighboring pixels correlated, enforcing smoothness,

» Better estimation of A: Above we chose A to bring x? into its expected
narrow statistical range of N + (2N)!/2. This in effect overestimates x2,
however, since some effective number v of parameters are being “fitted”
in doing the reconstruction. A Bayesian approach leads to a self-consistent
estimate of this v and an objectively better choice for A.

CITED REFERENCES AND FURTHER READING:

Jaynes, E.T. 1976, in Foundatons of Probability Theory, Statistical Inference, and Statistical
Theories of Science, W.L. Harper and C.A. Hooker, eds. {Dordrecht: Reidel). [1]

Jaynes, E.T. 1985, in Maximum-Entropy and Bayesian Methods in inverse Problems, C.R. Smith
and W.T. Grandy, Jr., eds. (Dordrecht: Reidel). [2]

Jaynes, E.T. 1084, in SIAM-AMS Proceedings, vol. 14, D.W. McLaughiin, ed. {Providence, RI:
American Mathematical Society). [3]

Titterington, D.M. 1985, Astronomy and Astrophysics, vol. 144, 381-387. [4]

Narayan, R., and Nityananda, R. 1986, Annual Review of Astronomy and Astrophysics, vol. 24,
pp. 127-170. 5]

Skilling, J., and Bryan, R.K. 1984, Monthly Notices of the Royal Astronomical Society, vol, 211,
pp. 111-124. [6}

Burch, S.F, Gull, S.F, and Skilling, J. 1983, Computer Vision, Graphics and image Processing,
vol. 23, pp. 113-128. [7]

Skilling, J. 1988, in Maximum Entropy and Bayesian Methods, J. Skilling, ed. (Boston: Kluwer). [8]

Frieden, B.R. 1983, Joumal of the Optical Society of America, vol. 73, pp. 927-938. [9]

Skilling, J., and Gull, S.F. 1985, in Maximum-Entropy and Bayesian Methods in Inverse Problems,
C.R. Smith and W.T. Grandy, Jr., eds. (Dordrecht: Reidel). [10]

Skilling, J. 1986, in Maximum Entropy and Bayesian Methods in Applied Statistics, J.H. Justice,
ed. {Cambridge: Cambridge University Press). [11)

Comwell, T.J., and Evans, K.F. 1985, Astronomy and Astrophysics, vol. 143, pp. 77-83. [12]

Gull, S.F. 1989, in Maximum Entropy and Bayesian Methods, J. Skiling, ed. (Boston: Kiuwaer),
[13]

13.10 Wavelet Transforms

Like the fast Fourier transform (FFT), the discrete wavelet transform (DWT) is
a fast, linear operation that operates on a data vector whose length is an integer power
of two, transforming it into a numerically different vector of the same length. Also
like the FFT, the wavelet transform is invertible and in fact orthogonal - the inverse
transform, when viewed as a big matrix, is simply the transpose of the transform.
Both FFT and DWT, therefore, can be viewed as a rotation in function space, from
the input space (or time) domain, where the basis functions are the unit vectors e;,
or Dirac delta functions in the continuum limit, to a different domain. For the FFT,
this new domain has basis functions that are the familiar sines and cosines. In the
wavelet domain, the basis functions are somewhat more complicated and have the
fanciful names “mother functions” and “wavelets.”

13.10 Wavelst Transforms 91

Of course there are an infinity of possible bases for function space, almost all of
them uninteresting! What makes the wavelet basis interesting is that, unlike sines and
cosines, individual wavelet functions are quite localized in space; simuitaneously,
like sines and cosines, individual wavelet functions are quite localized in frequency
or (mor¢ precisely) characteristic scale. As we will see below, the particular kind
of dual localization achieved by wavelets renders large classes of functions and
operators sparse, ot sparse to some high accuracy, when transformed into the wavelet
domain. Analogously with the Fourier domain, where a class of computations, like
convelutions, become computationally fast, there is a large class of computations
— those that can take advantage of sparsity — that become computationally fast
in the wavelet domain [1].

Unlike sines and cosines, which define a unique Fourier transform, there is
not one single unique set of wavelets; in fact, there are infinitely many possible
sets. Roughly, the different sets of wavelets make different trade-offs between
how compactly they are localized in space and how smooth they are. (There are
further fine distinctions.)

Daubechies Wavelet Filter Coefficients

A particular set of wavelets is specified by a particular set of numbers, called
wavelet filter coefficients. Here, we will largely restrict ourselves to wavelet filters
in a class discovered by Daubechies [2]. This class includes members ranging from
highly localized to highly smooth. The simplest (and most localized) member, often
called DAUB4, has only four coefficients, cq, . . ., ¢3. For the moment we specialize
to this case for ease of notation.

Consider the following transformation matrix acting on a column vector of
data to its right:

[cg € ¢2 C3 1
€3 —C2 €1 —¢C
cg €3] Cc3
€3 —¢€2 €1 —Cg
(13.10.1)
Co (O ¢z C3
¢g —0C2 O —-£q
C2 C3 co Ci
€1 —Cop €3 —C3J

Here blank entries signify zeroes. Note the structure of this matrix. The first row
generates one compenent of the data convolved with the filter coefficients ¢ . . ., ca.
Likewise the third, fifth, and other odd rows. If the even rows followed this pattern,
offset by one, then the matrix would be a circulant, that is, an ordinary convolution
that could be done by FFT methods. (Note how the last two rows wrap around
like convolutions with periodic boundary conditions.) Instead of convolving with
¢o, - - -, €3, however, the even rows perform a different convolution, with coefficients
¢3, —¢2, ¢1, —¢g. The action of the matrix, overall, is thus to perform two related
convolutions, then to decimate each of them by half (throw away half the values),
and interleave the remaining halves.

It is useful to think of the filter cg, . . ., c3 as being a smoothing filter, call it H,
something like a moving average of four points. Then, because of the minus signs,

92 13. Fourier and Spectral Applications

the filter ¢3, —ca, €1, —cq, call it G, is not a smoothing filter. (In signal processing
contexts, H and & are called quadrature mirror filters [3].) In fact, the ¢'s are chosen
so as to make (5 yield, insofar as possible, a zero response to a sufficiently smooth
data vector. This is done by requiring the sequence ¢3, —c2, ¢1, —co to have a certain
nrumber of vanishing moments. When this is the case for p moments (starting with
the zeroth), a set of wavelets is said to satisfy an “approximation condition of order
p.” This results in the output of H, decimated by half, accurately representing the
data’s “smooth” information. The output of G, also decimated, is referred to as
the data’s “detail™ information [4],

For such a characterization to be useful, it must be possible to reconstruct the
original data vector of length N from its N/2 smooth or s-components and its N/2
detail or d-components. That is effected by requiring the matrix {13.10.1) to be
orthogonal, so that its inverse is just the transposed matrix

()] [] e Ca [5]
C1 =¢€a s 3 —cCp
Cca (3] Co c3

€3 —Cp € —Cg

(13.10.2)
(4] €1 Co c3
a3 —Co €1 —C2
C2 C1 Co €3

13.10 Wavelst Transforms 93

One sees immediately that matrix (13.10.2) is inverse 1o matrix (13.10.1) if and
only if these two equations hold,

2, 2
cgtei+ci+el=1

13.10.3
¢cacg +c3c;p =0 ()

If additionally we require the approximation condition of order p = 2, then two
additional relations are required,

€3 —¢cy+¢1~cg=0

104
003 - 1C2 + 2C| - 3(.'0 =0 (13 10)

Equations (13.10.3) and (13.10.4) are 4 equations for the 4 unknowns €0, ..., 03,
first recognized and solved by Daubechies. The unique solution (up 1o a left-right
reversal) is

co=(1+V3)/4V2 ¢ =(3+V3)/4V32

13.10.5)
e2=(@-V3)/4V2 s =(1-V3)/4/2 (

In fact, DAUBA4 is only the most compact of a sequence of wavelet sets: If we
had six coefficients instead of four, there would be three orthogonality requirements
in equation (13.10.3) (with offsets of zero, two, and four), and we could require

the vanishing of p = 3 moments in equation (13.10.4). In this case, DAUBSG, the
solution coefficients can also be expressed in closed form,

o = (1+ V10 + V5 + 2/10)/16v2 a1 = (5 + V10 + 3v/5 4 2/10)/16v32
c2 = (10 - 2V10 + 2v5 + 2V/10)/16v2 ¢3 = (10— 2/T0 - 25 + 2/10)/16/3
c = (5+V10-3V5 4+ 2/10)/16/7 o5 = (1 + /10— V5 + 2/10) /1612

(13.10.6)
For higher p, up 10 10, Daubechies (2] has tabulated the coefficients numerically, The
number of coefficients increases by two each time p is increased by one.

Discrete Wavelet Transform

We have not yet defined the discrete wavelet transform (DWT), but we are
almost there: The DWT consists of applying a wavelet coefficient matrix like
(13.10.1) hierarchically, first to the full data vector of length N, then to the “smooth”
vector of length N/2, then to the “smooth-smooth” vector of length N/4, and
so on until only a trivial number of “smooth-. . -smooth” components (usually 2)
remain, The procedure is sometimes called a pyramidal algorithm|(4), for obvious
reasons. The cutput of the DWT consists of these remaining components and all
the “detail” components that were accumulated along the way. A diagram should
make the procedure clear:

c

94 13. Fourier and Spectral Applications

M ¥ 7 31 7 F.ﬂ" FS]‘ (S]"’ (51”
vz d, L0 Dy S2 ete. %1
Y3 ;2 2 gz ga — Dl
¥ 2 a 2
s 2 sy | 13401 | g | permute gt Dr
¥e da 25 Ds Dy Dy
yr 3 a7 Sy Dy ga
yvs dy 35 D Dy 4
vo 13&:3.1 s perin:lte % Hlj. o e
¥io dy dy d2 d da
¥t s ds da dz da
¥z dg dy dy dy ds
¥13 a7 dy dy, dy ds
Y14 dz dg dg dg dg
yis 23 dr dr dy dr

- 14 -ds- -da-l -daq ..ds_i -ds.]

(13.10.7)

If the length of the data vector were a higher power of two, there would be
more stages of applying (13.10.1) (or any other wavelet coefficients) and permuting.
The endpoint will always be a vector with two S's and a hierarchy of D’s, D’s,
d’s, etc. Notice that once d’s are generated, they simply propagate through to all
subsequent stages.

A value d; of any level is termed a “wavelet coefficient” of the original data
vector, the final values S, S2 should strictly be called “mother-function coefficients,”
although the term “wavelet coefficients” is often used loosely for both d's and final
§’s. Since the full procedure is a composition of orthogonal linear operations, the
whole DWT is itself an orthogonat linear operator.

To invert the DWT, one simply reverses the procedure, starting with the smallest
level of the hierarchy and working (in equation 13.10.7) from right to left. The
inverse matrix (13.10.2) is of course used instead of the matrix {13.10.1).

As already noted, the matrices (13.10.1) and (13.10.2) embody periodic (“wrap-
around™) boundary conditions on the data vector. One normally accepts this is a
minor inconvenience: the last few wavelet coefficients at each level of the hierarchy
are affected by data from both ends of the data vector. By circularly shifting the
matrix (13.10.1) N/2 columns to the left, one can symmetrize the wrap-around;
but this does not eliminate it. It is in fact possible to eliminate the wrap-around
completely by altering the coefficients in the first and last N rows of (13.10.1),
giving an orthogonal matrix that is purely band-diagonal (5]. This variant, beyond
our scope here, is useful when, e.g., the data varies by many orders of magnitude
from one end of the data vector to the other.

Here is a routine, wt1, that performs the pyramidal algorithm (or its inverse
if isign is negative) on some data vector a(1:n). Successive applications of the
wavelet filter, and accompanying permutations, are done by an assumed routine
wtstep, which must be provided. (We give examples of several different wtatep
routines just below.)

SUBROUTINE wt1(a,n,isign,wtstep)

INTEGER isign,n

REAL a(n)

EXTERFAL wtatep

USES wtstep
One-dimensional discrete wavelet transform. This routine implements the pyramid algo-
rithm, replacing a(1:n) by its wavelet transform (for izign=1), or performing the inverse
operation (for iaign=-1). Note that n MUST be an integer power of 2. The subroutine

13.10 Wavelet Transforms 95

wtatep, whose actual name must be supplied in calling this routine, is the underiying
wavelet filter. Examples of wtatep are daubd and (preceded by putset) put.

INTEGER nn

if (n.1t.4) return

if (isign.ge.0) then Wavelet transform.
an=n Start at largest hierarchy,
if (on.ge.4) then
call wtstep(a,nn,isign) and work towards smallest,
nn=nn/2
goto 1
endif
else Inverse wavelet transform,
nn=4 Start at smallest hierarchy,

if (nan.le.n) then
call wtatep(a,nn,isign)
nn=nne2 and work towards largest.
goto 2
endif
andif
return
END

Here, as a specific instance of wtatep, is a routine for the DAUB4 wavelets:

SUBROQUTINE daub4(a,n,isign)
INTEGER n,isign,NMAX UNAI is the maximum allowed value of n.
REAL a(n),C3,C2,C1,C0
PARAMETER (00'0.4829629131445341,01-0.8365163037378079,
C?'O.2211438680430134,03-—0.1294095225512604,IHII'iOZi)
Applies the Daubechies 4-coefficient wavelet filter to data vector a{1:n) (for isign=1} or
applies its transpose (for isign=-1). Used hierarchically by routines wt1 and wtn.
REAL wkap(NMAXI)
INTEGER nh,nh1,i,j
if(n.1t.4)return
if(n.gt.WMAI) pause ’wksp too amall in daub4’
nh=n/2
nhi=nh+1
if (ieign.ge.0) then Apply filter.
i=1
dou j=1,n-3,2
wkap (1)=COva(j)+C1ra(f+1)+C2ea(j+224C3na(j+3)
skap (itnh)=CIsa(j)-C2ea(j+1)+C14a(j+2)-COrn(j+3)
imieg
enddo n
wkap(i)=COesa(n~1)+Cisa(n)+C2¢a(1}+CI+a(2)
wkesp(i+nh)=C3sa{n-1)~C2ealn)+C1+a(1)-COsa(32)
else Apply transpose filter,
vkap{1)=C2+a(nh)+C1+a(n)+COsa(1)+C3=alnhi)
wksp(2)=C3+a(nh)-CO*a(n) +Ci+a(1)-C2ealnhi)
j=3
do2 i=1 ,ph-1
wkap(j)=C2+a(i)+Cleali+nh) +COsa(i+1)+C3eali+nhl)
vkap(j+1)wuC3sa(i)—COsa{itnh)+Clea(i+1)-C2¢a(i+nhl)
j=j+2
anddo 12
endif
do13 i=i,n
a(i)=eksp(i)
anddo 13
return
ERD

+ &

LB B 28 BE BN

96 13. Fourier and Specitral Applications

For larger sets of wavelel coefficients, the wrap-around of the last rows or
columns is a programming inconvenience, An efficient implementation would
handle the wrap-arounds as special cases, outside of the main loop. Here, we will
content ourselves with a more general scheme involving some extra arithmetic at
mnin time. The following routine sets up any particular wavelet coefficients whose

values you happen to know.

SUBROUTINE pwtast(n)
INTEGER n,BCMAX,ncof,ioff, joff
PARAMETER (ECMAI=S0) Maximum number of wavelet coefficients passed to put.
REAL cc(NCNAX) ,cx(BCHAL)
COMEDN /pwtcom/ cc,cr,ncof,ioff, joff
Initializing routine for pwt, here implementing the Daubechies wavelet filters with 4, 12,
and 20 coefficients, as selected by the input value n. Further wavelet filters can be included
in the obvious manner. This routine must be called {once) before the first use of pwt. (For
the case n=4, the specific routine daub4 is considerably faster than pwt.)
IFTEGER k
REAL sig,c4(4),c12(12),c20(20)
SAVE c4,c12,¢20,/pwtcon/
DATA c4/0.4829629131445341, 0.8365163037378079,
0.2241438680420134 ,-0.1294095225512604/
DATA c12 /.111540743350, .494623890398, .751133908021,
.315250351709,~. 226264693965 ,- . 129766867567,
. 097501806587, .027522885530,-.0315820393148,
.000653842201, .004TTT2575611,-.001077301085/
DATA c20 /.020670067901, .188176800078, .527201188932,
.688459039464, .281172343661,~.245846424327,
=.1959462T437T7, .127369340336, .093057364604,
=-.071394147166 ,~.029457536822, .033212674059,
.003606553567 ,-.010733175483, 001395351747,
. 001992405296 , - . 000885856695 ,— . 000116466855,
.000093588670, -. 000013264203 /
ncof=n
sig=-1,
don k=1,mn
if(n.aq.4)then
cec{k)=c4(k)
else if{n.eaq.12)then
cel(k)=c12(k)
elae if(n.eq.20)then
cc(k)=c20(k)
alse
pauss 'unimplemented value n in putset’
endif
cr{ncof+1-k)=sigecc(k)
sig=-sig
enddo 11
ioff=-n/2 These values center the “support” of the wavelets at each level.
joffm-n/2 Alternatively, the “peaks” of the wavelets can be approxi-
return mately centered by the choices ioff=-2 and joff=-n+2.
END

Once pwtset has been called, the following routine can be used as a specific
instance of wtstep.

SUBROUTINE pwt(a,n,isign)

INTEGER isign,.n NNAXI,FCMAX ,ncof,ioff, joff
PARAMETER (NMAX=2048,ICMAX=50)

AEAL a(n) ,wksp(EMAI),cc{ECMAXY),cr(NCHAI)
CONMOX /pwtcom/ cc,<¢r,ncof ,ioff,joff

13,10 Wavelet Transforms 97

Partial wavelet transform: applies an arbitrary wavelet filter to data vector a(1:n) (for
isign=1) or applies its transpose (for isign=—1). Used hierarchically by routines wt1
and wtn. The actual filter is determined by a preceding (and required) call to pwtset,
which initializes the common block pwtcom

INTEGER i,ii,j,jf,jr . k,nl,ni,nj,nh, nmod

REAL ai,ait

if (n.1t.4) retura

nmod=ncofen A positive constant aqual to zero mod n.
nisn-1 Mask of ali bits, since n a power of 2.
nh=n/2
dou j=1,n
wkap(j)=0.
enddo 11
if (isign.ge.0) then Apply filter.
ii=]l
do1y i=1 n,2
nisi+nmod+iofsf Pointer to be incremented and wrapped-around.
njwi+nmod+joft
do 12 k=1 ,ncof
jt=iand(n1 ,ni+k) We use bitwise and to wrap-around the pointers.
jr=iand(nl ,nj+k)

vksp({ii)=vkap(ii)+cc(k)ea(jt+1)
wkap(ii+nh)swksp(ii+nh)+cr (k) va(jr+1)

anddo iz
li=iiet
enddo 1
else Apply transpose filter.
iiwl
dois i=1 n,2
aima{ii)
ail=a(ij+nh)
ni=i+amod+iof? See comments above.
nj=i+nmod+joff

do 14 k=1 ncof
jf=iand (n1,ni+k)+1
jr=iand(nl ,nj+k)+1
wksp(jf)=skap(j£)+ce(k)sai
vksp(jr)=wksp(jr)+cr{k)*ail
anddo 4
iiwijel
enddo 15
endif
do1s j=1,n Copy the results back from workspace.
a(j)=eksp(j)
enddo s
return
END

What Do Wavelets Look Like?

We are now in a position actually to see some wavelets. To do so, we simply
run unit vectors through any of the above discrete wavelet transforms, with isign
negative so that the inverse transform is performed. Figure 13.10.1 shows the
DAUB4 wavelet that is the inverse DWT of a vnit vector in the 5th component of a
vector of length 1024, and also the DAUB20 wavelet that is the inverse of the 24th
component. (One needs to go to a later hierarchical level for DAUB20, to avoid a
wavelet with a wrapped-around tail.) Other unit vectors would give wavelets with
the same shapes, but different positions and scales.

98 13. Fourier and Spectral Applications

DAUB4 &5]
P | M R B | N | AR PP | e T

200 300 400 500 600 700 800 900 1000

Ak)

DAUB20 ey,

P

rare BT PP | ol g

0 100 200 300 400

Pl NI B RS I S T
500 600 700 800 900 1000

Figure 13.10.1. Wavelet functions, that is, single basis functions from the wavelet families DAUB4
and DAUB20. A complete, orthonormal wavelet basis consists of scalings and translations of ¢ither one

of these functions. DAUB4 has an infinite number of cusps; DAUB20 would show similar behavior
in a higher derivative,

One sees that both DAUB4 and DAUB?0 have wavelets that are continuous.
DAUB20 wavelets also have higher continuous deri vatives, DAUB4 has the peculiar
property that its derivative exists only almost everywhere. Examples of where it
fails to exist are the points p/2", where p and n are integers; at such points, DAUB4
is left differentiable, but not right differentiable! This kind of discontinuity — at
least in some derivative — is a necessary feature of wavelets with compact support,
like the Daubechies series. For every increase in the number of wavelet coefficients
by two, the Daubechies wavelets gain about half a derivative of continuity. (But not
exactly half; the actual orders of regularity are irrational numbers!)

Note that the fact that wavelets are not smooth does not prevent their having
€xact representations for some smooth functions, as demanded by their approximation
order p. The continuity of a wavelet is not the same as the continuity of functions
that a set of wavelets can represent. For ¢xample, DAUB4 can represent (piecewise)
linear functions of arbitrary slope: in the correct linear combinations, the cusps all
cancel out. Every increase of two in the number of coefficients allows one higher
order of polynomial to be exactly represented.

Figure 13.10.2 shows the resuit of performing the inverse DWT on the input
VeCtor €19 + €5, again for the two different particular wavelets. Since 10 lies carly
in the hierarchical range of 9 — 16, that wavelet lies on the left side of the picture.
Since 58 lies in a later (small -scale) hierarchy, it is a2 narrower wavelet: in the range
of 33-64 it is towards the end, so it lies on the right side of the picture. Note that
smaller-scale wavelets are taller, o as to have the same squared integral.

13.10 Wavelet Transforms 99

-2 DAUB4610+055 —..
i WP IS U EPETY PUE I NP T e Y

0 100 200 300 400 500 600 700 800 900 1000

[]
-2 b Lemarie ¢o + 53 -
[I TP TN P T TN T Y T P

0 100 200 300 400 500 600 700 800 900 1000

Figure 13.10.2. More wavelets, here generated from the sum of two unit vectors, ;g + e5g, which
are in different hicrarchical levels of scale, and also at different spatiat positions. DAUB4 wavelets (a)
arc defined by a filter in coordinate space (equation 13.10.5), while Lemarie wavelets (b) are defined by
s filter most easily written in Fouricr space (equation 13.10.14).

Wavelet Filters in the Fourier Domain

The Fourier transform of a set of filter coefficients c; is given by

Hw)=3 cje (13.10.8)

2

Here H is a function periodic in 2x, and it has the same meaning as before: It is
the wavelet filter, now written in the Fourier domain. A very useful fact is that the
orthogonality conditions for the ¢’s (e.g., equation 13.10.3 above) collapse to two
simple relations in the Fourier domain,

SIHOP =1 (13.109)
and
% [IHW)P + [H(w +m)|?] = 1 (13.10.10)

Likewise the approximation condition of order p (e.g., equation 13.10.4 above)
has a simple formulation, requiring that H(w) have a pth order zero at w = =«
or (equivalently)

L3

H™(m =0 m=0,1,.. ..p—1 (13.10.11)

1060 13. Fourier and Spectral Applications

Itis thus relatively straightforward to invent wavelet sets in the Fourier domain,
You simply invent a function H(w) satisfying equations (13.10.99<13.10.11). To
find the actual ¢;’s applicable to a data (or s-component) vector of length N, and
with periodic wrap-around as in matrices (13.10. 1) and (13.10.2), you invert equation
(13.10.8) by the discrete Fourier transform

1 N-l 27k —2mijk /N 3.10.12
%= 5 2 HG e i
k=0

The quadrature mirror filter G (reversed c;'s with alternating signs), incidentally,
has the Fourier representation

Gw)=e " H'(w+7) (13.10.13)

where asierisk denotes complex conjugation.

In general the above procedure will nor produce wavelet filters with compact
support. In other words, all N of the ¢;’s, j = 0,...,N — 1 will in general be
nonzero (though they may be rapidly decreasing in magnitude). The Daubechies
wavelets, or other wavelets with compact support, are specially chosen so that H (w)
is a trigonometric polynomial with only a small number of Fourier components,
guaranteeing that there will be only a small number of nonzero c;'s.

On the other hand, there is sometimes no particular reason to demand compact
support. Giving it up in fact allows the ready construction of relatively smoother
wavelets (higher values of p). Even without compact support, the convolutions
implicit in the matrix (13.10.1) can be done efficiently by FFT methods.

Lemarie’s wavelet (see [4)) has p = 4, does not have compact support, and is
defined by the choice of H(w),

315 — 420u + 12642 — 44317
Hw) = |21 - w)* 13.10.14
(w) [2(1 u) 315_4200+126Uz_403] (13)
where
. 2W .
uEsm'y vSEsinw (13.10.15)

It is beyond our scope to explain where equation (13.10.14) comes from. An
informal description is that the quadrature mirror filter '(w) deriving from equation
(13.10.14) has the property that it gives identically zero when applied to any function
whose odd-numbered samples are equal to the cubic spline interpolation of its
ceven-numbered samples. Since this class of functions includes many very smooth
members, it follows that H (w) does a good job of truly selecting a function’s smooth
information content. Sample Lemarie wavelets are shown in Figure 13.10.2.

13.10 Wavelet Transforms 101

—

wavelet amplitade
£8¢,

10°3

3

I T | TN | A T PP B R S TP
0 100 200 300 400 500 600 700 800 900 1000
wavelet number

1077

Figure 13.10.3. (a) Arbitrary test function, with cusp, sampled on & vecior of length 1024. (b)
Absolute value of the 1024 wavelet coefficients produced by the discrete wavelet transform of (a). Note
log scale. The doued curve plots the same amplitudes when sorted by decreasing size. One secs that
only 130 out of 1024 coefficients are larger than 1074 (or larger than about 1075 times the largest
cocfficient, whose value is ~ 10).

Truncated Wavelet Approximations

Most of the usefulness of wavelets rests on the fact that wavelet transforms
can usefully be severcly truncated, that is, turned into sparse expansions. The
case of Fourier transforms is different: FFTs are ordinarily used without truncation,
to compute fast convolutions, for example. This works because the convolution
operator is particularly simple in the Fourier basis. There are not, however, any
standard mathematical operations that are especially simple in the wavelet basis.

To see how truncation works, consider the simple example shown in Figure
13.10.3. The upper panel shows an arbitrarily chosen test function, smooth except
for a square-root cusp, sampled onto a vector of length 2!°, The bottom panel
(solid curve) shows, on a log scale, the absolute value of the vector's components
after it has been run through the DAUB4 discrete wavelet transform. One notes,
from right to left, the different levels of hierarchy, 513-1024, 257-512, 129-256,
eic. Within each level, the wavelet coefficients are non-negligibie only very near the
location of the cusp, or very near the left and right boundaries of the hierarchical
range (edge effects),

The dotted curve in the lower panel of Figure 13.10.3 plots the same amplitudes
as the solid curve, but sorted into decreasing order of size. One can read off, for
cxample, that the 130th largest wavelet coefficient has an amplitude less than 10—
of the largest coefficient, whose magnitude is ~ 10 (power or square integral ratio
less than 107'%). Thus, the example function can be represented quite accurately
by only 130, rather than 1024, coefficients — the remaining ones being set to zero.
Note that this kind of truncation makes the vector sparse, but not shorter than 1024.
It is very important that vectors in wavelet space be truncated according to the
amplitude of the components, not their position in the vector. Keeping the first 256

102 13. Fourier and Spectral Applications

components of the vector (all levels of the hierarchy except the last two) would give
an extremely poor, and jagged, approximation to the function. When you compress
a function with wavelets, you have 1o record both the values and the positions of

the nonzero coefficients.

Generally, compact (and therefore unsmooth) wavelets are better for lower
accuracy approximation and for functions with discontinuities (like edges), while
smooth {and therefore noncompact) wavelets are better for achieving high numerical
accuracy. This makes compact wavelets a good choice for image compression, for
example, while it makes smooth wavelets best for fast solution of integral equations.

Wavelet Transform in Multidimensions

A wavelet transform of a d-dimensional array is most easily obtained by
transforming the array sequentially on its firstindex (for all values of its other indices),
then on its second, and so on. Each transformation corresponds to multiplication
by an orthogonal matrix. By matrix associativity, the result is independent of the
order in which the indices were transformed. The situation is exactly like that for
multidimensional FFTs. A routine for effecting the multidimensional DWT can thus
be modeled on a multidimensional FFT routine like fourn:

SUBROUTINE witn(a,nn,ndim,isign, wtatep)
INTEGER isign,ndim,nn(ndim},NNAX
REAL a(s)
EXTERNAL wtstep
PARAMETER (NHAI=1024)
USES wtstep
Replaces a by its ndim-dimensional discrete wavelet transform, i iaign is input as 1. nn
is an integer array of length ndim, containing the lengths of each dimension (number of real
values), which MUST all be powers of 2. a is a real array of length equal to the product
of these lengths, in which the data are stored as in a multidimensional real FORTRAN array.
if isign is input as —1, a is replaced by its inverse wavelet transform. The subroutine
vtstep, whose actual name must be supplied in calling this routine, is the underlying
wavelet filter. Examples of ytstep are daub4 and (preceded by putset) pwt.
INTEGER i1,i2,i3,idim, k,n,nnew,nprev,nt ,ntot
REAL vksp(NMAI)
ntot=1
donn idim=1,ndim
ntot=ntotesnn{idim)
enddo nn
nprev=1
do s idim=1 ndim Main loop over the dimensions,
nenn{idim)
nnevsnenprav
if (n.gt.4) then
dois i2=0 ntot-1,nnew
do4 11wl nprev
i3=j1+i2
donz k=1,n Copy the relevant row or column or etc. into
wksp{k)=a(i3) workspace.
13=13+nprev
enddo 2
if (isign.ge.0) then Do one-dimensionai wavelet transform.
ntsn
if (nt.ge.4) then
call wtstep(wksp,nt,isign)
nt=nt/2
goto 1
andir

13.10 Wavelet Transforms 103

«lae Or inverse transform.
nt=4
if (nt.le.n) then
call vtstep(wksp,nt,isign)}

nt=nte2
goto 2
endif
sndif
i3=i1ei2
do1 k=1,n Copy back from workspace.
a(i3) =gksp (k)
13=i3+nprev
enddo 1y
enddo 14
eanddo s
andif
nprev=nnew
enddo 15
return
EFD

Here, as before, wtatepis an individual wavelet step, either daub4 or pet.
Compreassion of Images

An immediate application of the multidimensional transform wtn is to image
compression. The overall procedure is to take the wavelet transform of a digitized
image, and then to “allocate bits” among the wavelet coefficients in some highly
nonuniform, optimized, manner. In general, large wavelet coefficients get quantized
accurately, while small coefficients are quantized coarsely with only a bit or two
— or else are truncated completely. [f the resulting quantization levels are still
statistically nonuniform, they may then be further compressed by a technique like
Huffman coding (§20.4).

While a more detailed description of the “back end” of this process, namely the
quantization and coding of the image, is beyond our scope, it is quite straightforward
to demonstrate the “front-end” wavelet encoding with a simple truncation: We keep
{with full accuracy) all wavelet coefficients larger than some threshold, and we delete
{(set to zero} all smaller wavelet coefficients. We can then adjust the threshold to
vary the fraction of preserved coefficients.

Figure 13.10.4 shows a sequence of itnages that differ in the number of wavelet
coefficients that have been kept. The original picture (a), which is an official IEEE
test image, has 256 by 256 pixels with an 8-bit grayscale. The two reproductions
following are reconstructed with 23% (b) and 5.5% (c) of the 65536 wavelet
coefficients. The latter image illustrates the kind of compromises made by the
truncated wavelet representation. High-contrast edges (the model’s right cheek and
hair hightights,e.g.) are maintained at a relatively high resolution, while low-contrast
areas (the model’s left eye and cheek, e.g.) are washed out into what amounts to
large constant pixels. Figure 13.10.4 (d) is the result of performing the identical
procedure with Fourier, instead of wavelet, transforms: The figure is reconstructed
from the 5.5% of 65536 real Fourier components having the largest magnitudes.
One sees that, since sines and cosines are nonlocal, the resolution is uniformly poor
across the picture; also, the deletion of any components produces a mottled “ringing”
everywhere. (Practical Fourier image compression schemes therefore break up an

104 13. Fourier and Speciral Applications

Figure 13.10.4. (a) IEEE test image, 256 x 256 pixels with 8-bit grayscale. (b) The image is transformed
into the wavelet basis; 77% of its wavelet components are set to zero (those of smallest magnitde); it
is then reconstructed from the Temaining 23%. {c) Same as (b), but 94.5% of the wavelet componenis
are deleted. (d) Same as (c), but the Fourier transform is used instead of the wavelet iransform. Wavelet
coefficients are better than the Fourier coefficients at preserving relevant details.

image into small blocks of pixels, 16 x 16, say, and do rather claborate smocthing
across block boundaries when the image is reconstructed.)

Fast Solution of Linear Systems

One of the most interesting, and promising, wavelet applications is linear
algebra. The basic ideal1] is to think of an integral operator (that is, a large
matrix) as a digital image. Suppose thal the operator compresses well under a two-
dimensional wavelet transform, i.e., that a large fraction of its wavelet coefficients
are 50 small as 10 be negligible. Then any linear system involving the operator

13.10 Wavelet Transforms 105

becomes a sparse system in the wavelet basis. In other words, to solve
A-x=b (13.10.16)

we first wavelet-transform the operator A and the right-hand side b by
A=W.A- W', b=w.b (13.10.17)

where W represents the one-dimensional wavelet transform, then solve

A-X=b (13.10.18)
and finally transform (o the answer by the inverse wavelet transform
x=wWT.% (13.10.19)

(Note that the routine wtn does the complete transformation of A into K.)

A typical integral operator that compresses well into wavelets has arbitrary (or
even nearly singular) elements near to its main diagonal, but becomes smooth away
from the diagonal. An example might be

-1 ifi=y
Ay = {|i—j1-1/2 othervise (13.10.20)

Figure 13.10.5 shows a graphical representation of the wavelet transform of this
matrix, where i and j range over 1...256, using the DAUB12 wavelets. Elements
larger in magnitude than 10~3 times the maximum element are shown as black
pixels, while elements between 10~2 and 10~¢ are shown in gray. White pixels are
< 107°. The indices i and j each number from the lower left.

In the figure, one sees the hierarchical decomposition into power-of-two sized
blocks. At the edges or corners of the various blocks, one sees edge effects caused
by the wrap-around wavelet boundary conditions. Apart from edge effects, within
each block, the nonnegligible elements are concentrated along the block diagonals.
This is a statement that, for this type of linear operator, a wavelet is coupled mainly
to near neighbors in its own hicrarchy (square blocks along the main diagonal) and
near neighbors in other hierarchies (rectangular blocks off the diagonal).

The number of nonnegligible elements in a matrix like that in Figure 13.10.5
scales only as N, the linear size of the matrix; as a rough rule of thumb it is about
10N log,(1/¢), where ¢ is the truncation level, ¢.g., 10~°. For a 2000 by 2000
matrix, then, the matrix is sparse by a factor on the order of 30.

Various numerical schemes can be used to solve sparse linear systems of this
“hierarchically band diagonal” form. Beylkin, Coifman, and Rokhlin[1] make
the interesting observations that (1) the product of two such matrices is itself
hierarchically band diagonal (truncating, of course, newly generated elements that
are smaller than the predetermined threshold ¢); and moreover that (2) the product
can be formed in order N operations.

Fast matrix multiplication makes it possible to find the matrix inverse by
Schultz’s (or Hotelling’s) method, see §2.5.

106 13. Fourier and Spectral Applications

Figure 13.10.5. Wavelet transform of s 256 x 256 matrix, represented graphically. The original matrix
has a discontinuous cusp along its diagonal, decaying smoothly away on both sides of the diagonal. In
wavelet basis, the matrix becomes sparse: Components larger than 10~ are shown as black, components
larger than 10~° as gray, and smaller-magnitude components are white. The matrix indices ¢ and 5
number from the lower lefi.

Other schemes are also possible for fast solution of hierarchically band diagonal
forms. For example, one can use the conjugate gradient method, implemented in
§2.7 as linbcg

CITED REFERENCES AND FURTHER READING:

Daubechies, i, 1992, Wavelots (Philadeiphia: S.1.AM.).

Strang, G. 1989, SIAM Review, vol. 31, pp. 614627,

Beyikin, G., Coitman, R., and Rokhlin, V. 1991, Communications on Pure and Applied Math-
ematics, vol. 44, pp. 141-183. [1]

Daubechies, |. 1988, Communications on Pure and Appliad Mathematics, vol. 41, pp. 909-906.
12

Vaidyanathan, P.P. 1980, Procasedings of the JEEE, vol. 78, pp. 56-93. [3)

Maliat, S.G. 1989, /EEE Transactions on Pattern Analysis and Machine Intelligence, vaol. 11,
pp. 674-693. [4)

Freedman, M.H., and Press, W.H. 1982, preprint. [5]

