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We have developed a self-consistent spin-polarized Green's function technique within
the local spin-density {formalism which is suitable for an efficient and reliable description
of the electronic and magnetic properties of random transition metal surfaces. The all-
electron linear muffin-tin orbital method in the tight-binding representation is used to
describe the electronic states, while the semi-infinite nature of the system is incorporated
within the surface Green's function approach. The potentials are treated within the
atomic sphere approximation including both the monopole and the dipole components
of the charge density. The effect of disorder is treated within the coherent potential
approximation. Applications to random FeCo overlayers on a non-random fcc Cu(001)

gubstrate are shown.

1 Introduction

The study of low-dimensional magnetic systems such as surfaces, interfaces and overlay-
ers, has attracted a great deal of atiention in the last decade (1]. Such a study offers
a number of promising practical applications in the area of magnetic recording and new
device applications. The lowering of symmetry and of the coordination numbers as com-
pared with the bulk, leads to a variety of interesting phenomena such as an enhanced
magnetic moment at the surface, localized interface states, correlation between structure
and magnetism, etc.

Several ab-initic numerical techniques based on the local spin density approximation
(LSDA), including the full-potential linearized augmented plane wave (FLAPW) method
[2], were developed to calculate the electronic and magnetic properties of materials with
two-dimensional transiational symmetry. Such electronic structure calculations played
pot only a key role in the understanding of a great amount of the experimental data but
they were also able to predict new systems with desired technological properties. Such
calculations rely mostly on the modelling of the semi-infinite geometry of the system
either by a single slab [2, 3] or in terms of separated slabs within a supercell approach
[4]. Despite of the success of this type of approach in providing an understanding of
the electronic and magnetic properties of surfaces and interfaces, methods which do not
suffer from the slab geometry became more and more important. In particular, the Green :
function (GF) approach, which takes properly into account the symmetry at the surface, is
very promising. Several surface Green's function techniques have been developed recently
such as the layer Korringa-Kohn-Rostoker (LKKR} method {5], the embedded Green’s
function technique [6], and the surface Green's function (SGF) [7, 8] approach developed
in the frame of the tight-binding linear muffin-tin orbital method (TB-LMTO) 9]. An
extensive comparison of calculated work functions and surface energies using the full-
potential LMTO method in a supercell geometry 14] and the LMTO-SGF technique [10]
led to a very good agreement and proved the power and reliability of the LMTO-SGF
approach for ab-initio surface electronic structure calculations. Very recently the LMTO-

SFG approach was implemented also to the case of surfaces of magnetic crystals {111,



Recent progress in developing of sophisticated synthesis techniques, like the molecy-
lar beam epitaxy in ultrahigh vacuum, has led to the fabrication of ultrathin magnetic
overlayers (down to one monolayer) deposited on a noble meta] substrates, ¢.g. Fe or Co
monolayers on 2 Cu{(001) substrate. Such systeme can serve as a model for the study
of two-dimensional (2D) magretism. The study of bulk magaetic properties of materials
with varying environment like alloys of different compositions, enriched significantly the
understanding of the nature of magnetism. Undoubtedly, the time has come for analogous
studies of 2I) jtinerant ferromagnetism of binary alloys,

Methods based on slab or supercell geometries are of limited use for tandom surfaces
because they require an excessive number of atoms to be represented as such. The Greep's
function approach based on multiple scattering approach, however, seems to be a suitable
tool for the study of the combined effect of disorder and surface as demonstrated recently
for random overlayers (12, 13), interfaces {14), and surfaces of random alloys (15, 16). The
only studied 8pin-polarized case is that of Ref. 14 for the case of a metallic interface with
rather smooth changes of Potentiala at the transition region between two solids. No similar
study exista for the case of random magnetic surfaces at the solid-vacyum interface,

In this paper we report on the implementation of a spin-polarized version of the
LMTO-SGF method developed recently for non-magnetic random surfaces {12, 13, 15,
16] and its application to the case of a random magnetic overlayer on a noble metal
substrate. As a case study we chose a disordered FeCo overlayer on an fec Cu(001)
substrate as a Possible realistic model of 3[) alloy magnetism. The chojce of thia system
is supported by the facts of easy Fe-Co solubility and negligible Fe-Cu or Co-Cy solubilities
together with the fact that pure Fe and Co monolayers were already successfully fabricated

and studied theoretically. In addition, the carresponding three-dimensional counterparts,
namely bulk bee-based random FeCo alloys were extensively studied both experimentally
and theoretically. For the Fem_,Co,/Cu(Oﬂl) system we have calculated atom. and
layer-resolved densities of states and corresponding magnetic moments as well as the

work function through the whole concentration range.

2 Formalism

The main features of our method can be summarized as foliows: (i) application of the
all-clectron tight-binding linear muffin-tin orbital (TB-LMTO) method [9] within the
local spin density approximation (LSDA) to describe the electronic structure from first-
principles; (ii) description of the semi-infinite geometry of the system using the surface
Green's function {SGF) formalism within the principal layer (PL) coneept (Bl (iii) use
of the coherent poteatial approximation (CPA) approach extended to inhomogeneous
systems like random overlayers, surfaces [12, 15] and interfaces; (iv) characterization of
the vactum region by empty spheres which Fepresent the continuation of the semi-infinite
solid to infinity on the vacuum side; (v) deseription of the potentials for the constituents
within the atomic sphere approximation (ASA) [1], and (vi) inclusion of monopole and
dipole terms of the charge deasity for the calculation of the Madelung potential (7] at the
surface of the solid.

The starting point of our approach is the non-relativiatic semi-1nfinite Hamiltonian in
the orthogonal MTQ representation [9]

Hi ry = Chubrm Suu + (Mg, )12 (S =" S b s (A )12, (1)

In Eq. (I), R and R are the site indices, L and L’ refer 10 the orbital indices, and
o denotes the spin index (¢ =1,1). The Hamitonjan is diagonal in & only for collinear
magnetic structures, The basis set consists of s-, p-, a.nd d-orbitals (L = {im),! < 2). The
geometry of the problem enters the Hamiltonian only via the structure constant matrix
5% Due to the semi-infinite nature of the problem, all layers paralle] to the surface have in
principle different local physical properties. In order to overcome this difficulty, we assume
that from a certain layer on, the electronic Properties of all subsequent layera are identical
to those of the corresponding infinite system, namely either to a homogeneous substrate
or to the vacuum. The system is thus considered to be divided into three regions: (i) a
bomogeneous semi-infinite bylk substrate, (ii) a homogeneous vacyurm region represented
by empty spheres and characterized by flat potentials, and (iii) an intermediate region

consisting of several {M} layers where ajl inhomogeneities (chemica] or electronic) are
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located, and which consists of a few layers of empty spheres and a few top layers of the
vacuum-solid interface. We neglect relaxations of surface layers as well as effects connected
with different sizes of the overlayer atoms. Under these assumptions cne can use the ideal
bulk structure constant S°.

The properties of individual atoms occupying the ideal lattice sites are characterized
in general by random potential parameters X%, (X = C, A, and 7). Note that due to
self-consiatency for charge and magnetization densities the potential parameters depend
on the spin index ¢ and also on the site index H. The potential parameters have a simple
physical meaning: they describe the energetic positions g, the widths A%;, and the
distortions vy, of the 'pure’ RLo-bands.

In order to perform the configurational averaging within the CPA {17} and to intro-
duce two-dimensional translational symmetry (9], the orthogonal MTO representation
is transformed lo the so-called most-localized MTO representation. The corresponding
Green's functions, G*(z} = {z— H°)™" and ¢°(z) = (P°(z) — §), are related by an exact
scaling transformation (1, 9, 17]. The quantity § is the screened structure constant matrix
with elements Spy a1+, while P?(z) is a site-diagonal potential function matrix with ele-
ments P§y(z) which, in turn, are simple functions of the potential parameters Cg;, A%z,
and 7% - The potential functions are (i) randomly PR (z) and PEf(z) at the surface
of the random alloy, (i) randomly P{*(2) and PF(z) in the overlayer, and PR (2) in
the non-random substrate. The potential functions Py (z) for the empty spheres are
non-tandom and spin-dependent in the intermediate region, but spin-independent in the
VACUUIT Tegion.

The use of screened structure constants has two important advantages: (i} The config-
urational averaging within the CPA can be performed without additional constraints {17],
since S is non-random by definition and P?{z) is a random, but ste-diagonal operator.
(i) The short-range character of 5 allows to introduce the concept [8] of principal layers,
which greatly facilitates the theoretical treatment of the semi-infinite geometry of the

problem.

The configurationally averaged resolvent
#(2) = {(P7(z) - §)7) = (P*(2) - 5)! @

is of central importance for the present formalism. In Eq.(2), P"(z) is the coherent
potential function which describes the averaged motion of an electron in a random solid.
P?(z) is found by solving the CPA equations for each layer in question [12, 15]

X g5

axd B
7 (2)

0, (3)

(2} = PR(a){L + & ()| B (2) — PR (a)l} "

Here, ¢ are the layer-dependent concentrations of atoms a = A, 5 in a random binary
alloy which are generally different from the bulk concentrations ¢ff in a few top layers
(possible segregation of one of alloy components). For a particular site R, in a given layer
p, 127 (z) and P#(z) are the on-site elements of the single-site t-matrix and of the coherent
potential function, respectively. It should be noted that within the CPA the coherent
potential function Py () is a site-diagona! operator [17]. The quantity ;(z) = g5 &, (2)
is the site—diagonal element of the configurationally averaged Green's function §°(z) for
a given layer p, which depends on all related layer coherent potential functions Pj(2).
In other words, Eqs.(3) represent a sct of coupled CPA equations for the layers in the
intermediate region. In the case of a random overlayer, the CPA equations need to be
solved only for the random overlayer. The evaluation of ®7(z) will be discussed briefly
below (see Egs. 9 to 11). Finally, it should be noted that the quantities t*7(2), P°(z),
and ®7(z) are matrices with respect to the orbital quanturn numbers L = {{,m). Due to
the lowering of the symmetry at the surface, these matrices are non-diagonal with respect
to L even for cubic lattices and { < 2. We recall that in the ron-relativistic limit and
for collinear magnetic structures, they are diagonal matrices in spin space. The coherent

potential function matrix P*(z) for the system under consideration has the following form

P*(z)  vacuum region
P (2) = Pg(z) layerpinthe intermediate region (4)
P (z}) bulk region.



Note that the coherent potential function P;(z) is simply the potential function of the
corresponding constituent for the layers without disorder, namely for the layers of empty
spheres in the intermediate region and for the substrate layers in the overlayer case. The
potential function P*(z) of the vacuum is known analytically {7] while for the ideal bulk
P4#(z) is determined from the charge self-consistent version of the bulk TB-LMTO-CPA
methed [17).

As already mentioned, the concept of the principal layers is a very useful theoretical
tool for surface-related problems [8]. The semi-infinite solid can be partitioned into PLa
such that only nearest-neighbor PLa are coupled by the structure constants, A principal
layer can include one or more atomic layers depending on the orientation of the surface, the
underlying crystal structure, and the screening of the structure constants S. It defines the
characteristic dimension D of the problem, D=npg(lmes+1)?, where npy is the number
of atomic layers in a PL and [, is the maximal angular momentum. The advantage
of a tight-binding representation with fast decaying structure constants is thus obvious.
In the following we shall limit ourselves to the simplest case, when the PL consists of
one atomic layer with one atom per primitive cell. This includes a number of important
low-index surfaces, e.g. the fcc(001) and foe{111) faces ( first nearest-neighbor terms in
§), or the bec(110) face ( first and second nearest-neighbor terma in S ).

Then, by employing translational symmetry parallel to the sample surface, one gets

for the intralayer and interlayer structure constants

Sea(ky) = Soo(ky), (5
Swlky) = Su(k)Mpira + Siolky)p-1.4

where
Swlb)= T exp{iby- R} S(R, ~ R). ®
Re{Rpe}
Here, k) is & vector from the surface Brillouin zone (SBZ), and R,, denotes a vector which

connects one site in layer p with other site in layer . The bulk structure constants depend

only on the difference vector f, ~ Ry. It should be noted that the structure constants are

independent of o.

The configurationally averaged Green's function matrix

" (b, 2) = (P*(2) - S(ky)) ()

is represented by an inverted infinite block-tridiagonal matrix with respect to the PL
indices as it is seen from Eqe. (5) for the interlayer structure constants. A homogeneous
semi-infinite system (bulk substrate or vacuum) for which the physical properties are iden-
tical in each layer, can be characterizad by a single quantity, the surface Green’s function
(SGF) (8, 15]. By definition, the SGF is the tap PL projection of the Green’s function of
the homogeneous semi-infinite bulk alloy or vacuum. The SGF can be determined directly
in real space by using the technique developed in Ref. 8, which avoids the use of the bulk
tesolvent common to other approaches (7). The SGFs for the bulk substrate G (ky,z)

and the vacyum ¢¥#(ky, 2) are found from the equations

g"'(k",z)
c'(klil z)

(P(2) ~ Soolly) — Sun () 6* by, 2) Suol ),
(P*(2) = Sually) ~ Sio(ky) 8*(hy, 2) Son(y) ™, ®)

which have to be solved self-consistently for each ky and energy z = E+i6. The equations
for the SGFs (8) have a simple physical meaning: the first two terms on the r.h.s. of Eqgs.
(8) describe the inverse Green's function of an isolated layer of atoms, [G"*(ky,z)]™" =
P?(z} — Soo(ky), which is coupled to the semi-infinite bulk and vacuum system by the
5GFs, G*(z) and Gv#(z), respectively. These SGFs provide the necessary coupling of
the intermediate region to the semi-infinite bulk aubsirate and vacuum, For the (p,q)
block (1 < p,g < M) of the inverse configurationally averaged Green's function 7°(ky, 2)

me gets

@020 = {P3(2) — o) ~ T3 (81, )} ~ Sorki)pun — Suo(k)bporss  (9)

where
DIk, 2) = Silky)G*(ky, 2)So (ky), _
Polkuz) = 0 forp=23,. , M-1, (10)
Ta(hyz) = Sa(kpG* (ky, 2)S10(ky).

8



Here P (z) are the corresponding elements of the coherent potential function in the inter-
mediate region (see Eq.(4)}. The quantities I'] and I}, have the meaning of embedding
potentials of the intermediate region to the vacuum and bulk regions, respectively. In
other words, the concept of the SGF allows to reduce the original problem of an infinite
" order in PL indices to an effective problem of finite order M in PL indices.

The desired quantity $;(z) is then obtained by integrating the (p, p) block of §°{ky, z)
over the SBZ:

o -4 1 =
%, (z) = gp p {2) = F“Ey,,(th)- (11)
L]
In this equation, Nj is the number of atoms in a given layer p. The gquantity ®;(z), in
turn, determines the layer-, component., and spin-resolved charge density p5(r) relevant
for the LSDA part of the problem:
Er
LA UEDY f ot (1 E) Dy (E) Wi (r, E)dE. (12)
LLf
Here, W77 (r, £} = Ry(Ir|, E)YL(7) is a partial wave normalized to unity within the
atomic sphere of radius s, r = (|r],7), and EF is the substrate Fermi level. The quantity

D:‘L’L,(E), which might be termed the local density of states matrix, is given by

i(E) = -%ImP‘;’,fL.(EHO), 13)
Pn.o 1/2 ﬂf 3
Frit®) = ["f,—”] (@5 ()1 + 1577 (=) - PR ()95(2)}) Y [%_P»g ()] _

Note that £77(z) is the on-site element of the conditionally averaged Green’s function [15,
[7] in the orthogonal MTOQ representation. The radial part Ry*(Jrf, E) of a partial wave
is the regular solution of the radial Schrédinger equation corresponding to the following

spin-polarized spherical LSDA potential

2Z°
vre(lrl) = T + Vi (Irl (870 + Vas(as(irl), me(lr])) + VMo, (14)
wherﬂ
N o 1S
L
ot = agac; (ﬁ\/_i—ll D,, Ir[t¥L(#) p2(r) F — z%s,,,,) , (15)
pRr) = p3Nr) 4 pNr),  mlir) = g2 (r) — g2 N(r).

9

In Egs. (14,15) Z* is the atomic number of a given atom & = A, B in a random alloy. The
first three terms in (14) are in turn the atomic Coulomb potential, the Hartree and the
spin-polarized exchange-correlation term. Note that both spin-up and spin-down charge
densities or, equivalently, the total charge 53(|r|) and magnetization 2 (|r|) densities are
needed in the exchange-correlation part of the potential. The superscript tilda indicates
the spherically-symmetric part of the charge density. The last term in (14), the Madelung
contribution, is the averaged electrostatic potential acting on electrons in the p-th layer.
It originates from the redistribution of the electron density (as compared with the bulk
ane) in the various layers due to the presence of the surface and of the chemical het-
erogeneity. The generalized intralayer and interlayer Madelung constants M) describe
such interactions. The quantity Of is the configurationally averaged multipole moment
of the noo-spherical charge density in the p-th layer. We include not only the monopole
{{ = 0,m = 0) but also the dipole ( = 1,m = @) contributions [10}, whereby the axia of
quantization is perpendicular to the surface. The Madelung potential is then obtained
as a spherically averaged field generated by these monopoles and dipoles. Similarly, the
electrostatic dipole barrier By, acrosa the surface has contributions both from the net
charges (§, = G~} and from the dipole moments {d, = /3 @;~'™=°) in spheres. Details
of the derivation of Madelung constants M2 are given in the Appendix to Ref. 16.
Finally, layer-resolved densities of states (DOS) and layer-resolved spectral densities
Ay(ky, E) can be determined by transforming back to the original orthogonal MTO rep-
resentation. For example, the layer-DOS resolved with respect to component a, orbital
quantum number L, and spin o is given directly by the quantity D;7.(E), Eq.(13), tl e
on-site element of the physical Green's function. By integrating the spin-resolved layer
DOSs up to the Fermi level Er, the corresponding integral DOSs and local magnetic
roments are found. The expression for A(ky, E) is more involved as it requires also the
knowledge of the conditionally averaged site off-diagonal elements of the physical Green's

function. Ita explicit form can be found in Ref. 17.
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3 Numerical results and discussion

The theory developed in Sec. 2 is illustrated here for the case of random Feygp-,Co,
overlayers on an fcc(001) face of Cu. The CPA part of the problem is solved for the
overlayer only, and separately for each spin otientation o = 1 (majority spin) and ¢ = |
(minority spin). The k-space integration in Eq. (11) was performed over the irreducible
part of the surface Brillouin zone of the fec(001) surface using 21 special ky-points {18].
The LSDA part of the problem requires an evaluation of integrals over the energy interval
(Ewmin, EF). We substituted this integral by an integral over a semi-cirele in the complex
energy plane which starts at E,,;, below the occupied part of the spectra and ends at
EF, using typically 10 to 15 energy points and the Gaussian quadrature method. The
1 termediate layer consiats of three sample layers (an averlayer and two top substrate
layers) plus two layers of empty spheres at the vacuum-solid interface. In this region the
potentials are varied until the self-consistency with respect to both CPA and LSDA is
obtained. The Voako-Wilk-Nusair form [19] of the exchange-correlation functional was
used. The charge sclf-consistent bulk TB-LMTO calculations to determine P*(z) and
Fermi level were actually performed by coupling the idea) 'left’ and ’right’ semi-infinits
crystals [13]. In this way, a maximum internal consistency for the bulk and surface
calculations can be obtained as all involved Brillouin zone integrations are performed
over the same, surface Brillouin zone.

The layer-resolved DOSs for a random paramagnetic FesoCoso overlayer on Cu(001)
are shown in Fig. 1. The high value of the overlayer DOS at the Fermi level indicates
the tendency of the system to form a magnetic phase thereby lowering its energy. The
first substrate layer is significantly influenced by the overlayer as a result of the large d-
level separation between Cu- and Fe- and/or Co-atoms. This is obvious after comparison
with the corresponding DOSs of a clean Cu(001) crystal. The second substrate layer is
influenced only weakly and ia essentially buik-like,

The layer- and component-resolved DOSs for a random ferromagnetic FegCosg over-
layer on Cu(001) are plotted in Figs. 2 and 3 for up- and down-spin, respectively. The

spin splitting effectively decreases (increases) the separation of the Cu- and Fe- and/or

11

Co- d-levels. This reflects the stronger influence of the first substrate layer DOS by the
overlayer in the down-spin case. The up- and down-spin electrons behave differently as
well with respect to the alloy disorder. While the rigid-band-like behaviour of the up-spin
electrons is obvious, the down-spin electrons experience a stronger disorder as can be seen
from the different component Fe- and Co-DOSs. A similar effect was observed in random
bec bulk FeCo alloys [20].

The overlayer DOSs over the whole concentration range are plotted in Figs. 4 and § for
up-spin and down-spin cases, respectively. We observe strong ferromagnetism stabilized
by the substrate throughout the whole concentration range: the up-spin alloy bands
are filled and hardly influenced by disordet in the overlayer. The corresponding down-
spin alloy bands show 2 considerable narrowing with increasing Co-concentration. This
is in contrast with the concentration independent alloy bandwidhts of bec FeCo bulk
alloys [20]. On the contrary, the corresponding level discrder as measured by a quantity
§ = (Cfr - CE5) [ w™ior | where wotioy jy the averaged alloy bandwidth, is nearly twice
as strong in the bulk case. These differences can be traced down to the basic difference
between 3D alloy magnetism and 2D overlayer alloy magnetism. In the latter case the
Fermi level is fixed by the substrate and charge neutrality in the system is achieved at
the coet of the reconstruction of the electronic structure at the surface. In the bulk alloy
the charge neutrality is achieved simply via a shift of the Fermi level to accommodate
the correaponding number of electrons. This interesting phenomenon deserves, however,
a more detailed consideration.

The magnetic properties of random overlayers are summarized in Table 1. The results
for Fe and Co monolayers on fcc Cuf001) substrate, mXe =280 45 and mSe =1.80
#g, compare reasonably well with the corresponding values obtained by a slab FLAPW
method [21}: mE* =2.69 up and mE® =1.79 up. The Fe-magnetic moment in Fe/Cu(001)
is largely enhanced as compared to the bulk-like bee Fe-moment (2.25 #8), while the Co-
moment in Co/Cu(001) is only slightly higher than the bulk-iike bec Co-moment (1.70
#8). The bulk values were calculated consistently by a spin-polarized version of the TB-
LMTO-CPA method. In accordance with FLAPW calculations [21] we note a very weak
polarization of top substrate layers,

12
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The calculated linear decrease of the averagedl overlayer magnetic moment with the
Co-concentration is a direct consequence of the stabilization of the atrong ferromagnetism
in terms of the substrate Fermi level. The local Fe- and Co-moments exhibit very weak
concentration dependence as their up-spin bands are filled and there is no possibility to
increase their occupation and thereby corresponding magpetic moments. This situation
should be contrasted with the case of bulk bee FeCo alloys, where the weak ferromagnetism
of Fe gives the possibility to fill approximately 0.3 spin-up holes with spin-down electrons
and thus to increase the local Fe moment by about 0.6 sp at the Co-rich end [20].

The calculated work functions of Fe/Cu(001) and Co/Cu(001) overlayers agree weil
with the corresponding FLAPW values (see Table 2). The slightly higher values obtained
in present calculations are compatible with similar trends found for paramagnetic surfaces
[10]. Note, however, the nearly perfect agreement for difference of the work functions
of Fe/Cu({001) and Co/Cu(001) overlayera in both calculations. The ealculated work
functions of random FeCo/Cu{001) overlayers increase monotonically and almost Lineazly
with the Co concentration, as to be expected from the higher value of the Co/Cu(001)

work function as compared to the Fe/Cu(001) one.

4 Conclusions

We have given an account of an efficient self-consistent Green's function method to cal-
culate electronic and magnetic properties of random surfaces of transition metals. The
approach is based on the local spin density approximation within the all-electron first-
principles tight-binding linear muffin-tin orbital method. The short-range character of
intralayer and interlayer interactions facilitates the use of the surface Green’s function
approach which takes proper account of the reduced symmetry at the surface. The effect
of disorder is included in the coherent potential approximation.

We have applied the formalism to the case of random FeCo overlayers on a fcc Cu{001}
substrate. In the cases of the pure Fe and Co mounolayers our results for magnetic moments
and work functions are in very good agreement with recent full-potential slab calculations.

The averaged magnetization of a random overlayer depends linearly on the composition

13

since the strong ferromagnetism is stabilized by the substrate over the whole compaosition
range. As a consequence of the greater exchange splitting of Fe, the majority spin electrons
behave rigid-band-like whereas a strong influence of alloy disorder in the overlayer on the
minority spin electrons is found.

Electronic structure calculationa like the present ones in the conjunction with the
generalizsed perturbation method are the starting point for the use of an effective Ising
model in the atudy of order-disorder transitions in the presence of magnetic moments.
A more detailed study of disordered bec FeCo alloys and of disordered FeCo overlayers
on the Cu(001} substrate is necessary for a deeper understanding of the basic differences
between itinerant alloy magnetism in three and two dimensions. Such an approach is
beyond the scope of the present paper and will be subject of forthcoming publications.
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Table 1: Calculated averaged (m:) and component resolved (mZ,, a=Fe, Co) magnetic
moments for random FeCo overlayers on an fcc Cu(001) substrate. The magnetic moments
in the first (m{™} and second (m$*) substrate layers are also given. All values are in Bohr
magnetons. The values in brackets denote the corresponding single impurity case.

Felayer FenCox FewCosa FesCom  Co-layer
my 2798 2530 2307  2.057 1.797
mi* 2708 2817 2844 2871 (2.891)
mS  (L728) 17149 1770 1.786 1.797
m&*  0.015 0.014 0.014 0.012 0.009

m{Y —0.010 -0009 —0.007 -0.007 -0.007

Table 2: Calculated work functions {eV) for random FeCo overlayers on an fcc Cu{001)
subatrate. For the monolayer coverages we compare our results with available full-
potential FLAPW calculations of Ref. 21 using a slab gecmetry.

Fe-layer FenCoyu FeyCogp FeyCom Co-layer
this work 529 5.37 5.42 5.48 5.55
slab FLAPW 5.09 534
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Figure Captions

Fig. 1: Layer-resolved denaities of atates of a random paramagretic FegoCopg overlayer
on the Cu(001) substrate. The density of states of a clean Cu{001) surface (shown in
dotz) and the bulk density of states are also given. The overlayer and first two substrate
layers are denoted by ov, sl, and =2, respectively. The vertical lines denote the position
of the substrate Fermi level.

Fig. 3: Spin-up layer- and component-resolved densities of states of a random ferromag-
netic FeoCogo overlayer on a Cu(001) substrate: Fe (full line} and Co {dashed line). The
bulk density of states is also given. First two substrate layers are denoted by a1, and 52,
respectively. The vertical lines denote the position of the substrate Fermi level.

Fig. 3: Spin-down layer- and component-resolved densities of states of a random ferro-
magnetic FegoCoso overlayer on a Cu(001) substrate; Fe (full line) and Co (dashed line),
The bulk density of states is also given. First two substrate layers are denoted by sl, and
82, respectively. The vertical lines denote the position of the substrate Fermi level.

Fig. 4: Concentration dependence of the spin-up layer-resolved densities of states of a
random ferromagnetic Feygo_oCo, overlayer on a Cu(001) substrate. The vertical lines
denote the position of the substrate Fermi level.

Fig. 5: Concentration dependence of the spin-down layer-resolved densities of states of
 random ferromagnetic Feygo—.Co, overlayer on a Cu{001) substrate. The vertical lines
denote the position of the substrate Fermi level,
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