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I. Introduction

Thirty years before the date of this article, one of the founding editors of this
series proposed and elaborated the concept of the impetfection in a ncarly
perfect solid® as a way of understanding the structure-sensitive properties of
crystalline matter. His synthesis has since proven to be one of the bases upon
which much of modern materials science rests. Included in the original list of
fundamental imperfections was the dislocation, which was originally proposed
by Orowan et al. in 1934274 to explain the plastic mechanical properties of a
solid. We suggest that the crack should be added to this list, and argue that the
crack and dislocation taken together comprisc what might be termed a
“complete set” for understanding the mechanical failure of crystalline
materials.

The argument follows from the fact that materials failure exhibits a bipolar
character: i.c., materials are classifiable in terms of their relative brittieness or
ductility. A material at the extreme ductile pole flows plastically like taffly when
stressed above its clastic limit, and finally separates by necking, as depicted in
Fig. 1. Pure copper single crystals are excellent prototypes of thisextreme pole.
The necking failure in this crystalline case involves only dislocation processes,
and is often termed plastic rupture. At the opposite pole of brittle failure, the
material is perfectly clastic up to a critical stress at which it cleaves
catastrophically (Fig. 2). Ordinary silicate glasses are the most widely known
examples of brittle fracture, but, because it is crystalline, silicon at room
temperature is perhaps a better prototype. At this pole, no dislocation activity

' F. Seiz, in “Imperfections in a Nearly Perfect Solid” (R. Smoluchowski, ed}, p. 3. Wiley, New
York, 1952,

£ Qrowan, Z. Phys. 89, 605, 634 (1934).

3 M. Polanyi, Z. Phys. 89, 660 (1934).

“ (. 1. Taylor, Proc. R. Soc. London Ser. A 145, 362 (1934).
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a b c
FiG. 1. A rod of ideally ductile material when pulled develops a region of plastic instability
which finaily thins uniformly down to a sharp poin.
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L
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FiG. 2. Anideally brittle material when pulled separates suddenly by cleavage with no prior or
simultaneous deformation. A notch is shown which localizes the plane of fracture.

at ail is observable at failure, and the fracture is due to the propagation of a
single atomically sharp cleavage crack right through the specimen.

The conceptual importance of the two types of defects operating at these
opposite poles derives from the fact that the material in each case fails at an
average stress level which is often many orders of magnitude less than the
theoretical strength of the material, expressed in terms of its constituent
atomic bonds. This low failure stress at the two polar extremes thus constitutes
a fundamental problem in mechanical failure. The reader is reminded that, in
the case of the dislocation, this problem is solved in principle, because the
dislocation is a lattice defect whose atomically sized core contains stresses
equal to the theoretical shear strength of the constituent atomic bonds. Under
a modest external stress, the dislocation translates through the crystal,
shearing bonds as it goes, in a progressive fashion. When it traverses a crystal
from one side to another, a shear of one atom spacing results. Generation of
new dislocations in the local region of the macroscopic neck in the sample then

i



4 ROBB THOMSON

explains its final separation. Similarly, the atomicall

{Fig. 3) possesses & core of atomic size :t its tip where th{: :rri:gcgt?ev::\?g:li?igz
lo the tensnlg strength of the bonds, and when the crack passes through the
cryslal,.agam the bonds are broken progressively until the entire crystal
cle:_:ves into two halves. Thus the dislocation and crack are twin lattice defects
:v!alnch jointly provide an answer to this first fandamental problem of materials
ailure.

For_luuately_ for materials technology, however, the vast majority of
materials are situated at neither pole, and are much stronger than pure single
crystal copper, and much tougher than untreated silicate glass. (The concept
:)fl;‘lough_ncssl” \:';Il be deﬁm';i more carefully later, but for the present it can be
aken as sim e energy a i i
taker pmpa:a{cs.) gY absorbed from the external stressing machine as the

M_aleriais of hligh strength and toughness have been the goals for a large
portion of rnate_nals research for many years, and the detailed understanding
of these properties is still elusive, Qualitatively, however, materials are tough
and strong begausc of the rich variety of interactions dislocations have with
themselves, with cracks, and with other imperfections, and perhaps the
greatest conceptual difficulty of the subject is connected with the collective
character of this interaction. Thus the understanding of the two complemen-
tary material properties of strength and toughness constitutes a second major
fundamental problem in materials science of very great proportion, which is
yet largely unsolved. In this article, we shall be primarily concerned with
toughness and the properties of cracks, which constitutes only half of the total
problem associated with mechanical failure, though the problem of strength is
closely related to and overlaps that of toughness. ’

It is possible to get close to the heart of the problem of toughness by
focu_smg on the structure of the uaderlying cracks in a solid. In the next
section, where some of the background phenomenology of fracture will be

1] [
q # F 'S8
- [ )

) S J
FiG. 3. Diagram of a crack in a two-dimensional square lattice with external forces exerted at

the center of the crack. Bonds at the two crack 1ips are nonlinear. The nonlinear attractive forces

al the tip are iabeled f and the external applied forces at the center of the crack are labeled F.
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displayed, the ductile/brittle duality will be found to extend or persist well into
the middle ground of the ductile/brittie axis. It persists in the sense that even
though a failure may appear macroscopically 1o be cracklike, on closer
microscopic examination, the “crack™ will be found to be quite blunt and
irregular in shape, without the characteristic atomically sharp tip of the
cleavage crack. On the other hand, a crack showing considerable toughness
may consist of a sharp underlying cleavage crack, but be associated with large
numbers of dislocations. On moving from relatively ductile to relatively brittle
materials, the shape of the underlying crack changes from a blunt notch or
rounded hole which expands by purely plastic means (ie., dislocation
formation from the material ahead of the crack, or from corners on the crack
surface, cither of which usually leads to necking on a microscale) to a sharp
crack which advances by cleavage. This change in mechanism when induced in
a given specimen or structure usually has dramatic, tangible, and even
practical consequences, as for example when a material becomes embrittled by
cxternal chemical attack.

A valuable key in the approach to the toughness problem is to distinguish
between an intrinsically brittle material and an intrinsically ductile one in
terms of the atomic structure of their cracks. We show that the first class of
materials can sustain an atomically sharp crack stably in the lattice without
breakdown by dislocation generation, while the second class cannot. In those
materials where the sharp crack is stable, cleavage crack growth is possible; in
the opposite case, only tougher ductile crack growth is possible. This
distinction between intrinsic brittle or ductile cracks may depend upon
external conditions, as well as on the material itself. This distinction will be
modified as we develop it, for cxample, by considering a middle ground where
the crack is only barely stable, and by considering the effects of dislocations
gencrated in the bulk material; but without undercutting its overall usefulness
in sorting out the enormously complex phenomenology of fracture.

After establishing the basic distinction between intrinsically ductile and
intrinsically brittle materials, the study of toughness then proceeds to develop
the dislocation interactions with the two types of cracks and from this to
establish the fracture criterion. Unfortunately, much of this analysis, espe-
cially for ductile cracks, still remains to be done, and even in the case of the
brittle crack, is only in semiquantitative form. But the central role of the
structure of cracks also emphasizes a familiar type of problem to physicists,
namely the atomic structure of defects. In the case of the crack, the severe
nature of the distortion of the lattice by the defect puts the quantitative study
of the structure of cracks still largely in the “rescarch to be done” category.

The previous paragraph is couched in theoretical terms. But the science of
fracture at the time of writing is entering a period of intense development on
the experimental side as well, which is gencrating a theory—experiment
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confrontation and consequent flowering of our understanding, reminiscent of
the period 1955-1965 in distocation rescarch. This experimental development
has largely been due to the work by Hockey in brittle materials, and Ohr,
Wilsdorf, Neuman, their co-workers, and others in ductile materials; usually
working with thin films in electron microscopes. In a sense, then, this article is
able to point 1o some guiding principles, and initial theoretical and experi-
mental findings whose major purpose will be to point with hope toward the
future.

In an article like this, it will be necessary to establish some background
information. Therefore, in the next section, a series of microphotographs will
be presented to provide the reader with a necessary observational perspective.
In Part H1, the required results from the elastic analysis of cracks and
dislocations will be presented. In Part 1V, a central theorem of Eshelby on the
force exerted on elastic singularitics will be used to derive the forces on cracks
and dislocations and the interactions between them. Then, in Parts V and V1,
the central theme of the structure and properties of sharp cracks in lattices,
including interactions with external chemical environments, will be addressed.
in Part VII, the idea of dislocation shielding JI‘ static and moving cracks is
presented along with the simple available models for fracture toughness and
the available experimental evidence.

We shall not attempt to cover the more applied aspects of fracture, partly
because it would be unsuitable in an article emphasizing the physical
fundamentals of [racture, but also because the more important applications
still await an adequate description in terms of fundamental ideas. Hydrogen
embrittlement and fatigue crack initiation are just two examples where a final
description is probably still well in the future, even though some of the
fundamental tools are coming to hand. Nor shall we have space to consider
fracture in polymers, where the effects of crazing bring up a different set of
phenomena that are now being successfutly tackled.

Finatly, we note here that the subject of fracture is one involving a number
of disciplines. We shall, of course, repeatedly delve into physics, chemistry,
and materials science. However, fracture science also deeply involves con-
tinuum mechanics. The reason is easily seen from inspection of Fig. 3: A crack
requires an external force for its existence. If this force disappears, in principle
the lattice will simply hea! itself. Hence, the manner in which this force
manifests itself at the crack tip is a continuum mechanics problem that will
involve the way the force is applied to the external surfaces of the body, and
may involve sophisticated mathematical descriptions of deforming media.
Fortunately, we shall find it possible to condense most of the mechanical
aspects of the problem into a local parameter at the crack tip called the local
stress intensity factor. However, the reader should be aware that there arc
classes of problems such as propagation of cracks through plastic media, of

— e ———————
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the role of plastic instability in the propagation of ductile fracture, where
continuum plasticity approaches must be used.

iI. Observational Background and Initial Concepts

A casuai observation of the fracture of any practically useful engineering
material shows a very complex phenomenon. This section will thus be devoted
to a demonstration of some of this complexity, and will also demonstrate the
observational basis for the scientific approach which we have outlined in the
introduction, but which must be firmly established on an observational basis.
At the same time, the reader will appreciaie from a perusal of the fractographs
which we will display here the limitations of making quantitative predictions
of fracture toughness for engineering materials.

1. MACROSCOPIC FRACTOGRAPHIC OBSERVATIONS

Before displaying the rather sobering complexity which we have alluded to
above, Fig. 4° illustrates the beautifully symmetric brittle fractures which are
possible in a material such as glass. The figure shows a hertzian crack with
cylindrical symmetry produced by an indentation at one point on the surface
of the glass. The fact that the glass is completely isotropic results in a highly
symmetric fracture mode and a highly regular overall configuration. A BB
pellct stopped by ordinary plate glass will display such a hertzian crack. At the
opposite extreme, Fig. 5° illpstrates the chisel point which is formed when a
highly ductile metal is pulled to ultimate fracture. Each of these two examples
is of course a direct illustration of the two poles of fracture shown
schematically in Figs. 1 and 2 of the Introduction.

T

1. 4. A Hertzian crack produced in the upper surface of a block of glass by a round indenter
(alter Roesler®).

' F.C. Roesler, Proc. Phys. Soc. B 69, 981 (1956).
* H. G. F. Wilsdorf, Mater. Sci. Eng. 59, 1 (1983).
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2, MICROSCOPIC OBSERVATIONS

On a microscopic level the rough surface typical of a high-toughness metal
still displays a high complexity. The surface is highly dimpled on a micrometer
level and below, as shown in Fig. 6. These dimples have been shown to be

100 HM . caused by the formation of holes which form ahead of a main crack as shown
A A ’ in Fig. 7. As the crack grows, the holes enlarge by plastic means and coalesce
with the main crack and with other holes in the vicinity. In these cases the
«  growth and coalescence of the voids with the main crack are really a
manifestation of the necking process on a microscale. As shown in Fig. 6, the
larger voids are found to be nucleated at the site of precipitated particles in the

FiG. 5. A chisel point formed in & rod specimen of gold after necking and rupture. Original Fl_(;. 6. Dus:l_ilefr_aclunsurface.s.howinglh'eﬁnaldimpled slruct-ure o_f hole growth. Precipitale
specimen was 0,15 cm in diameter (courlesy of H. Wilsdorf*). pa;rcnclleslare v:lm;nlcm some of the dimples which served as nucleation sites for Lhe holes {courtesy
of C. Interrante).
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FiG. 7. Schematic drawing of the development of a ductile fracture from a blunt crack
embedded in & material containing inclusions. Microcracks are nucleated at the inclusions, which
are blunted in turn. (COD is an abbreviation for crack opening displacement.)

matrix. The precipitate particles may fail on their interface with the matrix, or
brittle precipitates may cleave. In either case, they are left behind in the holes,
as shown in Fig. 6.

In a brittle ceramic, or in a steel in an embrittied condition (such as when
under hydrogen or other chemical attack, or when the temperature islow and
the strain rate high), the fracture morphology is different. Figure 87 shows an
intergranular brittle fracture in which the crack proceeds without any obvious
void formation, and a very clean form of separation at the grain boundaries
occurs. Transgranulat brittle fracture can also occur, often mixed with the
intergranular variety. This example shows how important the metallurgical
and ceramic microstructural variables such as grain-boundary scgregation
and second-phase coarsening are to fracture toughness.

). PROTOTYPE FRACTURES

In the next set of observations, the phenomena characteristic of more ideal
conditions are illustrated. Figure 9 shows the results of Hockey* for cracks in
silicon. Figure 9a shows a completely brittle cleavage crack at low temper-

? E. Fuller, unpublished photograph of a crack in Si,N, at high temperature.
8 B Lawn, B. Hockey, and S. Wiederhorn, J. Mater. Sci. 15, 1207 (1980).
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Fi0. 8. Brittle crack in a ceramic.” The erack has opened along the grain boundaries of the

material, .givin; rise (o a very irregular morphology. Such forms of brittle fracture are also
observed in metals,

atures ip w_h'ich no dislocation activity is observahi~. Figure 9b shows that the
cracks in silicon are nearly completely reversible. This crack presumably has
grown .bcyond its final position, with a network of misfit dislocations
appearing between the initial and final positions of the crack after regression
has o.o.curred. Figure 9c shows a crack grown in silicon above the ductile
transition temperature, in which significant dislocation activity in the presence
of the crack tip is visible. It is not clear whether these dislocations are formed
out of the crack after it stops, or whether they have been carried along by the
crack from the deformation zone in which the crack itself was formed. Fig-
ure 10 s.hows the electron channeling pattern of a transgranular cleavage
surface in err.abntlled steel, which illustrates that dislocations are generally
present evenqm very brittle fracture in steels, except at high crack speed.
Figure 11 shows the crack configuration of iron-2.6 at.% silicon. The
crack is wedge-shaped just as one would expect if dislocations were emitted on

¥ H. Vehofl and P. Neumann, Acta Merail. 28, 265 1980).
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. FIG. 9. (a) An electron microscograph of a fuliy brittle crack in Si. In the photograph, the crack
is seen e_dge on. In (b} a brittle crack has regressed from its initial position, leaving a network of
misfit dus_locations on the closed portion of the cleavage plane. (c) Cracks formed in Si a1 500 °C
are associated with dislocations as shown (see Lawn er al®). (Courtesy of B. Hockey.)
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FiG. 9. (Continued).

slip planes intersecting the crack tip (see also Fig. 43). In this case the material
“slides off” on its slip plane which is at an oblique angle to the plane of the
crack. When hydrogen is introduced into the system (Fig. 11a) the angle
is made morc acute, showing that cleavage and emission take place
simultancously.

Figure 12 shows the experimental configuration used by Ohr and co-
workers.!® When a region in the very thin section near the hole is imaged in the
microscope, the results are shown in Fig. 13."* In this case the crack spews out
screw dislocations on its cleavage plane. The crack has a substantial region
near its tip (termed an clastic enclave or dislocation free zone) where no
dislocations are present. Similar expcriments have been performed in a varicty
of other metals (see Table I).

A more typical form of purely ductile faiture is shown in Fig. 14,'% where
experiments performed by Wilsdorf,® again in thin foils, exhibit a more normal

' 8. Ohr, J. Horton, and S. Chang, in “Defects, Fracture, and Fatigue.” (G. C. Sih and J. W.
Provan, eds.), p. 3. Nijhofl, The Hague, 1983.

"' S. Kobayashi and S. Ohz, Scripta Metall. 18, 343 {1981).

"2 R. Lyles and H. G. F. Wilsdorf, Acta Metall. 23, 269 (1975).
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FiG. 10. Electron channeling patierns from portions of a cleavage crack in hydrogen
embrittied steel. A blurred pattern indicates lattice plane rotations caused by presence of
dislocations. In the figure, the crack accelerates from its initial position st rest in the region of
pattern | to & high velocity near pattern 6. At the high velocity (an appreciable fraction of the
sound velocity), there is no measurable increase in the distocation density above that of the initia!
malerial. (Courtesy of W. Gerberich and K. A. Peterson)

failure by hole growth and coalescence. The event shown in the figure is the
final result of the chisel necking shown in Fig. 5. In this case the foil thins by
plastic processes and small holes form in the dislocation cell walls, which then
grow 1o a size equal to the film thickness and the large holes shown in the figure
then become visible. These holes are crystaliographic in shape corresponding
to the slip planes in the material. A mixed form of growth seems to take place
in which some dislocations are emitted from the crack tip itself, while others
are generated al sources in the medium very close to the crack tip. Although
these films are very thin, the hole formation and growth processes illustrated

PHYSICS OF FRACTURE LD

a 100 um

Fic. 11. 1n(a) sharp cracks are formed in a hydrogen atmosphere in Fe (+ 5i). In (b) the crack
opens entirely by distocation slide-off at the crack tip. In both cases, dislocations are emitted rom
the crack tip, and form slip bands. In {a), cleavage must also be present. The angle of the wedge

opening in (b)is defined by the intersection angle of the two slip planes with the crack plane (after
Vehoff and Newmann®).

are thought to be analogous to those taking place in bulk samples such as in
Figs. 6 and 7. In Fig. 14, of course, the void generation takes place in the
dislocation cell walls rather than at precipitate particles, perhaps correspond-
ing to the smaller holes formed in Fig. 6. It is in fact generally observed on close
cxamination that the large voids formed at large precipitated second-phase
particles are often connected by void sheets composed of very small voids, and
the question of whether these sheets are created at small precipitates or are
generated at dislocation cell boundaries has not been fully sorted out.®'*

'3 A Thompson and P. Weirauch, Scripta Metail. 10, 205 (1976).
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FiG. 11. (Continued),
e .
b o
! Fig. 13. (a) Dislocations emitled from the tip of a crack in a foil of copper. The crack has grown
o from the left. Immediately ahead of the crack is a region free of dislocations. The pile-up of
dislocations is seen extending on the cleavage-slip plane to the right. In {b) the crack dislocation
geometrical configuration is illustrated (after Kobayashi and Ohr'').

FiG. 14. Side view of a growing fraclure in a thin il of gold. Holes are shown nucleaung

FIG. 12. Specimen geometry used in electron microscope fracture experiments by Ohr and co-
ahead of the crack (see Lyles and Wilsdorf'?). (Countesy of H. G. F. Wilsdorf)

workers.'® The crack grows out of the thinned region nearest the hole in the center.




i8 ROBB THOMSON
4. FRACTURE MODE AND CRrACK DISLOCATIONS

The previous fractographs indicate that real cracks are three-dimensional
defects whose fracture plancs may be very rough surfaces, that even brittle
fractures may take place on the three-dimensional network of a grain
boundary structure, and that interaction with various kinds of imperfections
in a material is common. Nevertheless, for analytical purposes,itis desirable to
idealize a crack line as a one-dimensional line defect on a flat cleavage plane.
There are, then, three modes of cracks corresponding to the different
orientations of the external stress with respect to the fracture plane. These
three modes are analogous to the two different classes of dislocations: screw
and edge. In the case of the crack, a cut is made in the medium which becomes
the cleavage plane, and simple shear or tensile stresses are exerted on the
external surfaces of the specimen. In Mode 1 the stress is a tensile stress with
principal axis normal to the cleavage plane, as shown in Fig. 15a. This mode is
the only one leading to physical fracture, because, unless the external stress
physically separates the two surfaces on the cleavage plane, then rewelding
would occur even after the stress is applied. In Mode 11 the stress is a shear
paraltel to thecutin the x, direction (we use the coordinate system of Fig. 16a).
In Mode 111 the stress is a shear parallel to the cut in the antiplane or x,
direction. Mode 111 is important because antiplane strain is associated with a
particularly simple analysis, and we shall make extensive use of this analysis in
order to describe results for cracksina generic sense. Even in the case of simple
{wo-dimensional cracks, mixed cases are common. For example, a crack may
be produced which is primarily Mode 11 or IiL, but with enough Mode 1
present to separate the cleavage plane.

We note here an idea originally proposed by Friedel** that the displacement
on the cleavage plane of a crack may be represented by a distribution of
dislocations of appropriate Burgers vector. Such a representation can be used
analytically to describe the stress field of a cleavage crack {see Part 1nn.

5. THE OBSERVATIONAL BASIS FOR FRACTURE SCIENCE

From the sclected illustrations above, an observational basis can be
constructed for our approach to fracture, as follows.

{a) 1npractice,cracks arc most often flaws of a complex three-dimensional
form which sometimes only vaguely approximate the three idealized modes of

14 ). Friedel, “Les Dislocations,” p. 214. Gauthier-Villars, Paris, 1956; “Dislocations.” p- 320.
Pergamon, London, 1964, Sec also B. A. Bilby and J. D. Eshelby, in “Fracture” (H. Licbowilz,
ed ), Chap. 1, p. 9. Academic Press, New York, 1968,
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Fic. 15.. The three modes of fracture. In each case, the crack is formed by making a planar slit in
the material, with the crack line along the edge of the cut. In Mode I, the opening mode, the force is
exerted normal 10 the cleavage plane. In Mode 1L, the force is in the planc of the crack normal 10

the crack line. 1n Mode 1L, or antiplane sirain, the force is in the plane along the crack line. Modes
il and 151 are shear ctacks.

Fig. 15. However, because of the necessity of developing models which can be
analyzed and described in accessible mathematics, we are led to the study of
these idealized modes.

b In some solids, the crack is capable of cleavage advance without
intrinsic generation of dislocations (Fig. 9). (By intrinsic is meant generation
from the crack tip itself, independent of external sources.) In others, when
the crack is stressed, dislocations are emitted from the tip without cleavage
(Figs. 11 and 13). Crack advance in the second case takes place by ledge
formation or slide-off at the crack tip, Fig. 11. The shape of the crack in the
cleavage case is atomically sharp at its tip (Fig. 9). When the crack advance is
contr_olled cnlifcly by dislocation emission, the shape is that of a wedge whose
opening angle is equal to the angle between the operating slip planes (Fig. 11;
see also Fig. 43).

{c) The ubiquitous presence of dislocation sources in nearly all materials
and ch stress cor.wcntration around the crack tip assures that dislocations,
sometimes in copious numbers, are generated which accompany the fracture
process (Figs. 9 and 10). Only in exceptional cases, such as in Si at low
temperatures, of in fast fracture when the crack outruns its dislocation cloud,
are |degl. br_imc fractures observed. Since dislocations and cracks are
singularities in an elastic medium (if the crack tip has a sharp angle), their
stress fields give rise to strong crack-dislocation interactions which play a
central role in determining the overall toughness.

(d) The effect of plasticity external to the crack is to blunt the crack by
means of the steps formed on the cleavage surfaces when dislocations are
ar_mlhtlalled there. The final macroscopic shape of the crack blunted by
distocation absorption will be determined by the combined effect of the
available slip systems, stress distribution around the crack, the characteristics
of the sources such as operating stress, etc., and the mobility and mean free
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path of the dislocations. A variety of final shapes is thus possible, but in
general the shape of the crack will not be dominated by crystallographic
features as in the case for the cleaving or emitting crack. Further, such a crack
(we shall often refer to blunted cracks as notches), of itself, will not advance
solely by dislocation absorption under continued stressing, but will simply
increase its effective radius at the tip by indefinite plastic blunting. In practice,
however, inhomogeneities in the material cause microcracking to occur ahead
of the main crack with subsequent hole growth (Fig. 7). Blunting of the main
crack stops when a void is absorbed, and “crack™ advance takes place by
accretion of the voids to the main crack. The void formation and accretion
also limit the necessary region of plastic activity to that surrounding the
blunted crack tip; so that fracture can occur without raising the stress of the
entire specimen to the plastic yield value.

We are thus led to propose three prototype cracks: cracks which cleave,
cracks which emit dislocations, and plastically blunted notches which merely
activate external plastic flow in the surrounding medium. The physical
mechanisms in each case are quite distinct, and cach type tends to correspond
to a particular geometry. Mixed cases are to be expected, however. Thus,
external dislocation sources usually are activated by cleavage cracks, even
though the crack advances by cleavage and no hole growth is observed
(Figs. 9c and 10). Likewise, in cases where the fracture is predominantly by
plastic hole growth, significant portions of transgranular or grain boundary
cleavage lacels may be observable in the fractured surfaces. Also the initial
stages of hole formation normally involve cleavage, and the whole question of
how the cleavage (or emission) events are affected by the alteration of crack
shape caused by dislocation absorption is unanswered. Finally, mixed
cleavage-emission is possible in cases where a crack is balanced on the
borderline between cleavage and emission (Fig. 11a).

The correlation between these three prototype cracks, which are classified
according to their atomic structures and the mechanisms of their advance,
with the overall fracture toughness and the brittle/ductile polarity, becomes
the central task of fracture science. Qualitatively, the brittle pole is associated
with the cleavage crack, while the emitting crack and the plastically blunted
crack are forms of ductile fracture.

The crucial physical implication of this line of thought is that the structure
of the underlying crack and its immediate environment determines the overall
mechanical response. The atomic structure of the tip will dictate whether the
crack is a cleaver or an emitter, and the properties of the dislocations and their
sources in the medium and their inleractions with the crack will determine

whether the core crack can ever be stressed sufficiently so thal cleavage or
emission is possible,

|
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and Goodier'? in the series Fracture, edited by Liebowitz on the elastic (and
plastic) treatment of cracks. Bilby and Eshelby,'® in a tour de force, present
cracks entirely in terms of dislocation pileup theory, treating the crack as a
distribution of virtual “crack” dislocations in the sense proposed by Friedel.'*
Many reflections of their work will be found in our treatment. Rice'? has used
the Muskhelisvili integral equation in deriving crack stress fields, and because
of the similarity of his treatment {0 ours, his article is especially reccommended.

7 GENERAL EQUATIONS AND BOUNDARY ConpiTions'?

Local static equilibrium at a point in an clastic medium requires that the net
force density at the point be equal to zero,

fi=0y;,=0, (1.1

where g;; is the stress tensor, the summation convention over repeated indices
is assumed, and the comma represents differentiation. Hooke’s law connects
the stress with the local derivatives of the displacement (strain), and in an
isotropic medium is given by

ﬂu = Au,.,ﬁu + ﬂ("l_J + ll“). (7.2)

A and p are elastic coefficients, and u,(x,, X3, X3)i8 the displacement function.

In any elastic problem, boundary values of o, on the external (and internal)
surfaces of the body must be specified in order to generate unique solutions, If
a surface is free of externally applied forces, the fact that a free surface exists
implies that forces, F;, cannot be transmitted across it. Thus,

F =oyn;=0. .3

n, is the normal vector at the surface pointing from the negative to positive
sides of the surface. Equation (7.3) represents the force per unit area
transmitted across the surface from its positive side toward (the material on)its
negative side.

In the crack problem (Fig. 16), two general approaches are possible. In the
first (Fig. 17a), forces are applied to the external surfaces which give rise to a
stress distribution in the body, o'y '(x). Then a cut is made in the medium which
defines the cleavage surface of the crack. Since the cleavage surfaces are free
surfaces in the above sense, Eq. (7.3) is satisfied on them. If gy, {x,x’) is 2
Green's function for a dipole force at x’ on the cleavage surfaces (an equal and
opposite force is exerted on cach of the cleavage surfaces facing onc another
across the cut), then the total stress in the body in its final stressed and cracked

1% 1 N. Goodier, in “Fracture” (H. Licbowitz, ed.). Chap. 2, p. 2. Academic Press, New York, 1968.

(a)

(b}

‘Es é'" e
! £ (e)
) FiG. 'I6. Two crack-coo_rdinule configurations for use in this article. In (a), the crack extends
|m_icﬁm|ely along the negative x, axis. In (b), the crack is finite in length, and again lies alang the x,
axis from —a < x, < +a. Dislocations may be present at position {, in the complex plane. (¢)
Construction for Eq.(8.9). An equal and opposite force distribution is exerted on the two surfaces

of the cleavage planes in Mode IT1. These externally applied forces on an element of volume at the

upper surface are shown balanced by internally generated stresses, which cancels the Lotal force on
the volume element shown.

r—

A

Fig. 17. Two ways of creating a crack in a medium are illustrated. The stresses may be exerted
on the cxlen:n{ll surfaces as shown in (a), or as a pressure acting within the crack as shown in (b).
Under conditions described in the text, the stresses near the crack tips are equivalent.
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stale is
oy = ol - J‘gu; 0%, ds. (7.4)

The integral serves the purpose of simply nullifying the forces which were
exerted by the initial stresses across the cleavage surface before the cut was
made.

In the second apprqach (Fig. 17b), after the cut is made, forces are exerted on
the crack surfaces which force them open, thereby generating stresses in the

medium. If —a''n, are these forces, then

au = —Igu;'aho’n. ds (7.5)

is the stress in the body. n points from the medium across the surface to the
yacuum.

There is thus a basic equivalence between these iwo approaches, and they
will be referred to in the following as Problem ! and Problem 2. For example,
in Mode 1, a standard problem is to exert forces on the upper and lower
surfaces of the specimen as shown in Fig. 17a, giving rise to a constant stress
throughout the body ¢ = o'%. In Problem 2, if this same constant force is
applicd on the surface of the crack, then the only difference between the final
stress as given in Eqs. (7.4) and (7.5) is the constant term o' in Eq. (7.4). Near
the crack tips, where most of our concern lies, the stress is highly concentrated,
and the constant term can be neglected. Thus, which fracture problem is
addressed in any situation is usually a matter of mathematical convenience.

Two-dimensional analysis has a special place in the treatment of fracture
problems. The reason is simply that 3D treatments of cracks are usually
enormously difficult, and nearly always numerical. Thus, the 3D literature is
sparce and recommended for the specialist only. But, as with distocations,
much can be accomplished in 2D, where the crack line is straight (taken along
the x; axis) and infinite in length. In addition, in 2D, it is required that u; ; = 0
everywhere. Substitution of this requirement into Eq. (7.1) with Eq. (7.2) shows
that the solutions break into two separate cases,

Viuy =y, + 4y 2, =0, (7.6)
(l + #}uj.ﬂ + “"ul.ﬂ = 0! l'J = l- 2 (77)

These two cases correspond to the two independent shear and Jongitudinal
polarization solutions for sound waves, and are called antiplane strain, and
plane strain, respectively. Equation (7.6) corresponds to screw dislocations
and Mode-111 cracks, and Eq. (7.7) to edge dislocations and to mode I and II
cracks.
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In usual treatments of elasticity, the so-called compatibility conditions on
the strain are introduced. Since we shall be dealing with dislocations, where
these conditions are violated, however, it will be easier simply to monitor the
single-valuedness of the displacement directly in discussion of solutions,
rather than to introduce these considerations as special added equations to the
basic equilibrium equations (7.6) and (7.7), which are of course the field
equations of elasticity.

There are several approaches to the solution of any boundary-valne
problem, and, in the case of 2D elasticity, Green's functions, conformal
mapping, and a singular integral method generalized from the Hilbert
transform have been most effectively used. In any given case, one or another of
these techniques can be employed, depending on the ease and directness of the
relevant mathematics. In cases where the Green's functions can be found
casily, that is often the method of choice, but for slit cracks, the singular
integral method has been developed by the Russian school associated with
Muskhelishvili into an elegant and powerful approach which we shall use, and
from which the elastic Green's functions can be derived. On the other hand,
conformal mapping can be a powerful tool for application to more general
crack shapes such as wedges, which are also important. The mathematics for
both these latier approaches will be found in the Appendix. Elasticity is
complicated by the tensor character of the variables, and, like electromagne-
tism, is generally simpiified by the introduction of elastic potentials. In spite of
the fact that these potentials were discovered in the 19th century, they are not
familiar to nonspecialists, and the elastic equations expressed in terms of these
potentials are also developed in the Appendix.

In 2D the variables u; and o;; will only be functions of the complex variables
z=1x, +ix; and Z = x, — ix,, and it is natural to invoke complex function
theory. In antipiane strain, where only u, is nonzero, this is a particularly
straightforward procedure, and it will be discussed first. The reader is
reminded, however, since elasticity is a linear theory, that the total solution in
mixed cases is a simple superposition of plane and antiplane solutions.

8. ANTIPLANE STRAIN. THE MoDE-III Crack

Since the field equation for antipiane strain, Eq. (7.6), is Laplace’s Equation,
a solution can be given in terms of any analytic complex function # of z, such
that

Uy = u{x), X3) = (2/p) Im(n(2)). (8.1)

n wilt be called the antiplane strain elastic potential and the factor 2 is used to
achieve symmetry with certain expressions to be derived in plane strain. The
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only nonzero siress components, 0y, and a;;, can be written in terms of 5 by
Eq.(7.2) as
(z) = a3 +i0y = 2n'(2), (8.2)

where the prime denotes differentiation. As shown in the Appendix, o isnot a
true vector, because &/i is the quantity which transforms as a vector (see
Eq. A.23). In polar coordinates,

a,, = a3,c080 + 03;5in8 = Im(ce"),

(8.3)
0'_‘ = =@y Sine + 0’3;0059 = Re(aew).

Singular solutions for a dislocation or a line force at the origin are given by
n = (pb/dm)Inz. (8.4)

The real part of b represents a dislocation, and the imaginary part givcs_ the
strength of a line force. Re{b)is given by the multivaluedness of nat the origin,
2An 2

Re(bp) = — =— QP n'dz. 8.5

e(b} T n 8.5)

In the same way, the strength of the line force is given by integration of g,
around the origin.

Suitable elastic potentials for the crack problem are found by satisfying the
boundary conditions on the open cleavage surface in Problem 1. If a cleavage
planc lies along the negative x; axis, with the crack line coinciding with the x
axis, as in Fig. 16a, then

G’n(x,,(}) = 0, Xy < 0. (8.6)
A suitable solution is
e ‘/; {8.7)

r" = Klulz\/ 2’:2.

In this solution, the cleavage surface is a branch line and o — 0 at infinity. The
crack tip is a branch point in the function 7. This simple result is a clue that
crack problems in general will lead to square-root-like functions, with branch
lines coincident with the cleavage planc. The discontinuity in the potential
function on the cleavage surface corresponds to the discontinuities in both
displacement and g3, there. (Note that @3, need not be zero on the open
surface along —x,.) The constant K is a measure of the strength of the
singularity at the crack tip.

tn Fig. 16b a more general finite crack is shown lying along the x, axis from
—a < x, < a. Again, a complex potential # is sought having a branch line on
the cleavage surface. In Problem I1, equal and opposite external forces per unit
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area, Fy(x,), are cxerted on the cleavage plane, as shown in Fig. l6c, thereby
generating an internal stress gy, On an element of volume at the upper surface
in Fig, 16c, zero net force requires that o3,(—n}) + Fy =0, with n} = — 1.
o3, = — Fy(x,) on the upper surface. By the same reasoning 03, = — Fu(X,)
on the lower surface, because equal and opposite forces are exerted on the
lower surface. Thus the boundary condition at the cleavage surface is given by

[‘731]+ =[652] = - Fnlx,), {8.8)

where Fy,is an arbitrary real function of x,. In terms of the potential function
Eq. (8.8) is written

{tn'1* +[n'1"} = — Rulx,). 8.9

Note that in Eq. (8.9) the imaginary parts of n' on the opposite sides of the
crack surface are of opposite sign, because Fy is real.

Equation(8.9)and the boundary-value problem it represents conform to the
discussion of the Muskhelishvili singular integrals in the Appendix (Subsec-
tion 3). Specifically, Eq. (8.9) is of the form specified for h{t) in Eq. (A.40), and
the solution for n’ according to that equation is

, | ¢ Fu(Ja* —1?
n (Z) - — - I l'll( )

Znﬁ —at)-. t—z
The polynomial is set to zeroin Eq.(A.41) in order for the stress at infinity to be

ser0. The solution in Eq. (8.10) is singular at z = (+4,0). Near z=a, the
solution has the form

dr. (8.10)

{

Klll 1
()=o) = \/—2——,[—( + 0(5) i {=z-a,

1 . a+t\'"? (8.11
K,=——
m s J , ﬁll{‘)(a — ‘) dt,

Kw=F,/ra; F, =const.

This solution corresponds to the “second problem.” Whena constant stress
is added at infinity (“first problem™), the singularities at the crack tips are the
same as in Eq. (8.11), and thus the constant Ky is also the same.

The relations in Eq. (8.11) give the central results for the region near a crack
tip, showing that a 1/,/z stress singularity exists there, with a strength K, called
the stress intensity factor. K is linear in the external driving stress, and depends
upon the crack geometry, as well as the specimen shape and the way the
external stress is applied. This latter point is seen from the second equation of
(8.11), where K depends upon the initial stress distribution on the cleavage
surface.
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The reader will note that Eq. (8.10) has the form of a Green's function
solution [Eq. (7.5)], where the Green's function for the finite crack is

N = “J’Fm(ﬂg(‘,'&’) dt,

1 fa? —p\12
g(‘-z}_-z—-'(_—_—) P

r\z2—al) 17

(8.12)

9. PLANE STRAIN AND PLANE STRESS

The plane-strain equations are given by Eq. (7.7), and in terms of the
Goursat potential functions, the field equations {7.7) become

91 + 033 = 2[¢'(2) + ¢'(2)],
022 = 01y + 2i0y; = 2{Z9"(z + ¢'(2)), {9.1)
2pu = 2uluy + iuy) = x@(z) — (2¢°(2) + Y(2)).
These equations are derived in Appendix Subsection 1 [see Egs. (A.i2)-
(A'l‘ljz]c.:ases where the specimen is a plate whose thickaess is small compared
with all other dimensions in the problem, these same Eqgs. (9.1) are also valid,

when « has the appropriale value. This case is called plane stress, and all future
equations are valid for both plane strain and plane stress when

_ {3 — 4v: plane strain, 033 = ¥o,, + 0;,);

TG =W+ plane stress, g,, =0. ©.2)

In the fracture problem of Fig. 16, the boundary conditions pertain to 733 and

a1 §O it is convenient to recombine Eq. (9.1) so that these quantities are
displayed conveniently:

a1y + 033 = 2[@'(z) + ¢ (2)],
uu=xp — (2 — 7)o’ - @,
W=z + .

In these equations, the new function w has replaced ¢ for convenience in the
lollowing analysis, because of the appearance of the term {z — 7), which is zero
on the x, axis.

For a crack lying on the x, axis, —a < x; < a{Fig. 16b), in Problem II, the
internal stresses on the left-hand side of the second part of Eq. (9.3) are
balanced at the crack surface by an externally applied lorce distribution which
we shall call F, and following the reasoning leading up to Eq. (8.10), the
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boundary condition on the crack faces where (z — Z) = O is writlen
~F=[p'() + 0'(n)’,
—F=[o'0)+ W, 9.4)
F=F+iR,.
As before, + and — superscripts relate to the limiting values of ¢’ and @ on
the upper and lower crack surface. In the notation adopted for the externally
applied forces, F relates to a force in the x, direction producing a Mode-I
opening of the crack, and Fy relates to a force in the x, direction producing a
pure Mode-I1 crack. The use of the real variadle 1 denotes that the variable is
taken along the cut, —a < x, < a.

In the {form of Eq. (9.4), the Muskhelishvili analysis cannot be used because
its right-hand side contains the nonanalytic function @' That is, @ is not a
function of z, but of Z. It is, however, possible to rewrite Eq. (9.4) in terms of
analytic functions of z, through the function w*(z) defined by

w*(z) = w(Z). (9.5)
On the real axis, [w*(1)]* = [o{1)] and Eq. (9.4) becomes

[-F1 =[o'(0]* + [w™0]:

[-F]" = (o')]" + [w™*(0)]*.
Subtraction of these two equations shows that [¢'(2) — w*'(z)] is a function
with no discontinuity on the crack surface, and hence is analytic everywhere,
From Liouville's theorem it is therefore zero, because the constant allowed by
Liouville's theorem would not fit the requirement in problem 2 that the

stresses are zero at co. Hence, ¢'(2) = w*(z), and the sum of the equations
(Eq. (9.6)] has the form

(9.6)

—F=[o'0" +[»0]". 9.7)
The analysis of the Appendix Subsection 3 now applics, and the result from
Eq.(A41)is _
1 * F/a? -2
vz = — dr
2t -at ). 1z (9.8)

F(0) = Rt} + iFy(0).

Investigation of the singularity at z = g leads to

K
’ = o ,
o) 2\/ZTC+ (/{/a)

9.9)
K = K| + iK“‘

1 ’ a+i
= 9.10
v e -
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in complete analogy to the antiplane-strain case. When F, and F, are
constants,

K = F /na. ©.11)

In this notation, Egs. (9.9)and(9.10} contain both Mode | and Mode 11 as their
real and imaginary parts, respectively. As noted earlier, Mode-111 stresses
when they exist are simply added in linear fashion Lo these equations.

As in the antiplane-strain case, Eq. (9.8) provides an expression for the
Green's function for the plane-strain crack, because Eq.(9.8)is in the formof a
Green's-function-type integral, with a set of forces, 5, distributed in equal and
opposite amounts on the opposing crack surfaces,

@)=~ I F(og(r, 2)dt,

gy 1 fa®—1t v
B 21:(21 - a’) t—z
Finally, it is noted that the potential function ¢'(2) possesses the same simple
form in plane strain as does the o’ and stress in antiplane strain. The stresses
{hemselves, however, are quite complicated, and obtained from Eq.{9.3) aftera
quite tedious manipulation, and this fact demonstrates the great usefulness of
the clastic potentials. In the interest of completeness, the stresses arc given
below:
Equations for Mode [:

a,,} K ‘cos(ﬂ/l)[l — sin{8/2)sin(30/2)]

(9.12)

< 2"t cos(8/2)[1 + sin(8/2)sin(38/2)); -
sin(6/2) cos(6/2) cos(36/2)

»y

Oy

o, lcos(B/Z)[l + sin?(8/2)]
Ose } = =—pr3 1 c087(6/2) ;
a,.] @nr'™ | G 0/2) cosX(6/2)

0, = Vo, +0,) =V, + Ope)s 9.13)
0y = G, = 6, = Ogy = 0;
U = —(v'2/EXOy + 0yy) — (v'2/ENGw + One);
u,} K, (_r_)'” {(I + ¥){(2x ~ 1)cos(6/2) — cos(36/2)],
(1 + W2« + 1)sin{8/2) - sin(30/2))°

2
u,} _K (_'_ 12 {(1 + v)[(2x — 1)cos(8/2) — cos(36/2)]
wl " 2E\2n] (1 + v[-(x + Dsin(8/2) + sin(36/2)]
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Equations for Mode I1:
a., —[sin(8/21{2 + cos(f/2)cos(36/2)]
W= 3 B3 { sin(0/2) cos(8/2) cos(36/2) ;
o) E7 | {cosO/2IM1 - sin(0/2sin(30/2)]

O =55 “uz —~3sin(0/2)cos?(8/2)
@) Cos0/201 - 3sin?(8/2)]

Gre

W i \[sin(ﬂﬂ)][l ~ 3sin¥(0/2)]

0, = v'(d’u + 0'") = v'(a’,, + 0'”), {9]4}
Opy =0, =0p,; = O = 0;
uz = -—(V“Z,E)(Ux‘ + 07)‘) = —(V"Z/E)(ﬂ'ﬂ. + 6“)'

u,} K“( r )”’ {(l + v[(2x + 3sin(0/2) + sin(36/2)]

w{ " 2E\Zn)  Y=(1 + w2k — 3)cos(6/2) + cos(30/2)F

u,.} 3 !(j(_r_)”2 {(I + [ —(2x — )sin(8/2) + Isin(36/2)]
u| 2E\2n (1 + W[ ~(2x + 1)cos(8/2) + 3cos(36/2)1

Equations for Mode 111

axx=0n=arr=0”=au=0! Oy = r!=0;
6.0 _ Km —sin(6/2)
0,.§  (@nr)'? |cos(6/2) °
G| _ Ky {sin(6/2), (9.15)
s} (2nr)1/? |cos(8/2)

u, = (Kw/2E)r/27) (201 + v)sin(6/2)];
U, =u,=u, =u=0.

For all modes:
K= (3—v/(l +v) v =0, vVi=y (for plane stress),

Kk=(3-4y, vio=y, v =0 (for plane strain).

10. DISLOCATION STRESS FIELDS

One of the central themes of this article will be the interaction of
dislocations with cracks, and in order 1o study this it will be necessary to
develop analytic expressions for the potential function of a dislocation in the
presence of a crack. There are a variety of ways for doing this. One is by means
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of the conformal mapping for the known image solutions of dislocations in the
presence of an infinite free surface. This is the only method practicable for
w.'cdge cracks and 9ther complicated crack shapes. For slit cracks, however. a
simpler approach is to use the general Green's-function expressions alreaé
developed for slit cracks, Eqgs. (8.12) and (9.12). ’
In !)olh 'ant'lplane strain and plane strain, the solution is obtained by
bl’caklll'lg 7,9 antfl w’ cach into two parts, that given by the disiocation
potential in an infinite homogeneous medium, and that required to satisfy th
boundary condition at the crack cleavage surface. ye

a. Antiplane Strain
In antiplane strain, " is thus given by
n=1o + 1},
o = ub/4n(z — ().

The origin is at the tip of the semi-infinite crack in Fi

screw dislocation is at {. The solution 5}, produces as:g::c:: fE:'i: :)ﬁnat::: lh:
cleavage surface, and 1, corresponds to additional forces exerted on the crgzk
plane to ensure t!_iat oyn; = 0 here. Thus, #'(a) is caiculated from Eq. (8.10)
when that equation is modified to represent the crack conﬁguration- of

Fig. 16a, i.e, translate the origin to the right-hand side of the crack and take
a— w0

(10.1)

=t [ N/t Relnote))
rn(z)—nﬁf_wl‘_z“ dt. (10.2)

In Eq. (8.10) we have taken F, = —2Re[no(t)] with the substitution for nj,

from Eq. (10.1}. i i i
S:c::s q. (10.1). Straightforward integration of Eq. (10.2) leads to the total

Klll

T2 sy oy M

- H b, [(Cf)m b, o\

Al b (Y L7308 FET) K

4");{3 -Gl * l} * 2= (,[(z) l]} * ,IZl:z' (103
In this equation, the total stress is the linear sum of a set of dislocations

situated at {;, and the crack K field is also added f :
obtain a general result. rom Eq. (8.7) in order to

Ph_ysit_:ally, fhis expression is interesting because of the appearance of the
term in {;, which corresponds to images of the dislocations at { ;- Because of

1% G, Hirth and ). Lothe, “Theory of Dislocations,” 2nd Ed. McGraw-Hill, New York, 1982,

2y =
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the cancelling effect of these images, the dislocation part of the stress field at
infinity decays more strongly than the normal 1/z dislocation field. Of course,
the overall field is dominated at long range by the Ky field.

The most important result from Eq. (10.3), however, is that the stress
singularity in the tip region is also of the 1/./z variety, but with a different
strength than the long-range K. Thus, from the limiting form of o near the
origin, the Jocal stress intensity factor, &, is defined by the relations

O,a0 = km//2nz,
P (L B )
ky = K 2 ;( ’———21!{, + ,—.-2’!{1 .

The important physical meaning of Eq.(10.4)is that the dislocations shield the
crack from the externally applied stress field for positive Burgers vectors.
Dislocations with negative Burgers vectors are antishiclding dislocations
because they enhance the effect of the external ficld. Note from Eq. (10.4) that
k. like Ky, is always a real quantity.

(10.4)

b. Plane Strain

In plane strain, the procedure is exactly the same as the antiplane case,
except that two potentials are required, ¢ and w. As before,

@' = @0+ o1,

W = wy + W),

(10.5)

@, and w}, represent the potential functions for “free” edge dislocations. These
functions are not exhibited in the traditional dislocation texts, but the reader
can verify with Eq. (9.3) that the following expressions reproduce the edge-
dislocation stress ficlds as published, for example, in Hirth and Lothe:*?

. 24

‘Po=m-

, 24 a-D

wo ="~ Ty A, (10.6)
- H

A"zm'(x + 1y

These solutions satisfy the Burgers circuit condition and have zero line-force
term at the origin. The appearance of the second term in w arises because of
the necessary translational symmetry of the stress fields of a dislocation in

expressions like Eq. (9.3).
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The terms ¢, and ', are once more chosen lo satisly the boundary
condition a;n; =0 on the crack surface in Eq. (9.3). They can again be
regarded as due to additional forces exerted on the crack surfaces which
accomplish this goal, and which give rise to new stresses calculated from
Eq. (9.8). Fortunately, the analysis is simplified, because

¢ (2) = wi*(2). (10.7)

The reason is that ¢, and w) are potentials which are derived from
(“external™) forces exerted on the crack surfaces, and the same reasoning
leading up to Eq. (9.7) applies in this case as well. The function F to be used in
Eq. (9.8) is given by

—F = 2¢5(t) (10.8)

from Eq. (9.3) because z= Z. Thus, with the obvious modification of Eq. (9.8)
for a semi-infinite crack (translate origin to the right-hand crack tip and let
a —+ ),

. 0 )
o, = W)t =— NALZUPY (10.9)
njZ2 J-m t—2z

The easiest way to evaluate Eq. (10.9) is to integrate in the complex plane, {,
with the expanded contour shown in Fig. 18, in which ¢ is the real axis:

f-[ofododee

FiG. 18. Expanded contour of integration of Eq. (10.10) along the negative real axis. The
expanded contour surrounds the negative real axis, C, continues at infinity with C,,., and encloses
the poles al z, {, and {,.
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The final result for the total ¢’ corresponding to a collection of dislocations in
the presence of a crack is

¢ = 9ot ¢}
B | g 172 1 C- 12
sl [ @) Q)]
CEORO
w -z, T\G 2
K

+ ;
2. /22

K = K, + iKy; 4, = pb/2ni(x + 1), (10.11)

For w’,

o =gl () e ]l () )

e AL-T) (Q)”’ (i)m ] K

2 = (;)2[ S + Z +2]+ T o (10.12)
Asin the antiplane-strain case, the relevant expression for the crack part of the
potentials, in Eq. (9.9) have been added to Eqs. (10.11) and (10.12), and the
additive property of stresses has been used to write an expression for a
collection of dislocations of Burgers vectors b, at positions {;. These equations
for the potentials ¢ and w exhibit some similarities to the antiplane-strain case,
Eq. (10.3), but contain extra terms. As in the antiplane-strain case, the
dominant term at infinity in these equations is the K term. The far-field stresses
of the dislocations are also again degraded by the image terms in the crack
surface, although these image terms are considerably more complicated than
in the earlier case.

The limiting functional form of Eqgs. (10.11)and (10.12)at infinity and at the
origin again provides the basis for the physical picture in which the
dislocations shield or antishield the crack. The relation between local and
applied stress intensity factors is then given by

@uao = k/2 /202

.

=K -

x=

2i(1 — v); NLe 2a{, 2n{ ) )
The reader is reminded of the complex number character of k, K, and b;;

k =k, + iky;b = b, + ib,, etc. [As noted earlier, these equations are valid for
plane stress when the substitution v — v/(1 + v) is made.)
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7 plane

£ plane

FiG. 19 Wedge configuration. In (a) the wedge parameters are shown in the z planc. In {b) the
wedge is transformed to the imaginary axis of the ¢ plane.

A somewhat different treatment from that given here for distocation-crack
stresses is given by Hirth and Wagoner,?! and an elegant method for deriving
the image stress of dislocations in the presence of cracks [contained in
Eqgs. (10.11),(10.12), and (10.3)] has been derived by Rice and Thomson.?? The
method here is quite similar to, and was suggested by, a development in
unpublished lecture notes of ). R. Rice.

11. WEDGE CRACKS

Although in most crack problems, the slit-crack analysis is adequate
because dislocation processes at the crack tip modify its shape, dislocation
interactions with other shapes are important. In particular, the wedge
configuration is the result of continued dislocation emission {sec Fig. 11}, and
will be dealt with here. The analysis will follow that of Chang et al,?® but
Sinclair?* has also discussed the dislocation-wedge configuration, numeri-
cally. As mentioned earlier, the only analytic method suitable for this case is
conformal mapping as presented in the Appendix (Subsection 2). The
geometry is shown in Fig. 19

tn antiplane strain, the relevant equations are Eqgs. (A.27) and (A.28). The
boundary condition, of course, is that a,n; = 0, which transforms into the ¢

*' ). Hirth and R. Wagoner, Int. J. Solids Struct. 12, 117 (1976).
2 ). Rice and R. Thomson, Philos. Mag. 29, 73 (1974).

3 S. Chang, S. Ohr, and R. Thomson, to be published {1986).
¥ 1. Sinclair, Nucl. Metall. 20, 388 (1976).
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plane as
im{o(ret™*)] = 0. (1.
The transformation law is
z=¢", l<p<?, {11.2)

where p is geometrically related to the wedge geometry as shown in Fi~ 19,
and points on the wedge are transformed onto the imaginary axis of the plane.
Equation (A.28) becomes

2 dnte)
pESe-2 dg

()" )
() ¢!

a, as explained in the Appendix, is the local rotation at a point.
Since {{ is a real quantity everywhere, the boundary condition on the x 3
axis in the planc is then

or(§) =
(11.3)

lm["‘(cnlmnh =0 (1 |4)

A second boundary condition, of course, is that the solution represent a
dislocation at z = { in the z plane; that is u(z) must be double valued at { with
strength given by the Burgers vector

Au{z =) =b. {11.5)

These two boundary conditions, of course, are reminiscent of the similar
problem of the image solution for a dislocation in an infinite free surface, and
indeed the function,

— riwe
0= §n(35) (11.6)

satisfies Eq. (11.4). The constant { "7 is chosen so that n(z) is singularat z = (.
In the z plane, Eq. (11.5) is satisfied if A takes the form

ub i clfr
nz) = ;;lﬂ(gw_—fﬁ;)'
a(z) = 2n'(2).

This function is the same as the crack solution [Eq. (10.3)] when p = 2.

The dislocation interaction with a wedge is only complete when a term
corresponding to a K term in Eq. (10.3) is added. When the wedge (assumed
semi-infinite in extent) is present without a dislocation, Eq. (11.4) is still valid,

(11.7)



JO KUBB LHUMDUN

and the simplest function satisfying Eq. (1 1.4)is

-
n =§Am; n=g/\.n{. ¢ plane;

A (11.8)
, . =P

" = 22| :“”," " = EAl“z”’, z p|a|’le.

This solution has the same meaning and limitations as the infinite crack
solution [Eq. (8.8)] has. That is, Ay, as a measure of the strength of the wedge-
tip singularity, must be specified by other considerations, such as those
discussed in Part 11,3, Note that for p = 2, Ay, = K/ /27

In antiplane strain, the total potential function for dislocations and

“loaded” wedge is given by the linear superpositions n
b, (2" = "M p

12. AN1SOTROPIC ELASTICITY

General methods have been developed for anisotropic elastic problems and
have been applied primarily to dislocations. An excellent recent review of
these techniques is provided by Bacon et al.** For two-dimensional problems,
this theory is based on the methods originated by Eshelby et al.,*® which are
briefly summarized below. In the gencral tensor notation for Hooke’s law,

Uu = Cuuul_l. (12.1)
The equations of equilibrium are
oy =0 = Oyulin - (12.2)

I all derivatives with respect to x, are zero, then a solution of the equations is
of the form

uy = A S(prxy + Paxa). (12.3)

Substitution of Eq. (12.3) into {12.2) yields a set of homogeneous algebraic
cquations in the coefficients,

CmpiPiAy = 0. (12.4)

In this notation, p, = 0, and because of the arbitrary form of the function f, it
is perqlissiple to set p, = 1. With this convention, the determinant for the
coefficients in Eq. {12.4) when set to zero yields a sixth-order polynomial in p,,

1 . J. Bacon, D. M. Barnett, and R. D. Scattergood, Prog. Mater. Sci. 23, 51 (1980).
26 | Eshelby, W. Read, and W. Shockley, Acta Metall. I, 251 (1953).

which will yield complex rools. Because the ¢, in Eq. (12.2) are all‘ real, the
roots of the determinantal equation appear in complex-conjugate pairs. Thus,
there are three independent values of p,, for which it has been customary to
introduce a notation with Greek indices, pja, in Which the summation
convention does not apply to repeated Greek indices. With these conventions,
the general solution has the form

3
U, = .Z,I ASi(xy 4 paaxi)- (12.5)

Since u, is real, the two f's corresponding to complex conjugate p’s are also
paired, so that the final solution is |

3
u, = 3 ReAflx, + P2eX2) (12.6)
a=1
Thus there are three arbitrary solutions, f., of a complex variable z, =
[x, + Re(pz)x;] + iIm( P1c)Xy, and the usual complex function theory can
be employed. ‘
In particular, the stresses are given by the relations

3

all = 2 Re(_ z pIL‘lf'l(z())v
= (12.7)

3

%2 = 2 RC( 21 Luf:(zu))-

ax
{* denotes differentiation with respect to z, = x, + p2X,. Thistheory has‘ been
applied to the crack problem by a number of authors, with resuits as reviewed

by Bacon et al.?® -

A general warning must be made in applying this formalism in certain cases.
In the isotropic case, the solutions become highly degencrate, and isotropic
results are not always the limit of the corresponding anisotropic expressions.
For example, in the isotropic case, antiplane strain scparatcs from plane strain,
and in plane strain, the solution [Eq. (12.3)} is not the most general solution qf
Eq. (12.2). Additional functions are required. Thus, in plane-strain isotropic
problems it is best 1o revert to the Airy stress-function analysis or its complex-
variable variant as done in this section.

V. The Elastic Forces on Cracks and Dislocations
13. INTRODUCTION

Since the problem of fracture entails the traversal of a crack and its
associated dislocated deformation zones through a solid, the problem of the
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equilibrium configuration and dynamics of the assemblage requires an
analysis couched in terms of the various forces on and between the constituent
defects, Historically, the elastic force on a dislocation segment was worked out
many years ago by Peach and Koehler,?”

df = (¢-b) x dl (13.1)

in terms of the external stress field o, the Burgers vector b, and the line segment
dl. A fundamental result of Peach and Kochler's analysis is thal the sclf-siress
of the dislocation does not exert a force on jtself. Likewise, for the elastic sharp
crack, Irwin*® derived a similarly classic result for the force per unit length on
a Mode-I crack in two-dimensional isotropic clasticity, in terms of the stress
intensity K, Poisson ratio v, and Young's modulus E,

J =K}l —v)E. (13.2)

This force is traditionally called the energy release rate in the mechanics
literature, and is known by the letter G. However, here we adopt a more
comfortable physical notation.

When cracks and dislocations are combined together, as in nearly all
fracture events, one could proceed by simply combining these two results in an
ad hoc manner to find the individual forces on cracks and/or dislocations,
because from Part I, the stress fields and local stress intensity factors are
known. However, there is a more powerful, general, and elegant approach
which follows from the basic theorem of Eshelby?? on the force exerted on an
elastic singularity, expressed in terms of the energy momentum tensor for the
elastic field. This second approach has the added advantage that it can be
written in terms of the complex potentials, which are much simpler to work
with than the full stress tensors as in Eq. (13.1). With it, we shall also make
direct contact with the J integral of Rice,**=32 which is the standard
continuum-mechanics approach to cracks in a deformation field. Clearly,
then, we shall prefer this latter path, and will display the Peach-Koehler and
Erwin resuits as special cases. The point of view and results of this section
largely stem from two papers involving the author. 33

" M. O. Peach and ). §. Kochler, Phys. Rev. 88, 436 (1950).
M G.R. Irwin, J. Appl. Mech, 24, 361 (1957).

¥ D0. Eshelby, Solid State Phys. 3, 79 (1956).

% J. Rice, J. Appl. Mech. 35, 13{1968).

' )R Rice, in “Fracture” (H. Licbowitz, ed.), Chap. 2, p. 191. Academic Press, New York, 1968,

2 ). Rice, Mech. Fract. ASME Winter Annu. Meet., 1976; AMD 19, 33 (1976).
3 R. Thomson and J, Sinclair, Acta Meiall. 39, 1325 (1982),
* 1. H. Lin and R. Thomson, Acta Metall. M, 187 (1986).
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14. THE FORCE ON AN ELASTIC SINGULARITY: ESHELBY'S THEOREM

To derive this theorem, following Eshelby,*® we suppose the finite elastic
body possesses a set of stress singularitics, as shown in Fig. 20, and that the
external surface of the body is subjected to a specified set of external forces. A
strain-energy density function is assumed to exist, and since, except at the
singularities, the medium is elastic, this function is given by

W=*6ullu. ('4')

In this and the following equations through (14.8), the full three-dimensional
elastic notation will be used. If all the singularities move a constant distance éx
from their initial positions x, 10 x, + dx, the energy change is calculated in
three stages:

In Stage 1, the energy change, U, arises from integrating the strain-
cncrgy density function over the solid. In this stage, when the sources translate,
the stresses and displacements constituting the clastic solution are assumed to
move rigidly with them in space. Thus, after the displacements occur, the new
value of the strain-energy function is

Wil(x) = W(x) — ‘;T":ax.. (14.2)

FiG. 20. Figure for deriving Eshelby’s theorem. A body is contained within an external surface
§, and is subject (o external stresses. Strain singularities exist at 5,55, 34,.... which are translated
by éx to new posilions. S, is an inner surface enclosing singularities s, and s,.



The total energy change integrated over the body is thus by Gauss's theorem
U = —J‘g—:iax.dl/= —jWAstax.. (14.3)
k

In the second stage, the boundary condition on the surface of the body when
the sources translate is considered. In Stage 1, just above, when the elastic
solutions translate rigidly with the sources, the stresses at the boundary
translate in the same way. However, although the stress originally on the
boundary satisfied the required boundary condition,

om=F, (14.4)

on the boundary, where n is the normal to the boundary, after the rigid
transtation of the elastic solution, the new stresses and displacements on the
boundary no longer satisfy Eq. (14.4). In Stage 2, an additional surface stress is
generated, such that when it is added to the translated stress, the total stress
satisfies the required condition [Eq. (14.4)), on the surface. The added stress,
Ag,, generates a new sct of displacements at the surface after the translation
has taken place. Thus, if u® is the initial displacement before the sources are
displaced, the changes generated in displacements during Stage 2 are

ut®
= gfinal _ L} it
Au, = uf (ui ax, 5x,). (14.5)

The work done on the body by the total stress acting over {(Au,) is then, to first
order (o6 + As ~ g),

U = Iaif'Au,dS,

- J‘aﬂn (,,ll’i--l -u® + % Jx,,) ds;.

Xg

(14.6)

The third contribution is the energy change in the external loading
machinery caused by the total change in displacement at the surface,
u'™ — 4'® This is the total change in displacement from that before the
source translates to that after the end of Stage 2, when the boundary
conditions are satisfied

SUD = “.[01?' ('™ — u{®)ds,. (14.7)
Addition of Eqgs. (14.3),(14.6), and (14.7) gives the final result
ou
h= “5;: = I{wéft — oyu,)dS;. (14.8)

1, is the force on the singularity in the Lagrangian sense because il represents
the negative of an energy derivative.

A subtlety arises when applying Eq. (14.8) to a crack. The slit comprising the
cleavage plane of the crack is, of course, a part of the external surface of the
body. However, since on the free surface of the slit, Eq. (14.4), is satisfied, the
second term in Eq. (14.8) is zero. Also, by symmetry, W on the lower surface is
equal to W on the upper. Because of the change in sign of dS; when comparing
the upper to the lower surface, the contribution of the first term is thus zero
also. Hence, in making a contour around a crack, the contour may end on the
crack cleavage surface.

The integration in Eq. (14.8) is over the actual external surface of the body,
and may enclose a number of singularities. The force in this case represents the
total force on the entire set of singularities. If instead, the force on a single
singularity, or subset of the original group, is desired, the following strategem
can be adopted. An inner boundary, §;, is drawn surrounding the singularities
in question (Fig. 20), and the remainder of the body then serves as an
“external driving system™ on the inner surface. In carrying out Stage 2 of the
argument, however, a subtle point must be observed. The boundary con-
ditions are established on the real surfaces of the body, and the Aw; as
calculated in Eq. (14.5) are the Ay, on the inner integration path §; which are
induced by satisfying the boundary conditions on the external surface S. The
rest of the argument then follows as before. In this case, of course, the force on
the singularities within S; is not only a function of the external driving stresses,
but also of the remaining singularities outside §,.

An important property of the integral in Eq. (14.8) is that, within certain
limits, it is independent of the shape of the surface. Consider two surfaces
enclosing a collection of singularities, such that the volume between the two
surfaces contains no additional singularities. Then the difference in the
integration over the two surfaces is

NH-nN= §(W¢S" — ot4;4)dS), (14.9)
where the integral now encloses the volume between the two surfaces. Using

Gauss’s law for the enclosed volume, the equation of equilibrium, g, , = 0,and
remembering that within V there are no additional singularities, then

fll — ll = J‘ (W. - ﬂuu'_‘j)dlt {1410)
v
The general definition of the strain-energy density is

W= J.Uudeu; £y = i(ul.j + uj.i)‘ (14.1 l)
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By the chain rule of differentiation, and provided that oy is only a function of
the strain function £, which does not depend upon position (i.c., the medium is
elastically homogeneous}, then

d
“’.k = eu_l'd‘e-(—j jau df.‘ = auuj.“. (l4.12)

and the integral in Eq. (14.11) is zero. Hence Eq. (14.8) depends only on the
number, type, and !:onﬁguration of singularities enclosed in the contour for a
homogencqus medium, and does not depend upon the shape of the contour. In
more physical terms, il f, in Eq. (14.8) is the Langrangian force on the

singqlarilies, it cannot depend upon the shape of the contour on which the
elastic fields are evaluated.

-This_corollar)f is very evocative of the Cauchy residue theory in two
dimensions, and indeed it has been shown *? that for general anisotropic media
Eq. (14.8) can be written in two dimensions as

fi=—4xIm ();l (£ PuLnAn)z,‘ Res[ f4(z)] 2)- (14.13)

This equation is written in the notation of Stroh3-%¢ explained in Part IL12,
and Ya,, is a sum over the enclosed residues. The + sign is the sign of Im(p,).
The Peach-Kochler and Irwin relations are also examples of the same

proposition that forces on defects depend only on functions evaluated at the
singularities.

15. ANTIPLANE STRAIN. MODE-ITT AND SCREW DISLOCATIONS

lq isotrqpic ela_slicily, the gencral equation (14.13) degenerates into
noninteracting antiplane- and plane-strain parts. The antiplanc-strain part
then corresponds 3% to

P i,
LlJ = iakJn
Ay, = —Bus/ 2 (15.1)
J3(2) = o(2),

33 A N. Stroh, Philos. Mag. 3, 625 (1958).
** A.N. Stroh, J. Maih. Phys. 41, 77 (1972).
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where o(z} is the complex stress defined in Eq. (8.2). Then Eq. (14.13) becomes

..—z[— 2
f= ,,2;,“"5(“ h (15.2)
f=N+ifs

Alternatively, one can derive Eq. (15.2) directly from Eq. (14.8) using the
complex function notation of Part 111, by substitution for g, and w, in
antiplane strain, and using the Cauchy residue theorem. Note the complex
vector notation introduced for the force f.

The simple Irwin and Peach~Koehler relations are recovered from Mode-
11 cracks and screw dislocation by taking a contour surrounding only one
defect in each case. For a Mode-111 crack at the origin, from Eq. (8.11),

g= K|||/\’ 2“2, and
Jo=Kia/2n (15.3)
This equation is the Mode-I11 form of the Irwin relation. Note that the lorce is
real, so the crack opens only in the x, direction.
For a dislocation, the seli-stress is of the form [/z, which contributes no

residue. Thus the seli-force is zero. If an analytic external stress g, is added to
the dislocation stress, so that

a = aylz) + ub/2nz, (15.4)
then the force on the dislocation becomes
f=baoy, (15.5)

which is again the Peach—Koehler result.

More substantive results are obtained when the crack coexists with one or
more dislocations. For this purpose the stress field of Eqg. (10.3) is required.
Using this expression in Eq. (15.2), the force on the crack is

f-c = kiy/2u,

el b b, ) (15.6)
ke Klllr‘ 2;(——-,.—-2“;‘ + .___ZHCJ .

Thus the force is the expected Irwin relation, but using the local k field of the
crack, as defined in Eq. (10.4). Note again that the force is always real, that is, [
is an extension force along the x, direction. In antiplane strain, there is no force
tending to carry the crack away from its initial cleavage plane.

The force on a dislocation at { with Burgers vector b in the presence of the
crack and other dislocations at {; with Burgers vector b, as shown in Fig. 21 is
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Fic. 21. Crack-dislocation configuration. In this section, the crack is assumed to lic along the
negative real axis. Dislocations are located st points {;. When a reference dislocation is needed, as
for example when a force is calculated on i, it is referred Lo without subscript. Subscripls are given
to al! other dislocations.

cvaluated in terms of the residue at {, and is given by

f=ﬁu£’__£[L+_'._(§)”’_‘__]
‘T har 4| (-0 &/ (-{

'%[_‘_____'_, (Q)m ! (5_1)”2__'_,]
Il =Y g\ = 7

The prime on the summation is to remind one that the reference dislocation at
{ is not included.

Three types of terms are contained in Eq. (15.7). The first is the K field, or
direct crack interaction and depends on the distance from the crack as (YN/&
The second is a self-image force on the dislocation in the open surface of the
crack, because it depends only on b and varies with distance from the tip as 1.
Further, the self-image force in the radial direction from the crack is simply

(fle’)lllll'l = - l‘bzl‘hﬂ“- (158)

which is exactly the same as if, at the crack line, an infinite open surface were
erected perpendicular o the radius to the dislocation. This is a result first
obtained by Rice and Thomson.?” The third group of terms is the contribution
to the force from the dislocation—dislocation interactions. They have the
expected 1/({ — {)terms, but are modified by the factors //{ 1, because, if the
reference dislocation is near the crack tip, even if Ky, = 0, it will sense a stress
concentration there contributed by the stresses of the dislocations at {;. These
are, of course, the K-field contributions due to the distocations which lead to
the local k concept in Eq. (15.6). In addition to the direct dislocation-
dislocation terms, there are also contributions from dislocations at the image
points, {;, and caused by the open surface on the cleavage plane. Note
particularly that the sign of the force is lincar in b in the first term, bilinear in
the third term, and is quadratic in the second. That is, the force is repulsive or

7 1. Rice and R. Thomson, Philos. Mag. 29, 73 (1974).

sk MR e

attractive, depending on b or b; in the first or third terms, but always attractive
for the sell-image term.

An interesting variation of Eq.(15.7}can be written in terms of the local kyy,
namely

_ dmb E[L_w'ﬁ (E)”Z_'_]
fo= = et T

ol L (L5 ] s
Ao t\e) =t\e) = "

Thus, Eq. (15.7) is a form which best expresses the force when the dislocation is
near the outer edge of the dislocation distribution, while Eq. (15.9)is a better
approximation when near the inner edge.

When the contour is taken around all dislocations and the crack, then the
result is simply

Re( fio) = Kiw/2u. (15.10)

Thus the elastic force on the entire collection of crack plus dislocations is
simply that for a crack characterized by the far field K. When the distribution
is symmetric about the real axis, then Im( fi4) = 0.

A simple relation can be written when all the dislocations are lined up on the
x, axis in a one-dimensional distribution. Then Eq. (15.7) becomes

i Km _ ”_bi + ;r__LbbLL'_.(f_‘i)m‘
[nx  4nx 2n(x — xH\ x

#b;
Kun=ky+ .
m 1] ; \/fn-x,

The simplicity of this result lends itself to use in pileup problems in later
sections.

o™~

(15.11)

16. PLANE STRAIN: EDGE DISLOCATIONS AND MODE-T AND Mobe-I§ Cracks

The Mode-I and Mode-II case is not a straightforward limit of the
anisotropic results as in antiplane strain, because the isotropic solutions of the
field equations are not of the form of Eq. (12.13). It is then necessary (o revert
to the potential functions developed in Parts L[1,9 and 11. With the use of the
strain-energy function in its plane-strain form,

W=da,u,; = 4o u,, + 0y50uy, + u, ) + 023432], (16.1)

direct substitution of the stresses and displacements, Eq. (9.3), into (14.8) can
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be shown to yield**
= 2n{t —v) ., ,
S == = L 2Res(p's’ — 97 — 296" + Resto?)]. (162

In terms of the ¢ and ¢, f has the simpler form
H

Similar equations have also been derived by Budiansky and Rice,*® and by
Chang.*®

For the crack alone, the force corresponds to the residue at the origin, and
carrying out a limit analysis of Eqs.(12.6)and (12.7) at the origin, the force on

the crack is
_ t — _ 2 _ 112
7= v(kk+k k),

z: [2Res(¢'¥’) + Res(p'T)]. (16.3)

2 2 (16.4)
k =k + iky,.
The k here is the local k at the crack tip. In terms of components,
= iy =12 g iy (16.35)
2 E
(fh =~ (l; v)klku- (16.6)

Eis Young's modulys. Equation (16.5) is the Irwin relation for Modes I and 1.

Unlike Mode 111, there is in Eq. (16.6) a component of the force along the
imaginary axis, the meaning of which is somewhat obscure. Strictly speaking,
Eq.(16.6) is the force of translating the crack rigidly in the X , direction, which
is not a normal physical motion for the crack. However, cracks do branch
away from their original cleavage planes, as shown in F ig. 22. One might
suppose that Eq. (16.6) would form a reasonable estimate of this branching
force, since the force on the crack is the same as the lorce on the virtual or
“crack” dislocations which are equivalent 1o the crack, and these dislocations
are highly concentrated at the tip. But a more careful analysis of the branching
force shows that such is not the case, and that the branching force is actually
composed of a linear combination of the terms ki, k3, and kiky in an
approximate treatment carried out by Cottreil and Rice.*® The reader is

** B. Budiansky and J. Rice, J. Appl. Mech. 40, 201 (1973).
**$.). Chang, Int. J. Fracs. 16, R79 (1980).
% B. Cottretl and J. R. Rice, Int. J. Fract. 16, 155 (1980).
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Fic. 22. Branching motion of & crack in which the crack abruptly changes cleavage plune.

referred to these authors for an excellent discussion of the branching force, and
for citations to the further literature on the subject.

The relation between K and k in the analysis leading to Eq. (16.4) yields
again the complex number form of the shielding relations for Modes I and II:

b b, =g~

r u
K=k - . 16.7
+2‘" _v));( o + o + (2,7 ) (16.7)

The force on the dislocation requires an evaluation of the residue at {; and is
much more complicated than in antiplane strain. Again, asin Eq. (15.7), there
are three scparate contributions to this force, which will be denoted

Je=Tea+ fo + fus. (16.8)

The first term is lincar in the reference dislocation b, and linear in K. It
corresponds to the direct interaction between the crack and the dislocation.
The secand term is proportional to b2, and represents the self-image term.
Finally, the third term is proportional to bb; and represents the dislocation-
dislocation interaction. These three terms will be addressed in turn,

The direct crack-dislocation force is

1 o Kb({ - {) )
Kb-Kb+——>_Rp|~
2i./2nC(

(16.9)

fn‘

Kb
2 2 /2l
Since the dislocations in question are edge in character, it is convenient to

rewrite Eq. (16.9) in terms of a coordinate syslem rotated so the slip plane lies
along the real axis (Fig. 23). In this coordinate system

f.p = feh; b = be"'; etc. (|6.10)

b by definition is real, ie., b = b,, and equal to the edge component of the
dislocation. In this coordinate system,

b, (Ke_",— Ke™*

- ei(c-.,’Z) + K" sin gel’(Za - 36/2)
i

f'd=

+ iKeMe -0 4 iKe"’z). (16.11)

Nole that the Re( f**}is the siip force on the dislocation and — Im(/*r) is the
climb force.
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Fiii. 23. Configuration of Mode-1 and -if edge dislocation in slip-plane coordinates.

When the slip plane intersects the tip, then « = 0, and Eq. (16.11) simplifies
10
b,

Re(f3%) = 2 o [K,sin 8 cosB/2 + Ky(2cos 38/2 + sin §sin §/2)).

(16.12)

For future reference, inspection of the angular parts of this equation indicates
that dislocations are likely to be more strongly affected by Kn than by K,. For
rough estimation, Eq. (16.12) gives a good picture of the force on dislocations
in the deformation zone, because generally speaking, it is those dislocations
whose slip planes roughly intersect the crack tip which do the shielding. After
they are left behind in the wake, for instance, they have little interaction with
the crack tip, and their prime interaction is with themselves and possibly with
the open cleavage surface.

The second term in Eq. (16.8) is the self-image term quadratic in b, and is

given by

SN /AP (A EE[E _'_(_:)
f"—_m:(l—v){c’” [l+(c) + K+2\/EEI

+ Tc?'-(—:/%z—)] - %Z-[l + (%)”2]}. (16.13)

When slip-plane coordinates are used and 6 = , the result is
(f )i = — #|p2]/40(L — V), (16.14)

ub? tan(8/2)(S + 3cos 0
16n(l — v)r? '

o

{16.15)

UF :s'i’l Yetims =

The result Eq.(16.14) was first given by Rice and Thomson,}” and has the same
{orm as in antiplane strain. That s, Eq.(16.14) is the same as the simple image
force on a distocation at a distance from an infinite surface.

The thisd term in Eq. (16.8) is bilinear in bb; and is the dislocation-
dislocation term. The general expression is

Br(l —¥) = - SR NINAYS R

S -4
— bl {¥ LY -

’L&,[(( Ut E !

LT\ 1 [/T\?
w00

bbyiy, [(C;)”z (C )”z -J
+ A 2

AN o)t (16.16)
B Sy

Bl ()" (5)"-2]- Jo
& L\{ Ly ¢ &
%2 \ 77 L

4 i !

‘:J"—‘C“Cﬁ 6,"=£—f;: Y=(C“E)/2i; yj=(CJ—Ej)/2i-
This complicated expression is a bizarre example of how difficult it can
become to solve boundary-value problems in elasticity for any but the simplest
situations. The various distances, £, &*, elc., are diagrammed in Fig. 24.

& & ¢
i 24. Diagram of the distances ¢,. &7, &;, and &, for a pair of dislocations at { and { for
interpretation of Eq. (16.16).
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7. THE WEDGE Case

When dislocations are
equations for the potentjals

Sinclair?* for numerical res

Si=

ROBB THOMSON

in. the elastic field of a wedge crack, then the
givenin Part I11,] | apply. For the Mode I-1j case,
theresults become quite complicated, and the reader is referred

ults. In Mode I, when the dislocation is on the x,
axis, the results are (see Fig. 19).

fo=0, p#2,
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if the wedge is cut open at its tip, and the faces forced into the wedge shape,
elastically, then the stress field is not iranslationally invariant as the process
continues as required in the Eshelby theorem. On tre other hand, after
emission of dislocations from the tip, the stress field of the wedge does so
translate (when the dislocations move away!). But dislocation emission
Eenerates nonzero incompatibility, and is therefore nonelastic. If the work
done on the dislocations as they are emitted is included in the analysis, then the
work done as they emerge from the externai surfaces is just that done by the
external stressing machines, which resolves the paradox. In other words, there
is no elastic force on the wedge as it translates, but there is on the dislocations.
Closely coupled to this distinction between cracks and wedges is the fact that a
Mode-I wedge does not disappear when the external stress is removed, even
though the stress singularity does. By contrast, the cleavage crack, of course,
has the basic property that, when the external stress is removed, the atom
bonds zip together again and the crack disappears. Thus, the wedge s,
fundamentally, a void (made by punching out dislocation loops or agglom-
eration of vacancies), whereas cleavage cracks are a logicaliy distinct class of
crystal lattice defect. This analytically derived distinction between cleavage
cracks and wedges is, of course, intimately connected with the physical
consequences for toughness to be discussed in later sections. (The dislocations
in this discussion are, of course, “real” dislocations, as distinct from the virtual
or “crack™ dislocations introduced by Friedel and discussed in Part 1L5)

18. THE J INTEGRAL

Equation (14.8) as applied to cracks was derived independently of Eshelby
by Rice,’**? who called the right-hand side of Eq. (14.8) the J integral. J is
used extensively in the fracture mechanics field for the analysis of fracture in
plastic materials. Untike our approach, which addresses plasticity in terms of
the individual dislocations which are the seat of crystal placticity, J is
calculated using continuum plasticity theory under the assumption that the
medium obeys a nenlinear Stress-strain law, which is a single-valued function
of strain, From the definition of the strain-energy function, Eq. (14.11), Wis
then no longer a quadratic function of strain,

W= dcpeyes, (18.1)

but a morc general nonlinear function of the strain. If this more general stress-
strain law is a unique single-valued function of strain, then Eq. (14.12) is stili
valid, and the integral in Eq. (14.10) is still zero, Thus J is path independent.

The difference between J and f as we have used it is that in J there are no
singularities representing the dislocations of the plastic zone, only a nonlinear
stress-strain “constitutive law.” Thus, unlike f, the contour path for J can be
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shrunk through the deformation zone to the crack tip itself, for all of which
contours, the value isan invariant. Further, outside the deformation zone, J is
exactly the same as calculated for our f, and in this case, from Eq. (15.10),

= Re(f) = Kin/20t (18.2)
Similar equations follow for Modes I and 11,
T = Re(fi) = [(1 — v2)/E)K} + K{). (18.3)

Note that we have followed tradition and defined J for the x, component of
the force only.

Equations{18.2)and (18.3)foliow only whena K field can be defined outside
the deformation zone. That is, the boundaries of the specimen must be far
away from the edge of the plastic zone surrounding the crack on a scale based
on the size of the deformation zone. This case is called the “small-scale
yielding” approximation. The major usefulness for J comes from its use when
the small-scale yielding approximation is not valid (see Fig. 26). In this latter
case, of course, J is still calculable by Eq. (14.8) even though no K field can be

inferred. But the relation to the force has a less clear meaning —in our terms,

LY

{b)

16, 26. Small-scale yiclding. In (a), the deformation zone surrounding a crack {shown shaded)
is small compared to all physical dimensions of crack size and specimen size. A K field outside the
deformation zone is well defined. In {b), the deformation zohe overlaps the specimen surfaces, and
no K field can be defined at large distances from the crack. Nevertheless, J can be calculated in the
Jatter case and is contour invariant.

the distocations of the deformation zonc may disappear in the boundary when
the configuration is displaced if the deformation zone overlaps the boundary,
for example.

The great value of J is associated with the fact that it 1s a characterizing
parameter for a crack in a given material, and critical values of J can be
measured for cracks at which catastrophic failure occurs, J_. From its
derivation, J, is a parameter which depends only on the material properties
such as yield stress, work hardening, etc., and can be used as a measure of the
susceptibility of a material to failure under various conditions of stress and
crack size. Moreover, J. is a parameter which can be measured for specimens
where the small-scale yielding assumption is no longer valid. Although there is
some uncertainty about its physical meaning in this case, one would roughly
expect from its contour invariance that the conditions at the crack tip which
cause crack growth should continue to be approximately inferred by J_ even
when not in small-scale yielding. Indeed, empirical explorations have shown
that J_ is in fact an excellent fracture criterion in the large-scale or general
yielding case as well as for small-scale yielding. (See the engineering references
below.)

A more serious problem arises when a crack is stressed to the critical ievel
and actually moved. As the crack moves, it leaves behind in its wake material
which has gone through a stress cycle of loading followed by release. The J
formalism is only valid if the release of stress follows the reversible stress-
strain law used in deriving Win Eq. (14.11). Unfortunately, real materials
exhibit considerable hysteresis if they are cycled into their plastic regimes, so
that the J formalism is not valid for a crack which begins to move, and of
course, most certainly not for one in something approaching steady-state of
dynamic conditions. (Eshelby has described this condition on J in the classic
words that the J, concept is valid “so long as onc does not call the material's
bluff” by unloading it!) A great deal of work has been done to explore the
practical limits of this difficulty for engineering purposes, and the limitations
do not impose important constraints for crack initiation measurements and,
surprisingly, not even for fatigue growth.*142 The reader is referred to the
various volumes of the ASTM series for the details of the engineering
applications, especially the article by Begley and Landes*® and the book
edited by Campbell et al.**

41 C. Wutherichs, Int. J. Fract. 20, R15 (1982).

1 . Heitmann, H. Vehof, and P. Neumann, Fatigue Eng. Matr. Str., in press (1986).

43 1 Begley and J. Lundes, Fracture toughness ASTM Spec. Tech. Publ. 560, p. 186; see other
articles in this publication.

44y Campbell, W. Gerberich, and J. Underwood, “Application of Fracture Mechanics for
Selection of Metallic Structural Materials.” ASM, Metals Park, Ohio, 1982
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For the purposes of this article, however, J and the continuum plastic
approach have important limitations.** Perhaps the most important reason
follows from a crucial theorem of Rice,32*¢ which states that if the stress field
saturates near a crack tip, as it must in a plastic theory with a realistic finite
plastic yield condition (which may incorporate strain hardening), then as the
crack moves forward, ail the energy supplied by the external loading machine
is absorbed by the deforming region, and none is left over to provide energy to
open the surface. We will return to this issue in Part VII, but this theorem is a
fatal blow to the attempt (o understand the conditions under which a crack
will open (what we will call the fracture criterion) on the continuum level,
because the energy supplied to open the bonds at the crack tip is the crucial
event in the entire crack growth process. We will show that it is the local k
which is important in this connection. That is, unlike J, which is a complete
invariant, f gives a different value when the contour only encloses the local
crack tip than when it encloses all the dislocations in the deformation zone,
and it is this distinction which will allow a microscopic physical picture of the
cracking process to be constructed.

19. THE GRIFFITH RELATIONS

This section will be concluded with a review of the classic work of Griffith
on the equilibrium of cracks in brittle materials.*” This is the simplest example
of crack equilibrium, a subject to which we return in Part VIL

It will be assumed that the crack of Fig. 16b is loaded in Mode . Then, since
there are no dislocations present, the elastic force on the crack, Egs. (16.5) and
(16.6), is
1-v K.
2u
Opposing this elastic force are resistive forces 1o crack opening provided by
the material. In later sections, a variety of such forces will be considered, but
there is always one contribution for a Mode-1 crack, namely the simple surface
tension of the opening surfaces at the crack tip. Working by simple analog to a
soap bubble-like surface tension operating at the crack tip and neglecting for
the moment the complexities of surface tension in a solid, the opposing force
exerted on the crack by the crystal is simply

f:ryl = - 2}' (192)

= (19.1)

** Fracture mechanics in design and service: A Royal Society discussion organized by H. Ford,
P Hirsch, J. Knott, A. Wells, and J. Williams. Philos. Trans. R. Soc. London Ser. A 299, 3{1981).

4* 1. Rice, Proc. Int, Cony. Fraci. Sendai 1, p. 309 (1966).

** A. A. Grillith, Philos. Trans. R. Soc. London Ser. A 221, 163 £1920).
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{Note there are two surfaces presented to the crack tip.)
When the elastic forces and surface tension forces are in balance, then the
point of equilibrium is given by the critical value of K,

K\, =2 ./yp/(l —v) (19.3)

This equation is often called the Griffith relation, although it is not in the form
given by him, since the stress intensity factor was introduced much later.

The point of equilibrium is actually unstable for the most usual form of
crack loading (Problem 1), a fact most easily seen by working with the energy
of the system. For Mode I, from Egs. (9.10) and (18.4) the energy of the system
with the double-ended crack of Fig. 16b is given by

U::ZJ‘ (f. + 2y)da
0

= —{nFla*(1 - v)/2u] + 4ya. (19.4)
This expression represents an inverted parabola as a function of the crack
length, @, with its maximum at the Griffith stress, o,

agg =2 /yufra(l — v). {19.5)

This is the equation derived by Griffith*7 (as corrected — see Goodier'®). With
the assumed loading geometry, the crack is in unstable equilibrium at the
Griffith point. With other forms of loading the specimen, for example by using
a wedge at the crack mouth with a point-function opening force exerted at
the mouth, the crack can be stable at the Griffith point. For these reasons,
Eq. (19.3) is a more general and satisfactory way of expressing the crack
equilibrium, because it is independent of the loading geometry. The reader will
note that Eqgs. (19.3) and (19.5) are equivalent through Eq. (9.10).

In the usual derivation of the Griffith equation (and in his original paper) a
careful distinction is made between the elastic encrgy of the medium and the
polential energy change of the external stressing machine. This subtlety is
included in the Eshelby derivation of the force on the crack. Thus, £, is not the
derivative of the internal energy of the material with respect to crack position,
but the derivative of the elastic energy of the total system, including energy
changes of the external stressing machines, with respect to crack position.

The instability at the Griffith value is the physical reason why fracture ts
often catastrophic when a critical stress is reached on a crack and, of course, is
the physical basis for the enormous practical importance of fracture control in
actual materials. The instability in the other direction, i.e., crack closure, is not
normally observed (except in polymers!) because the surfaces, once open, are
subject to oxide formation, deformation, elc., so that crack closure with exact
registry is difficult 1o effect. I1 is observed in brittle solids when sufficient care is
taken, however. (See Fig. 9b.)



V. Atomic Structure of Cracks

20. INTRODUCTION

The discrete atomic nature of matter leads to chemical and other bonding
eflccts at crack tips which generally go beyond simple continuum concepts. It
will thus be necessary to develop descriptions of cracks in lattices. This general
subject falls into two subheadings, the problems associated with cleavage
(inctuding the chemical effects) and the probiems associated with the
breakdown of the crack with emission of a dislocation. These two subjects will
be treated consecutively in this and the following section. The mathematical
framework will, however, be dealt with here. Although this discussion will
address the properties of the ideal brittle crack, the ideas presented will be
applicable to cracks shielded by dislocations in more general circumstances.

21. LATTICE STATICS

The mathematics of lattice statics for describing defects in lattices has
recently been reviewed by Bullough and Tewary.** This method yields such a
simple and accessible approach to the cracked lattice, that we will use it to
discuss cracks in a simple 2D lattice in some detail. The discussion is based on
the papers of Hsieh and Thomson,*® Esterling,*® and Thomson and Fuller.*!

We imagine a lattice as shown in Fig. 3, which is bound by nearest-neighbor
forces. The crack is defined by cutting a finite number (2N + 3) of the bonds
crossing Lhe cleavage plane. An external force, Fy, is assumed to act on the two
aloms at the center of the crack to hold the crack open, again as shown in
Fig. 3. 1t is assumed that all the atoms of the crystal are bonded by springs, so
that the system as a whole responds in a strictly lincar manner to the
imposition of the external force, F,. Finally, it is assumed that arbitrary
bonding forces, f, are applied to the pair of atoms at each end of the cut, which

for the moment will be viewed as “external” forces. The response of the system
can then be written in the form

U =Y GF, QL
U, is the displacement of the jth lattice point, and & is the Green's tensor for

** R. Bullough and V. K. Tewary, “Dislocations in Solids™ (F. R. N. Navarro, ed), Vol. 2, p. I.
North Holland Publ., Amsterdam, 1979.

% C. Hsich and R. Thomson, J. Appl. Phys. 44, 2051 (1973).

3 D, Esterling, J. Appl. Phys. 47, 486 (1976).

31 R. Thomsen and E. Fuller, in “Fracture Mechanics in Ceramics™ (R. Bradt et al , eds). Plenum,
New York, 1982.

the cracked lattice. G is a function of N, the crystal structure, and the direction
of the cleavage plane in the lattice. w and F are vectors. Equation (21.1)is a
general lattice equation, and can be applied to any lattice or direction of crack.
But in order to develop some simple illustrative results, we will restrict the
foliowing discussion to simple cubic lattices, withuand Fin the x, direction, so
that these quantities become simple scalars. Then, because of symmetry, with
only the forces F, on the central pair and —Jy on the atoms at the tip, when
N » 1, the two equations from the set of Eq. (21.1) most important to us are
those giving the displacement of the center of the crack, ug, and the
displacement at the tip uy. Thus

ug = GooFo — 2 Gonfy-
uy = GonFo — Gunfuo

the distinction of capital and lowercase between Fy and f is made to
emphasize the point that Fy is a “real” external force, while fy will ultimately
be interpreted as an atomic bond force.

The general formalism of Bullough and Tewary*® for lattices has to be
modified to obtain the relevant Green’s tensor for the crack, In brief, for the
crack, the G is obtained by calculating the displacement from the perfect lattice
Green's tensor due to a unit force, when fictitious forces are simultaneously
applied on the cleavage plane to annihilate the bonds there. The result is the
cracked lattice Green's function, and details for finding it will be found in
Hsich and Thomson.*® For present purposes, the coefficients, Gqo, and Ggy
and Gy are simply taken as given constants.

The character of the crack solution is then easily scen by inspection of the
first of Eqs. (21.2) when f is set to zero, Viz. uy = GooFp. The displacement asa
function of F, is simply a straight line with slope Ggo, where the slope is a
function of N. For different values of N, the solution is then a manifold, as
shown in Fig. 27. If the force law is assumed to possess a critical range, as
shown in Fig. 29a, then there exists a maximum value of displacement ug when
the bond at the tip reaches the critical displacement. Thus, the portion of the
line in Fig. 27 larger than this maximum value (above the upper limit curve) is
not an allowed part of the solution. Likewise, when Fj, is decreased, there
comes a point where the last open bonds on the cleavage surface at the tip snap
back together, and again, portions of the line less than this value (betow the
lower limit curve) do not represent a solution. Thus, the crack “solution” for
different values of crack length is the set of lines between the limit curves of
Fig. 27. This solution shows that for a given value of crack length, the crack is
stable over a range of external forces, and for a given Fy,, a number of crack
lengths have stable solutions. This result is contrary to the continuum
solution, Eq. (19.4), where there is only a single stable solution (crack length) at

(21.2)
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LIMIT CURVES

-
Uy

F16. 27. Solution of Eq.(21.2). A family of compliunce curves is generated for various values of
crack length M. The curves are limited at a maximum displacement by the bond strength at the tip,
and al & minimum displacement by reconnection of the first broken bond at the tip. Al the
maximum displacement for N, the solution snaps back to N + | at the minimum, as shown by the
dotled lines, provided F can be varied at the same lime.

the maximum of a parabola. [The loading conditions of Fig. 3 and for
Eq. (19.4) are not the same, but the result is still the same—continuum theory
using the loading system of Fig. 3 yiclds only a unique crack length for any
externalload, F,.] When nonlinear bonding forces Jware postulated at the tips
of the crack, then the straight lines of Fig. 27 become the continuous curve
shown schematically for a single branch in Fig. 28.

The multiple crack solutions depicted by Fig. 27 are separated by energy
barriers, explained as follows. In Fig. 28, the line for constant Fo crosses the

curve at three points. The energy necessary to move from point [ 10 point 2 is
given by the expression

2
AEI! = I Fo(“o)d“o — .Fo AUO. (21.3)
1

The first term is the change in internal energy of the system, and the second is
the change in potential energy of the external driving system. AE, ; is the total
energy change. AE, , is thus the cross-hatched area shown in Fig. 28 from point
I to point 2, and is a positive energy. To go from 2 1o 3 is a negative energy.
Thus, states | and 3 are stable states, and state 2 is a saddle point in
configuration space between the two stable states.

This energy is easily calculated if the force law is known, by reference to
Eq. (21.2). In this equation, the forces fy are now assumed to be the actual
nonlinear bonding forces cxerted by the atoms according to some specified
force law, Fig. 29. Since fy = fyluy) is a nonlinear function of uy, the set of
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|

Ue
Fi1G. 28. Crack solulion for nonlincar forces for N and N + 1. For a given F several discrete
solutions are possible. Positions | and 3 are stable. Position 2 is unsiable. The cross-hatched areas

correspond (o trapping barriers. That from | 10 2 is a forward barrier and that from J to 2isa
reverse barrier.

fL//// fL//f\\\\
u u
FiG. 29. Bond forces f. A variety of bond forces are discussed. In the lefi-hand part, the force is
@ snapping spring. In the righi-hand part, a more realistic nonlinear force is shown.

equations (21.2) become a pair of coupled nonlinear equations for the
displacements u, and u, in terms of the independent variable F,. The
constants G are still the linear lattice Green's tensor, however. If Iy is
eliminated from Eq. (21.2), then after taking differentials,

2 GON GOO GNO)
= -_— . 1.4
duo = G du~ + 2_GON( G dF (2 )

Here and later we drop the subscript from F and f because no confusion is
possible. Substitution of this expression into Eq. (21.3) yields

2
AE,, =2 EEF@N*FA%. (21.5)
1 GN N
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the term f? F dF is dropped from Eq. (21.5) because states 1 and 2 have the

came value of F. Substituting for F from Eq.(21.2) and for Au, from Eq. (21.4),

2 1 26
AE =2 j f(uy) duy + =— AuF) — —ON Ay (21.6)
1 GNN GNH

In this equation, f(u)is explicitly the atomic bond function, and is given by the
functional form illustrated in Fig. 29. Equation (21.6) exhibits an important
theorem for all nonlinear atomic processes at the tip, when the nonlinear
process is limited to only one atom, which we will catl the decomposition
theorem. The activation energy AE, is composed of threc additive parts. The
first is the energy change in the chemical bond at the tip, and is the only term
which can reflect the influence of external chemistry. The second is the change
in the lincar lattice, which is a simple quadratic function of the displacement
change at the tip (or alternatively, displacement at the point of force
application). The third is the change in the external machinery potential
energy which is a negative linear term. The tast two terms depend only upon
the linear properties of the bulk material. This simple decomposition theorem
can be used to deal qualitatively with complicated chemical interactions at the
crack tip, even when the nonlinearity is not strictly limited to a single bond.
The decomposition theorem is graphically depicted in Fig. 30.

au

| / —" {a)

A {b)
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Fig. 30. Diagrams illustrating the decomposition theorem. The broad displaced parabola is
composed of the sccond and thitd terms of Eq.(21.6). The atomic-bond function is displayed in
cach of three cases superimposed on the parabola. The resultant is the dotted curve. In (a) the
bond lunction is weak and not near the parabola minimum, no activation energy. In (b), the bond
is strong. and has its maximum slope close to the parabola minimum; activation encrgy. In{(c), an
additional chemical activation energy is present, which adds a large bump to the lotal activation

energy.

S B R U Y L L oo

The model above has been pursued more gquantitatively by Thomson and
Fuller®! 1o explore the sensitivily of the energy barriers 1o force-law form, and
to explore the stress dependence of the barriers. In general, the result is lh;n an
extreme snapping force law like Fig. 29a leads to a maximum trapping
compared 1o the softer law of Fig. 29b. This result and that of other discreu;
crack theories, suggest that for realistic force laws in materials, the 2D energy
bar‘rier will lead to a trapping stress range which will be small c;)mpared tothe
Griffith stress. The energy dependence of the energy barriers is found to
depend on the type of force law, and

EIZ o (k - kc)n
" {2, snapping bond (Fig. 29a), 217
3,  inverted parabola.

k.isa constant, and is the value of k when dynamic cleavage occurs. The 2D
malhel.'nallcs above does not account for the fact that the real crack will make
use (?I' its third degree of freedom in moving from one atom row to the next. In
particular, just as for dislocations, any crack limited by the lattice barriers \;»rill
traverse the barriers by nucleation of a double kink of finite length, so the
energy to cross traversing the barrier will be finite. Such kinks were pr‘oposed
by Hgleh and Thomson,*® and have been discussed semiquantitatively by
Es(m:lmg,so Sinclair®? for simulated Si, and by Lin and Hirth®*? in a
guasicontinuum model.

The on'ly other fully published work with the lattice statics approach is that
I:)(‘Ee‘\lerlmg,’0 who explored a variety of force laws at the tip, and who first
pou‘ued out that nonsnapping force laws were accessible with the lattice-
staln?s approach. He also made some estimates of kink configuration in a
quasi-3D ca}culalion. All such work done by the authors,**~*! however, was
perfqrmcd in simple squarc lattices, and was limited to nonlinear I‘(':nrces
r._:su:lctcd 1o the tip bonds. As such, this work is only of very rough gualitative
sngmﬁcance: However, the analysis is actually entirely general, and in principle
can be gpplled to any lattice structure and to any number of nonlinear forces
at the tip. For other lattices, the Green's tensor would be more difficult to
calculate al;an for the square lattices, but the strategy outlined in Hsich and
Thomsoq folr generating the Green's tensor is applicable using the general
lheo‘ry given in Bullough and Tewary.*® In addition, if meore than one
nonl_mear bond'is contemplated at the tip, then additional terms, f, and u; at
the tip, must be included in Eq. (21.2). Coumingthedisplacement; qu (2i 2)
becomes a set of (L + 1) equations for uy, iy, My 4 j,... liy ey iD lg;ms-of .':"0.

3 ) Sinctair, Philos. Mag. 31, 647 (1975).
%3 1. H. Lin and ). P. Hirth, J. Mater. Sci. 17, 447 (1982).
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Jn(u,), etc. This is now a set of (L + 1) nonlinear cquations which will require
numerical techniques to solve, but poses no further analytic difficulties. Thus,
the extended lattice statics approach as outlined here is a very powerful
method for obtaining general quantitative results. Once the Green's tensor has
been calculated for a given lattice (for a given crack length), then the
generalization of Eq. (21.2) can be solved for any arbitrary set of force laws (or
chemical interactions), and much insight into the various fracture con-
figurations could be gained. It is to be emphasized that the analysis is not in
any way limited by considerations of whether the set of atoms in the discrete
lattice is large enough (because it is o), or by considerations about boundary
conditions between some internal discrete enclave and an outer infinite crystal,
because there is no such arbitrary boundary in the problem. Sinclair®* has
reported some initial results on such a program relating to the problem of
dislocation emission, but this work is still in progress at the time of writing.

22. DiscreTE-ENcLAVE METHOD

A second method for studying the atomic configurations of cracks embeds a
finite discrete sct of aloms within a surrounding continuem. The con-
figuration is then found numerically by successive approximation of a self-
consistent displacement field in the discrete set and in the continuum, This
method has a long history for all sorts of defect calculations, and has been used
to simulate cracks in real materials. The first such attempts were made by
Cichlen and Kanninen®* using the Johnson*S potential for iron, and these
authors in various combinations with A. Markworth and J. Hirth gradually
improved the carly computer model over a number of years, in part with a
continuum Green's function technique of J. Hirth®" so that a flexible
boundary is allowed between the continuum and discrete regions. In addition,
an attempt was made to model the effects of hydrogen on the configuration.
Results of this work, together with references to prior work, are given in the
paper by Markworth et al.>® The reader is also referred to the paper by Sinclair
et al. *° for details on the flexible boundary method (Flex II) as it has been
developed for simulation calculations using two embedded regions inside an

** ). Sinclair, Lo be published {1986).

3 P.C.Gehlenand M. F. Kanninen, in “Inclastic Behavior of Solids™ (M. Kanninen et al., eds.),
p. 586. MuGraw-Hill, New York, 1970.

3* R.A. Johnson, Phys. Rev. 134, 4 1329 (1964).

7 1. Hirth, Scripte Merali. 6, 535(1972).

*% A ). Markworih, M. F. Kanninen, and P. C. Gehlen, Proc. Ini. Conf. Stress Corrosion Cracking,
France June 12(1973); see also, P. C, Gehlen, G. Hahn, and M. F. Kanninen, Scripta Metall. 6,
1087 (1972).

5% 1. Sinclair, P. C. Gehlen, R. G. Hoagland, and ). P. Hirth, J. Appl. Phys. 49, 3890 (1978).
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i . rt, this work has been aimed at simulating cleavggt? in

?r‘:vf;‘::lml:':;l:l?‘btl:? 33 has also been used to study the dislocation emission
ms, as discussed in the next section. o '
prg?:f:la?r“ has used Flex II to simulate a crack in S!, using a dl_rcctcd-pond
noncentral force, and has studied how the lattice trapping varies w“.h chonoe: of
the radial part of the force law. In addition, he has estimated the k?nk mol!on
and formation energies for Si with these laws, anc! finds lhz.n the kink 'mouon
energy is in the range 0.01 ¢V, and that the kink palr-fonnatlpn energy is of the
order 0.1 eV. The estimate of formation energy, however, is very c‘:rudc, al_nd
based on a quasicontinuum string model of t'he grack. The interesting
conclusion from this work, however, is that even in this most favorable cas'e,
the lattice trapping barriers are estimated (o be small,llhough the actual
numbers involved must be oonsidcredf \.'eryI rough estimates for the 3D
iti f uncertainty in the force law.
qu:;‘;::e:musweo?k with lhisy method has been an cxlen§ive study of
simulated Fe with the Johnson potential and simulated ?u Wll!l the h:ﬂqrse
potential by de Cellis et al.,° with the intent to study the dislocation emission
question of Part VI. The new mathematical development in this wor!c is to
derive a boundary condition between the discrcte_cnclave and the continuum
which is sufficiently flexible as to allow a dislocatfon to penetrate it. Ther:rc;'n
cleavage planc was lound to be {lOO},_and un}:kc the eaflner work c()) ”t1 e
Battelle group, the critical k for cleavage |sesscntu.llly lhe_(Ernfﬁth valu.e. : :r
points discussed by these authors are the effect qf isotropic/anisolropic elas hlc
solutions in the continuum, and the effect of size of discrete enclave on the
5.

aoch:ﬁ;{-:‘r'ttsm;ﬂ; recently analyzed simulated iron w'ilh the Johqsoz
potential to study dislocation emission and crack branching under mixe
loading, with results to be discussed in Part V1.

23. MOLECULAR DYNAMICS

Straightforward molecular dynamics has been applied to the crack probIe:m
by Ashurst and Hoover®? and more recently in a series of papers by Paskin,
Dienes, and collaborators.63%% In these calculations, 2D simulations are

%9 B, de Cellis, A. Argon, and S. Yip, J. Appl. Phys. 54, 4864 (1983).

& M. Mullins, Int. J. Fract. 24, 189 (1984).

82 W_T. Ashurst and W. G. Hoover, Phys. Rev. 1314, 1465 (1976).

®3 A Paskin, D. K. Som, and G. ). Dicnes, Acta Meiail. 31, 1253, 1841 (1983).

&4 A. Paskin, K. Sicradsky, D. Som, and G. J. Dicnes, Acta Metall. 30, 1781 (1982).

83 A Paskin, D. K. Som, and G. ). Dienes. J. Phys. C 14, L17§ (‘I‘.)SI). . o

%6 . 1. Dienes and A. Paskin in “Atomics of Fracture” (R. Latanision and J. Pickens, eds.).p. 671.
Plenum, New York, 1983
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made with the largest number of atoms which are practicable in the computer
{~ 10*). The Lennard—Jones 6/12 power-law potential, truncated to include
only the nearest neighbors, is assumed. Such a force law does not simulate any
particular material, but these authors have very astutely used the model to
study a variety of general phenomena to be expected at the crack tip, and asa
test bed for invesligating the limit of applicability of quasicontinuum
calculations. It has also proved possible for these authors to study both static
and dynamically moving cracks by varying the externai load. The results
principally relate to dislocation emission effects, which are the subject of
Part VL.

24. Force Laws FOR DEFECT CALCULATIONS

Clearly, the calculations of crack structure depend in a crucial way on the
validity of the force laws which are used. In ionic crystals, the Born-Mayer
type of theory can lead 1o defect calculations for the simple ionic materials
possessing a fair degree of accuracy.®” No crack calculations have been made
in those materials, however, because the potential is long ranged, and this
would lead Lo special problems with present techniques.

In the case of the simple metals, pseudopotentials have been used
extensively for defect calculations.®® However, pscudopotentials in their
standard form require that the volume change be small, and stacking faults are
the only defects where the dilatation distortion is truly negligible. Since the
crack involves an incipient surface, there is no hope that standard pseudo-
potentials can yield suitable force laws for crack calculations.

Another approach which has been used is the molecular cluster quantum
chemistry approach. For example, charge distributions have been calcutated
for small clusters intended to simulate the vicinity of an impurity on a grain
boundary, which are then used to rationalize what types of atoms will weaken
or strengthen a boundary.*® But the number of atoms needed to simulate the
properties of a crack are well beyond current capabilities.

A third approach is completely heuristic, in which a spline or other function
is constructed which is consistent with known material properties.*® The
Johnson potential*® for iron is such an example. However, there is no reason
to believe that such an approach can yield any more information than is fed
imo it, so far as making predictions for a particular material is concerned.

Thus, the crack poses the same challenge as any defect, to calculate the
absolute energy of a configuration from first principles, which is still one of the

*? M. P. Tosi, Solid State Phys. 16, 1 (1964}.
*% D). Esterling, Comments Solid Siate Phys. 9, 105{1979).
%9 C. Briant and R. P. Messmer, J. Phys. Collog. 43, 255(1982).
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most difficult things to do in theoretical condensed malter physics. But it also
goes one step further, and adds a highly distorted surface, where the
perturbation of the lattice (the volume-dependent term) is not weak. Hence,
the crack is likely 1o be the last defect for which reasonable force laws can be
obtained.

In the opinion of the author, interesting progress is being made on two
fronts. In the first, the tight-binding method has recently attracted con-
siderable interest for calculating defect structures, and has the advantage that
noncentral forces can be derived for the d shells.”™®

The second approach has been an intensive efiort by Barnett and
Landman’! to calculate the configuration of a surface in the simple metals.
The result is a set of pair potentials which are structure dependent.
Unfortunately, the volume- and structure-dependent effects are not always
small.

Where do we stand? Clearly, for the near term, there is not likely to be a first-
principles calculation of a crack tip. The best we are likely to have is some
guidance from theory on general rules about what the “force laws™ are like, and
how to use them in a qualitative sense. But the crack will probably be the last
defect for which a configuration calculation will be attempted which
represents an actual solid. Thus, we are left only with the simuiation of the
general properties of cracks, and the rationalization of findings in terms of
“green thumb” chemistry, But these efforts, as already shown by the work of
Paskin et al., and Michalske and Freiman (see Part V,26) are likely to be very
fruitful in terms of physical and chemical insight, until more quantitative help
is available from first principles.

25. CHemicAL KINETICS

‘ The general results above which show that discrete atomic effects at crack
tips lead to energy barriers to crack motion are important for the interpre-
tation of a variety of kinetic effects of fracture. Although, strictly speaking, the
n!athematical model in Part V.2t only addressed pure lattice effects, the
discussion of the decomposition theorem in Fig. 30 shows that external
chemical agents which can affect the bond breaking will conform to the same
general conceptual framework. Likewise, although the barriers described
above were those generated by the discreteness of the lattice, chemical attack
at the tip will be discrete in the same way. Furthermore, it is a common
occurrence for chemical reactions in the gas phase to have energy barriers to

™ D. G. Pettifor, in “Atomistics of Fracture” {R. Latanision and J. Pickens, eds), p. 281. Plenum,
New York, 1983,

" R. N. Barnelt and U. Landman, Phys. Rev. Letr. 51, 1359 (1983).
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FiG. 31. Modified Griffith energy function. The smooth parabolic curve corresponding to

Eq. (19.4) {- - ), becomes a “dinosaur back™ function. The trapping occurs over the range AN
aboul the central maximum.

the reaction, and the highly constrained region of the crack tip will certainly
enhance this possibility. Thus, barriers of one kind or another can be expected
to show up for crack growth near the Griffith stress, Figure 31 is a schematic
drawing of the modification which the energy barriers make in the continuum
energy function, Eq. (19.4).

Physically, the energy barriers will give rise to a thermally activated crack
growth (or, according to theory, 1o regression) near the Griffith point. The rate
of jumping the barriers according to chemical reaction rate theory is’?

k T zt N N
Vv = ——';'— Z- ('[Jl w,/‘[J2 v,‘)e"z""‘r (25.1)
Here the * represents the 3D saddle configuration, Z is the partition sum, v;is a
frequency of the system, and E,, is the energy of the double kink. In the
activaled state, there is one fewer vibration frequency than in the stable state.
When chemical reactions are taking place, the pre-exponential is modified
from that of the simple lattice by incorporation of the appropriate partition
sums for the gaseous and adsorbed chemical species.”? The activation energy
(even that for a 3D kink pair), should show the salient features of the 2D
calculations, such as its k dependence.

When forward rates of motion for the crack equal the reverse rate, a
condition for equilibrium between two stable states, | and 3, can be written

is=vy, or  Z(1)=Z(3), (25.2)

"t R. Thomson, J Mater. Sci. 15, 1014 {1980).
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which, in terms of the standard expressions relating the partition sums to the
free encrgy F, becomes equivalent to F(1) = F(3).

This general condition for equilibrium does not mean that the rates are
equal when the forward barrier in Fig. 28 or 3! is equal to the reverse barrier,
because the states | and 3 are not equivalent states. State 3 differs from 1 by the
addition (in 2D) of one surface pair, Thus, the vibration structure of the crystal
with one additional surface pair is different from the initial state, and entro;.y
contributions must be counted in setting up the free energy balance, F(1)=
F(3). Hence, at T # 0, there are subtle differences between forward and
reverse barriers. Similar results are, of course, valid in the case of chemical
adsorption during crack growth.

When the microscopic analysis is translated into the approptiate thermody-
namic and mechanical variables, it can be shown’? that F(1) = F(3) leads to
the general law

=2 (25.3)

where f is the force on the crack derived in Part IV. y is the temperature-
dependent surface energy as defined by Gibbs. This equation remains valid in
the case of chemical interactions at the crack tip, and y in that case depends in
the standard way on the surface coverage of the external chemical species.
Equation (25.3) was first suggested by Petch and Stables’*7* on thermody-
namic grounds for hydrogen embrittlement in Fe.

An interesting question arises when internal chemistry is combined with
external chemistry, for example when a crack runs down a grain boundary
with a concentration of solute impurity. If the initial grain boundary
distribution is in thermal equilibrium with the dispersed impurity in the bulk
solid, then, as the crack opens, the solute on the newly opened cleavage surface
will usually not have time to come into equilibrium with the internal soiute
distributions. This problem has been analyzed in terms of a constrained
equilibrium by Hirth and Rice,”® with the result that when such a grain
boundary opens, the y criterion is modified to be

Y—=7—Yrae (25.4)

where ygq is calculated for the boundary covered in such a way as to be
consistent with the diffusion off the boundary which will be possible under the
circumstances. That is, the energy and vibration entropy will be of the
appropriately specified covered surface.

"' N. J. Petch and P. Stables, Nature {London) 160, 842 (1952),
* N. 5. Petch, Philos. Mag. 1, 331 (1956).
73 1. P. Hinh and J. Rice, Metall. Trans. A L1, 1501 {1980).



26. SLOW-CRACK-GROWTH OBSERVATIONS

Although lattice trapping is a predicted result for a crack in any lattice, the
magnitude of the effect depends on the details of the “back side” of the force
{aw and on its range. Theoretical estimates do not suggest it should be a
ubiquitous and casily observed effect, and, indeed it seems to have been
observed unambiguously as a slow crack growth in vacuum only in silicate
glasses. Even in these systems, the crack-growth curves are very steep, and thus
hard to observe. Such slow crack growth has been looked for in Si, where the
calculations of Sinclair®? reported above suggest an observable activation
energy, but so far the material has not been studied in a sufficiently high
vacuum for the result to be conclusive.

When il comes to chemically enhanced fracture, however, thermally
activated slow crack growth is very widespread. However, only in the brittle
systems is there general agreement about the effect of the chemistry. In glasses,
where slow crack growth has been most extensively studied, the results have
been reviewed recently by Wiederhorn et al.’® and Lawn.”” Briefly, chemi-
cally enhanced crack growth in glass is characterized by three regions as
shown for H,O in Fig. 32. Region | depends on the H,O vapor pressure, and
the stress intensity factor, as the general reaction-rate theory suggests. At a
certain velocity, Region II, the crack outruns the adsorption rate on the crack
tip, and the velocity is independent of stress. Then when the crack reaches the
intrinsic fracture stress, the velocity curve (Region 111) is similar to that in a
vacuum. Stage-111 fracture still exhibits some atmosphere-dependent effect
which is thought to be a dielectric effect on the bonds at the tip by the water.

Michalske and Freiman?™® have proposed that the water reaction features
both hydrogen and electron donors in the reaction, leading to enhanced crack
growth. Consistent with this proposal, they have also shown that molecules
with a similar capability such as NH;, N;H,,and CH ,NO have similar crack
growth curves. The crucial role of hydrogen is confirmed by the fact that D,0
has a slower growth than H,0.

In further work ™ to explore the effect of direct chemical attack at the 5i-O
bridging bond in simple glasses, SiO; doped with network modifiers (Na and
Li) have been cracked in a variety of environments. The effects of the network
modifiers have also been studied in molecular-orbital calculations to find the
effect of both the bonding and nonbonding Si-O orbitals.®®-*' Although the

6 § Wiederhorn, E. Fuller, and R. Thomson, Metall. Sci. 14, 450 (1980),

77 B, Lawn, J. Am. Ceram. Soc. 66, 83 (1983).

™ T. Michalske and S. Freiman, Nature (London) 298, 511 (1982).

19 G. White, D. C. Greenspan and S. Freiman J. Amer. Cer. Soc. 69, 38 (1986).
% [ ge Jong and G. Brown, Geochim. Cosmochim. Acta 44, 491 (1980).

*! B de Jong and G. Brown, Geochim. Cosmochim. Acta 44, 1627 (1980).
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FiG. 32 _Slow crack growth of glass in water. Three regions arc observed. Region I corresponds
to the chemically enhanced growth theory displayed here. In Region 11, the external environment
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work is still m progress, it appears that the simple ideas expressed in
the decomposition theorem above are correct, and can be used to interpret
the results.

Vi. Dislocation Emission from Cracks

27. INTRODUCTION

Aocordmg to Part II, one of the two ways 10 realize a ductile material is if
tht': underlying crack emits dislocations before it cleaves as the external stress is
ra:sgd. lq this sect‘ion this emission—cleavage dichotomy will be explored.

Historically, ‘thls subject was first addressed by Kelly et al.,*? who pointed
out that a! the tip of a sharp crack, when the K level is high enough to generate
cl'ea.w.age, itis also in the range to initiate spontaneous shear breakdown in the
vicinity of the tip. Thus, which event occurs first wili depend on the relative

" A Kelly, W. Tyson, and A. H. Cottrell, Philos. Mag. 29, 73 (1967).



72 ROBB THOMSON

magnitudes of the ultimate strength of the material against tension or shear,
Rice and Thomson*? analyzed the problem in terms of dislocation emission
from the crack tip, because if shear breakdown occurs at the tip, the result is
dislocation emission. However, both descriptions are physically equivalent, as
has been pointed out by Lin.®* Both of these arguments, however, deal with an
essentially atomic property of the tip by quasietastic means, and more cxacting
allempls have addressed the problem via computer simulation with two-
dimensional atomic models. However, since only inadequate force laws exist
for atoms in the vicinity of such a severe distortion as a crack, these calcula-
tions also have major limitations, Thus, the current theoretical situation is
not satisfying from a quantitative point of view, though considerable qual-
itative insight is available. Experimentally, both stable and unstable cracks
have been demonstrated, as explained in Part II, and evidence has also been
presented there showing that at least under certain conditions dislocation
emission and cleavage can coexist in the same material,

In this section, the current status of these effects will be presented, We will
begin by reviewing the continuum/cutoff theories, then present the computer-
simulation results, and close with a discussion of the experimental findings.

28. ELASTIC ESTIMATES FOR SHARP CRACKS

Suppose a slit crack in the configuration of Fig. 16 exists, and that no
dislocations exist out to a distance large compared with a lattice spacing.
Then, a & field can be defined in the vicinity of the crack tip. Assume next that
in the two-dimensional configuration a dislocation js emitted from the crack
tip. As a result of the emission (Fig. 33), a ledge is formed at the tip, and an
elastic force is exerted between the crack and the emitted dislocation, as
calculated in Part 1V. For the moment, all eflects of any other dislocations in
the far field are neglected,

In two dimensions, the total force on the dislocation emerging from the
crack is composed of a linear combination of the Mode-1, -11, anrd -111 forces.
Erom Eqs. (15.7), (16.8), and (16.10), the force component in the slip plane is

I lklllhs bc -
Re(fF) = —==cos(8/2) + [k, sin 8cos(8/2)
nr

2 2,/2

2
+ ku(2cos(30/2) + sin Osin(8/2))] — 4—:;(11,’ + l—’_’—_—v) (28.1)

The expression breaks down into terms bilinear in b and K (direct k-field
force), and other terms quadratic in b (image terms). For a positive b which

**1 H. Lin, J. Mater. Sci. Lett. 2, 295 (1983),
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I { =0inEq.(28.1),2 condition is obtained for ro in terms of k, and if rgis
sct cqual Lo the core size re, then, from the discussion above, an equation is
obtained for values of k which must be exceeded in order to emit a dislocation,

H b .
; ‘; (b,’ + -l—b—'—v) = kb, cos(0/2) + ?'kmsm Ocos(8/2)
ar, -

+ %k..E(Z cos(30/2) + sin Osin{8/2)). (28.2)

The added subscript E, on k refers to the critical values for emission.

Equation {28.2) yields a criterion for emission of a dislocation, and the
cleavage/emission criterion is obtained by comparing Eq. (28.2) with the
Griffith criterion for cleavage. For simplicity, we first consider the simple case
k, = ki = 0. Then Eq. (28.2) becomes

B bi+bll-W
€= [2nr, b.sin Bcos(8/2)
The Griffith criterion for cleavage is
kie = 2/ wy/( = ¥). (28.4)

The combined criterion for cleavage/emission in pure Mode I then becomes

(28.3)

kg < ki, emission, (28.5)
ke > k),  cleavage.

This form of the cleavage—emission criterion was first given by D. Mason.®*

In their original paper, Rice and Thomson2? included heuristically in the kg
calculation, a force to produce the ledge. Since the ledge will be fully formed
when r > r., any function such as a tan~! function which cuts off at r_ and
makes an addition 10 the surface energy cqual to the ledge area will suffice.
However, since this term is small compared to the others and is purely
heuristic, it will not be included here.

Lin®? has shown that the criterion [Eq. (28.5)] for cleavage—emission is
physically equivalent to that proposed by Kelly et al.®? In the latter paper, the
cleavate dominance criterion is given as

glame[gihet > oot /ol (28.6)
6'SMie refers to the maximum stress developed in the tensile direction on the

atom bonds at the crack tip, o' refers to the similar quantity for shear,

4 D. D. Mason, Philos. Mag. 39, 455 (1979).
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olee is the theoretical tensile strength of the bonds of the atoms of the
material, etc. Lin shows that by applying the simple Orowan estimate®® of the
theoretical strength of materials in terms of vy and u, that Eq. (28.6) is
equivalent to

ubfy > 10, (28.7)

This estimate for cleavage stability can be obtained from Eq. (28.4) by setting
b, = 0, the angular factors to 4, and using r. ~ b..

Weertman®® and, much carlier, Armstrong,®” have also discussed sponta-
neously generated ductility in the presence of a crack in terms of the stresses
necessary to form dislocations outside the crack. Armstrong was led to
consider the parameter ub/y in his discussion, and Weertman’s results are
generally consistent with the criterion Eq. (28.7).

A detailed discussion of the predictions contained in Eqs. (28.3)-(28.5) will
be found in Rice and Thomson.?? Ohr and Chang®® have applicd the same
analysis to Mode-111 cracks and compared the results with Mode-111 thin-foil
experiments. (Since the Mode-111 experiments involve analysis of dislocation
pileups, the full discussion of this paper will be found in Part Vil.) The resuits
of these two papers are shown in Table L.

The most clear-cut interpretation of Eq. (28.2) in terms of emission is in
terms of a pure Mode-I crack discussed above. However, an important
question relates to how a mixed-mode loading might change the results. The
first question, however, to be explored is whether the Griffith criterion,
Eq. (28.4), is modified by mixed loading. Sinclair and Finnis®® have indeed
suggested without justification that Eq. (28.4) should be replaced by

L1 — v/2u](kE + ko) + kihie/2 = 2 {28.8)

when all modes of loading are present. (We have added the term in k), which
was not in their paper). Presumably the reason for considering such a
generalization of Eq. (28.4) is that (28.8) represents a balance between total
elastic force on the left with surface tension on the right, and that ky,, and ky,
contribute to the elastic force on an equal footing with k.

But Eq. (28.8) is not physically correct, because when k, = 0, no surface is
created at ali! What is involved is a rather subtle core effect at the crack tip as
cleavage takes place under mixed loading. The situation is depicted in Fig. 35.

8 E, Qrowan, Rep. Prog. Phys. 12, 185 (1949).

8 | Weertman, Philos. May. 43, 1103 (1981).

81 R Armstrong, Mater. Sci. Eng. 1, 251 (1966).

88 g M Ohrand 5. Chang, J. Appl. Phys. 53, 5645 (1982).

8% 1 E. Sinclair and M. W. Finnis, in “Atomistics of Fracture™ (R. Latanision and ). Pickens, eds.),
p. 1047. Plenum, New York, 1983.
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FiG. 35. Mode-1! [racture as dislocation formation. In (a) a crack is formed by making aslitina

lattice. In (b), Mode-11 forces are applied, and in (<), the bonds are allowed to reweld, because no
vertical displacement occurs.

Shown there is a Mode-1 crack which moves to the right by one lattice
spacing. The result when the bonds facing one another on the cleavage surface
are allowed to reweld is a dislocation. If sufficient k, loading is present to
separate the crack 1o the left of the dislocation core region, a crack can result.
Since the core region of the dislocation is always of order b, the presence of k,
loading cannot have lowered the critical k, needed to hold the crack open
much below its Griffith value, Eq. (28.4}. Thus the eflect of mixed loading on
the Griffith condition is expected to be minor, but to depend quantitatively in a
complex way on the details of the atomic bonding in the tip region. For our
purposcs, it will be sufficient 1o retain the form of Eq. (28.4) as the cleavage
criterion, but remember that the critical k, value will depend (only slightly)
on ky, and ky,. Of course, if cleavage and emission are closely balanced in
Eq. (28.5), mixed-mode loading could affect this balance for emission in
Mode I (sce Part VII). We note in passing that lattice trapping could be
drasticaily altered by mixed loading, because that is a property also dependent
on the details of the atom bonding.

The effect of mixed loading on emission can now be divided into two
separate categories. In the first, emission will be considered onto the crack
plane itsell where 8 = 0 (Fig. 36b,c). Such emission will not blunt the crack. In
the second, emission is on a plane inclined at a finite angle 1o the crack plane, as
in Fig. 33.

When emission is on the crack plane, then the elastic forces from k;, and ky,
arc at their maximum values, while the k, elastic force is zero. Thus, for a pure
edge on this plane, the coadition for emission is

1/2
Kpe = s b ~ £ (2 s (28.9)
87"": | ~v 1 —v\8n
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Fio. 36. Emission in Modes 1, 11, 111. In Mode |, the emission force is on an edge on a planc at
an angle 1o Lhe crack, while in Modes I1 and 111 the maximum emission force is on the crack plane.
A separate requirement is that slip planes exist in these directions.

and for a pure screw,

ki = pb,//8rr, ~ p./as/8n. (28.10)

In these equations, a, is a number approximately equal to s lattice spacing.
These equations describe a condition in which the tensile and shear loadings
are independent of one another. Remembering that the role of &, is simply to
hold the crack open, once that is assured, then emission on the crack plane is
simply a matter of building up the k, or ky, loadings to their critical values.
In the second case, when emission of the dislocation corresponds to the
blunting configuration of Fig. 33, then the full generality of (28.2) is required.
Now, ky and ky, loadings either lower or raise the value of k; required to emit
the dislocations depending on the sign of k. k, loading acts on the screw
component, and k, on the edge. In many cases, simple materials have sufﬁciept
symmetry in the cleavage and slip systems available that for a given s]np
system, such as shown in Fig 36a, another equivalent slip plane exists
mirrored in the cleavage plane. Also, screw components can often be either
1 b. Hence, mixed loading will in gencral break the degeneracy in the emission,
and favor one system over the others. Quantitatively, the critical value of &,
from Eq. (28.2) becomes
o 2ky b, 2¢05(36/2) + sin 8sin(8/2) _
ke = ke — g b, ka sin 8 cos(6/2) - 28
k% is the value of kg without k,, and ky, ie., given by Eq. (28.4).
Equation (28.11) poses a critical problem to the theory of the cleavage-
emission balance, because in the simple criterion, Eq. (28.5), both k,; and kyg:
are modifed by mixed loadings. We have argued that k,. is not changed in a
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TasLe |, k,, k., AND E,,, FOR SELECTED MATERIALS®

ke ky, Kuge
Eq.(28.3) Eq.(28.2) ke Obs.
Rel. 22 Ref. 22 Eq. (28.10) Ref. 100 E..
Cu 64 in 1.5 04 —
Al 34 2147 10 0.7 —
Ni 8.4 547 26 1.4 —
Fe 88 9.34 Y 22(22)
Mo 8.2 9.2
MgO B4 2.1 14 Cleaves 205 (22
Si 6.4 147 32 1122

0.5-1.0(92)

“kin10° Nm*?, EineV,
* The numbers in parentheses are references.

major way by addition of k,, or ky,, but Eq. (28.11) suggests that ke can be. This
situation has not been explored sufficiently, experimentally. It may be
connected with the appearance of dislocations at cracks in materials supposed
to be brittle on the basis of Table L, or vice versa.

29. THERMALLY ACTIVATED EMISSION

The previous discussion envisioned a 2D crack and emergent dislocation,
which was entirely adequate in discussing the mechanical stability of a sharp
crack tip against dislocation emission. But as noted in that analysis, the system
always has a lower energy when an emitted dislocation is far enough from the
crack, because the force is repulsive when r > r,. In two dimensions, of course,
total energies of cracks and dislocations are always infinite because of the
infinite length of crack and dislocation. In 3D, however, when the sharp crack
is mechanically stable, there will always be a saddle-point configuration of a
dislocation loop of finite size through which, in principle, the loaded crack can
emit a dislocation by thermal Aluctuation. In any discussion of crack stability,
the activation barriers for emission by mechanically stable cracks will be an
important quantity. It will not be surprising that such a 3D calculation has not
yet been carried out in a rigorous way, because of the mathematical difficulty.
However, estimates have been formed of the energy barriers.

The first point to note is that in isotropic clasticity, and Mode 1, the
dislocation loop must meet the crack line at a right angle, because there is no
lateral force on the distocation from the crack, and the dominant force near the
tip is the attractive image term. Secondly, the maximum in the function of
Eq. (28.2) is a broad one, because of the counteracting effects of the 1/./r k

FiG. 37. Mode-1 emission in‘ Z.iD. Dislocations must be nucleated from a mechanically slable
crack. In (a) the shape of the critical nudleus is assumed to be a half-circle, and in (b) a reclangle.

term and the 1/ image term.?? Thus, although the stress or force field near the
Flp is inhomogeneous, there is a large region near its maximum, where the force
is nearlyl constant. For this reason, Rice and Thomson?? suggested that a
likely :osumate of the saddle configuration is a half-circle in the classic Frank -
Rcad. configuration (Fig. 37). On this basis, the energy of the dislocation
loop in MOfic [ was calculated, using the 2D force expressions, Eq. (28.1). The
energy barriers calcutated for circular loops in Table I (those frc’)m Ref. (.22}) are
EYH very large compared with thermal energies in all materials investigated
except iron, which is considered borderline. ‘
Haasent“ suggested that the earlier values of Rice and Thomson might be
too large in the case of Si, because splitting the dislocation lowers its self-
encrgy, and the stacking fault energy in Si is low. He has estimated about

“® 3. Hirth and J. Lothe, “Theory of Dislocations,” 2nd Ed, McGraw-Hill, New York, 1982.

*t P Haasen, in “Atomisti - . )
New York. Ir; o omistics of Fracture” (R. Latanision and J. Pickens, eds), p. 707. Plenum,
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0.5 eV for the barrier energy of a loop. Lin et al.?? have also carried out an
estimate of the loop energy for Si. In addition 10 allowing the dislocation to
split, they also chose a rectangular configuration “loop” with variable size and
aspect ratio. Again, the energy barrier for Si is dramatically lowered over the
value of Rice and Thomson, as shown in Table 1. The decrease in activation
energy calculated by Lin et al. was aboul equally due to the altered shape of
the loop, and to the dislocation splitting.

All these calculations use the 2D force expressions, and are therefore not
self-consistent 3D elastic calculations. Because of the relatively large loop sizes
estimaled in these calculations, the elastic estimate of the energy barrier does
not suffer from the atomic cutoff limitation which the 2D stability calcuiation
of Part V1,28 does. Hence, the energy-barrier calculation is apparently one
which can be performed legitimately in the elastic approximation, In view of
the apparent sensitivily of the estimates to the details of the calculation, a
more ambitious rigorous 3D calculation of a suitable crystal is needed.
Further, the mixed loading effects discussed in the previous section have not
been investigated, and undoubtedly would be of interest as well.

30. Atomic CALCULATIONS

Extensive atomic simulations have been carried out for 2D crack-
dislocation configurations. Such simulations relate directly to the most crucial
issue regarding dislocation emission, namely the crack stability; so they have
an important place. Fortunately, as noted in the previous subsection, atomic
effects apparently are not germane to the problem of the energy barrier,
because 3D simulations are not currently practicable.

We have already dealt in Part V with the general theory of discrete
calculations, and report here simply the results. Dislocation effects in
simulations were first observed in the work of Wiener and Pear,?® who found
thatin the limit of very high driving forces, and velocities, dislocation emission
was enhanced by the higher stress required to move the crack at a high
velocity. A series of simulations of iron using the Johnson*® potential were
carried out by the Battelle group®® in various ways, showing that simulated
iron was borderline between cleavage and emission. De Cellis et al.*® have
simulated iron (i.e., bec metal) with the Johnson potential and copper (i.c., fcc
metal) with a Morse potential in a calculation with improved treatment of the
boundary conditions, and have concluded that these simulated materials have
cracks, respectively, stable and unstable against dislocation emission.

*2 1 H. Lin, T-Z Chuang and R. Thomson, (o be published (1986).
T H. Wiener and M. Pear, J. Appl. Phys. 46, 2398 (1975).
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Mullins®! has performed similar calculations on simulated iron under
mixed loading conditions, and finds that the general predictions of the
continuum theory is correct. That is, the crack can be made to change its
cleavage planc abruptly by addition of Mode I1, and the emission criterion is
altered by mixed loading. A “phase diagram” from his work, showing how the
emission criterion changes under mixed loading, is given in Fig. 38.

All previous calculations have atiempted to simulate a particular material
by choice of a suitable force law, and they all embed a discrete lattice within a
surrounding continuum, with boundary conditions set on the interface
between the two regions. In a series of papers, Paskin, Dienes and co-
workers®*"*® have taken a different approach to the simulation problem.
Realizing that no adequate force laws yet exist for real materials, they have
carried out a serics of molecular-dynamics calculations on a large 2D array
with up to 10,000 lattice points using the Lennard—Jones potential. The points
in the array form a triangular lattice. The point of view of these investigations
is thus to model general fracture phenomena, rather than to make predictions
for particular crystals. They have shown that under static conditions, their
modei will barely support a sharp crack, and that the criterion of Eqs. (28.3)-
(28.5) is satisfied. This simulated material thus provides a sensitive test for the
validity of the continuum approach, which is encouraging. In their simula-
tions, when the external stress is raised, the crack propagates, and under these

-

ki/kig
FiG. 38. Results of computer studies in simulated iron for mixed loading A --no fracture, B —
(010) cleavage, C—non-{010) cleavage by branching, D —dislocation generalion at lip, E
dislocation generation combined with twinning, and F—dislocation generation and/or twinning
followed by crack branching.
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Fi. 39. Results of a computer simulation with small atoms substituted for initial atoms at
(he surface, as shown by circles. The initial model was ductile. After substitulion, dislocation
generation is followed by initiation of a new crack (after Paskin ef al.**).

conditions, as in Wiener and Pear,?* the crack emits dislocations as it cleaves.
In the simulations, furthermore, it is observed that virtual emission of
dislocations take place. That is to say, when the crack is moving rapidly, an
emitted dislocation does not move far after emission, and the dislocation falls
back into the cleavage plane after the crack moves on.5® Such virtual emission
was first proposed by Knott®* in order to explain why the “Griffith y” for
brittle fracture as measured in iron is nearly an order of magnitude higher than
the true y is believed to be. If virtual emission occurs during cleavage, it will be
an energy-dissipation mechanism, which will add to the measure of y in the
Griffith criterion.

Finally, Paskin et al.%* have studied the modification of the fracture
processes in their model when the atoms in the tip region possess altered
bonding properties. Figure 39 shows simulation results when “small” and
“large™ atoms are substituted at the crack tip, simulating the formation of a
surface film at the crack tip. In the one case, dislocation emission is enhanced
by the film; in the second, the material is embrittled by the additional stresses
induced by the film. In effect, what transpires when a film forms is that the
stress singularity at Lhe crack tip is no longer characterized entirely by a local k
field, but by the stress field of a precipitate particle. Thus, the discussion of
dislocation emission leading up to Eqgs. {28.3)28.5) no longer applies. The
modified analysis using continuum ideas has been carried out by Sieradsky.®*
We will return to additionat discussion of the embrittiement question in
Part VI

In a completely different approach, Sinclair** has used the lattice-statics
discrete-Green's-function approach to study the problem of dislocation
emission. Preliminary results only have been reported at the time of printing,

94§ Knott, Proc. Int. Conf. Fract., 4ih 1,61 (1977).
9% K Sicradsky, Acta Metall. 30, 973 (1982).
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bu:itms powerful approach is being used to explore the eflect that force law
and crystal symmetry have on the emission criterion to gain some perspective
on how these factors affect the emission criterion in a general law.

31. EXPERIMENTAL INVESTIGATIONS

The direct and unambiguous experimental demonstrati i '
emission aqd the quantitative study of the dislocation s;:h:::zr!;;:adizlszi?;:z:
with _alomlcally sharp cracks is exceedingly difficult, even with modern
techniques. The clearest examples of rigorously brittle cracks have been
provided by the observations of B. Hockey®® in 8i, Ge, A1,0,, and MgO, all
rglauvcly brittle materials. The technique used is 1o indc:u :hc surfacge (;f a
single crystal by‘a sharp point, and induce tocal damage. Cracks thus formed
then Propagate into relatively undamaged portions of the crystal, where the
form lsolal_ed .entities. The tip region is then cut out of the sample ;md thinnez
for transmission electron microscopic examination. In the case of Si, when
I'raclu_re is mdlllocd at low temperature, the final crack tip is complelel; clean
{see Fig. 9b), with no dislocations present at all. In some cases (Fig. 9¢) after the
crack h_as moved to a certain position, it retreats presumably beca-use of stress
relaxation. In these cases, the former cleavage surface is manifested by a
nctworklof misfit dislocations because the surfaces have not come b:ck
toget.hcr in perfect registry. At temperatures above that where dislocations are
mobile (Fig. 9b) the cracks are found 1o be associated with dislocation
atmgspheres. In Hockey’s Si observations, detailed slip-plane analysis is
lacking, but the observed dislocations may have been emitted after lheycrack
::;zileci; :r I!hcy n;‘ay hayc been carried along by the crack stress field as the
o oci"ﬂ:dr'om the region around the indenter, where intense deformation
4 :n other experiments with bulk samples of Si, Champier®” has analyzed the
sf c;:;rzzl;(:nlﬁelt;l‘s producefl by a stationary crack in a technique first used by
at.ound l.hc c':a:; kcstlz.l experiments, analysis of the dislocation loops formed
- shows thal o_niy a small fraction of the loops are in the
S Dl i are ot paale 1ot crack i, Athough uéh loops migh
crack line. Although such loops mi
i:zo I:al:'e nucleated spontanc_ously from the crack Iine.slhe activall::sd sltilt’é
uld have (_0 be a complete circle instead of a half-loop, and it would appear
that th\_': barrier _would be larger than for the blunting configuration. The most
attractive possibility for the origin of the dislocations consti;uling the

:: B Houkey.. unpublished; see also Lawn ef al., Rel. 8.
o 0 Chatnpier, 1o be published {1986).
C. St John, Philos. Mag. 32, 1193 {1975).
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FiG. 40. Dislocations generated in the vicinity of & crack in MgO. Cracks in MgO appear to
generate dislocations from sources close 19, but not at, the crack tip. No dislocations are seen
which are believed to emanate from the crack itself (aher Hockey %),

deformation field is thus inhomogeneities in the material whose stress fields
are enhanced by proximity to the crack.

In extensive studies of MgO, where deformation accompanies the crack,
Hockey *® has observed many cases where sources of dislocations operate near
the crack position (or near a previous crack position), but only a few where the
crack itsell may have been the source of the dislocation (see Fig. 40).

In summary, for highly brittiec materials, the evidence is clear cul that
rigorously atomically sharp cracks exist. At elevated temperatures, dislocation
emission from these cracks has not been clearly estabiished as yet, although
theory suggests that the activation energy may be sufficiently low at least in Si
for it to be observed,

In the bee metals, which are expected to be borderline emitters, the picture is
more complex. The most clear-cut experiments have been those of Ohr and co-
workers'®'! using thin film in sity electron microscopy, and Vehofl and

Rothe,*® using bulk samples of iron/Si and Ni in hydrogen environments.

The Ohbr configuration is shown in Figs. 12 and 3. Cracks are formed when
the region near the hole is deformed. Screw dislocations on the slip plane are

** H. Veholl and W. Rothe, Acta Metall. 3K, 1781 (1983).
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responsible for the “sliding-off * deformation, in the foil, and originale at the
crack line which is short compared to the width of the foil. The anal ysis of the
configuration requires consideration of the pile-up of dislocations, which is a
subject for Part VII. However, the existence of a locai & at the crack tip is all
that is required to invoke the emission analysis. Ohr and Chang®® have in fact
used this analysis (o generate the numbers in Table [ This case must, however,
be a mixed-mode situation, because the crack line and cleavage plane arc
inclined to the tensile axis at about 45°. For the screw dislocations emitted on
the crack-slip plane shown in Fig. 13, the mixed-mode analysis of Part Vi 29
shows that only the k,, part of the toading is involved in the emission, and the
analysis of Ohr and Chang®® only considers this part. For the reasons stated
in Part V1,29, the emission of the screw dislocations does not imply that
Cleavage cannot occur in Mode 1. That is, there is no cleavage-emission
competition in the ky, part of the loading, and emission of screw dislocations
will simply take place as soon as the critical ke value is reached. Any growth
of the crack is duc to the Mode-| loading, which of course is necessarily
present in order to hold the crack open. (See Part VI1,38 for further discussion
of this point.)

In other experiments,'® when the crack grows into the thicker part of the
foil, the fracture mode changes. In Mo, a zigzag configuration develops with
the crack propagating in mixed-mode I/l loading on alternating cleavage
planes with Mode-11 dislocation emission, as shown in Fig. 41. Again, the
crack growth shown is, of course, due to the Mode-I loading, and emission
occurs when kg is exceeded, as discussed in Part V1,29. With the pileup of
Mode-1I dislocations observed, however, ke can be achieved again after a
dislocation is emitted only after the pileup moves away sufficiently to allow ky
to rebuild, or the crack may branch to another slip plane {see Fig. 41). Unlike
the screw-dislocation Mode-I11 case, here the Mode-1 opening interacts with
the Mode-I! dislocations, as discussed in Part VII.

A4

/ Yy 4
/4 N /\\/\*‘@

Fi6. 41. Cracks in molybdenum in the thicker part of the foil configuration of Fig. I3. Figure
shows cracks growing in mixed mode and oscillating beiween equivaient slip planes (after QOhr
et al'®)
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In AlL'® a quite different process takes place in the thicker zone. There, an
alternating Mode-1 cleavage-emission slide-off process occurs. When the
Mode-1 crack is arrested, emission occurs, to form the classic wedge
configuration. Then, as the specimen thins by the continuing general
deformation, sudden initiation and propagation of a clean brittle Mode-1

crack occurs for a short distance. This Mode-1 crack is, of course, not stablein

Al, and its appearance as a dynamic event poses a major problem to which we
return in Part VIL39. :

Experiments on Fe-2.6 at. % Si and Ni single crystals (reviewed by Vehofl
and Rothe®?) have been performed on macroscopic samples which also throw
light on the cleavage-emission tradeofi. In these experiments, the materials
can be made to shift from a fully ductile wedge configuration with crack
growth by pure dislocation emission and slideof, to a highly brittle (but not
pure) cleavage condition by controlling the temperature or hydrogen pressure
on the sample (see Fig. i1). These experiments show that cleavage and
emission can coexist, and that the fraction of one versus the other is variable
over a wide range. Careful experimental analysis shows that the action of the
hydrogen is at the crack tip itself. The authors show that the results are
consistent with the occupation of the special sitc at the tip with a Langmuir-
type expression for the occupation probability, The site has a trapping depth
of 49 kJ/mol H in iron, which is approximately equal to that for chemisorption
on the surface. Because the fraction of cleavage saturates with hydrogen
pressure before pure cleavage is attained, these authors belicve that their
results are to be correlated with the simple coverage of the site at the tip rather
than 7, because y does not saturate with pressure. They also reconfirm that
addition of O, impedes the hydrogen effects (an old result), and interpret this
as being due to the adsorbtion of O, on the surface, which denies hydrogen
access to the tip.

For us, the important results arc that intrinsic cracks in both iron and Niare
ductile at room temperature and above. At low temperature, the iron is brittle,
suggesting that iron is indeed borderline, as predicted by the theory, and that
the activation energy for emission is low. With the addition of H, the Griffith y
is lowered so that emission is less favored. The quantitative results of the
experiments are probably interpretable only in terms of a kinetic treatment
which predicts how the filling of the sites at the tip, which leads to cleavage,
competes with thermally activated emission.

Finally, experiments in ductile materials by Wilsdor{ and co-workers, as
reviewed by Wilsdorf,® have shown that high-purity ductile metais and certain
alloys behave almost exactly as predicted. The systems studied were the ductile
metals Au, Ag, Cu, and Al, the borderline metal, iron, and the normally brittle
Be. All these metals were of high purity, and failure was by fully ductile
processes. Under tension, just as the last ligament of a sample is about to pull
apart, however, cracks appear in the resultant thin ligament, with the results
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shown in Fig. 14. The single-crystal Be samples in these observations are
oriented in the easy-glide direction, so that failure is fully ductile. The typical
hole-growth process is apparent in the figure, and the only difference between
these experiments and hole growth as observed in an engineering material-
such as in Fig. 6, is that there are no large precipitates for the holes to nucleate
on. A new hole is nucleated in these experiments in the dislocation cell walls.
After initiation, the crack grows by cleavage (!) to a typical size of the order of
a few um, and then opens in the crystallographic shape shown either by the
classic slide-off mechanism, or by the operation of dislocation sources near a
tip of the wedge. The major surprise in these experiments is that again, as in the
Ohr !9 experiments on Al, a fast-moving cleavage crack has a finite lifetime in
a material that in all other ways behaves entirely in a ductile manner.

Vil. Dislocation Shielding and Fracture Toughness

32. INTRODUCTION

.With the help of the ideas and the formalism developed in earlier sections, it
will finally be possible to confront here on a fundamental level the Cel’lll"al
probl‘em of fracture: materials toughness.

This Qroblem has had a long history, in its modern dress stretching back to
the classic paper by Griffith*? in 1920 who worked out the basic overall energy
bah!nce between the elastic driving forces on a crack, and the resistive forces
aga'.mst crack advance supplied by the material, as discussed in Part 1V,19. In
Gnﬂi.lh‘s work, he identified the resistive forces as the surface tension, y, of the
opening cl.eavage surface at the crack tip, in the soap-film analogy.

But Griffith’s relation, Eq. (19.3), had only very limited applicability to
extremely brittle materials such as glass, because of the very weak resistive
forces which the true surface tension of solids can supply. Ultimately,
Orowan'® and Irwin'®? independently proposed that Griffith’s relations
could be generalized to tougher materials if the plastic work y,, done by the
advan:lcmg crack, could also be identified as a resistive term leading to a kind of
cflective surface energy v, = ¥ + v, and incorporated into Eq. (19.3). In cases
of small-scale yielding, plastic work done is proportional to the distance
mqved l?y thecrack, so identifying it as a type of “surface” work is apptopriate.
th. y in Eq. (‘19.3) replaced by 7., it was found that the modified Griffith
rclauqn could, indeed, be applied to the fracture of ordinary tough engineering
materials, and the modern field of fracture mechanics was founded. Its success

192 5 M. Ohr, 1o be published (1986).

:i; l- Orowan, Trans. Inst. Eng. Shipbuiliders, Scotland 89, 165 (1945).
G. A, Irwin, Int. Congr. Appl. Mech., $th, Univ. Brussels, 8, 245 (1957).
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in tough materials is possible because the plastic work done during fracture
can be several orders of magnitude greater than the work done in simply
opening new surface, and thus the vastly different fracture resistance in
malenials such as glass and steel can be encompassed.

The term toughness has been used here several times in a descriptive way.
Quantitatively, it may best be identificd with the resistive force which the
material is able to exert against crack advance, and a measure of it would be
Yerr- But K and J_ at the critical crack condition are also often identified with
loughness, and a fourth measure, 1o be discussed in a later subsection, is the
“crack-opening displacement™ (COD) measured on the crack at a svitable
point. Note that these quantities are not dimensionally equivalent to one
another, and are defined in different ways. But relations between them can be
obtained by theoretical models; so the four quantities do collectively provide a
rather loose operational basis for the general concept of material toughness.

Since the pioneering work of Orowan and Irwin, the field of fracture
mechanics has progressed by treating fracture as a stress-analysis problem in
terms of continuum elasticity and plasticity. The point of view of this article is
quite different, however, because, when continuum fracture mechanics is used
to address the question of how the forces are transmitted (o the crack tip to
open the atomic bonds there, a fundamental difficulty is met. This difficulty is
expressed in the Rice theorem®?4 already mentioned in Part IV,18. Ac-
cording to this theorem, in continuum clasticity and plasticity, when a crack
advances, the work done by the machines supplying the external stress is
absorbed entirety by the plastic processes in the medium, and none is left over
for the surface energy of the opening crack. This result depends upon the
assumption that the stress at the tip saturates to a finite value, as it must for any
realistic plastic yield constitutive law for 2 material.

Al first glance, because of the smallness of the true surface energy y, relative
10 Y.q, this may nol seem like a serious problem. However, the point is that
there is in this approach no way to model the opening of the atoms at the crack
tip as in Part V. This paradox will be lurther illuminated from the standpoint
of dislocation theory in Part VIL34. It will be shown there that, if the
dislocation shielding zone {treated as a continuum) goes right down 1o the
crack lip, that the local k is strictly zero, and the crack is completely shiclded.
The stress at the tip is then given by the finite dislocation friction stress, o;,
which is always less than the bond-breaking stress required at the crack tip.
This prediction is thus inconsistent with the existence of a cleavage crack at the
tip. Hart'®* has found conditions, however, under which a continuum theory
can be developed, but, as discussed in Part VI1,39, these conditions relate to
behavior near the tip.

'Y E. Hart, Ini. J. Solids Siruct. 16, 807 (1980).
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In continuum mechanics, it has been popular to postulate the existence of a
“process zone™ near the crack tip where the continuum theory breaks down
and cvents transpire which open the crack. It will be our purpose in this
section to highlight this zone, and show how the crack-tip stress field inleracts
with the dislocations 10 produce the overall fracture. The complete crack
and dislocation configuration must be constructed in a seli-consistent fashion
taking account of the intrinsic structure of cracks in the material on the one
hand, and the dislocation mobility and source distribution on the other. Given
the known complexity of dislocation behavior in materials, especially in
enginecring materials, one can begin to appreciate some of the reasons for the
complicated fracture behavior in most malerials, and engineering materials in
particular,

The plan of this section is to {1} discuss the general conditions for crack
equilibrium in terms of the three fundamental crack morphologies, (2) present
a one-dimensional Mode-11I model of dislocation shielding lor brittle mate-
rials, and materials whose cracks emit dislocations, (3) discuss mixed-mode
cracks, (4) discuss moving cracks, and (5) discuss time-dependent mixed
cleaving and emitting cracks.

31 EquiLisriuM CONDITIONS FOR THE THREE
PROTOTYPE CRACK CLASSES

The observationally based descriptive discussion of Part II led to a
qualitative breakdown of cracks inte three distinct morphological classes: the
slit crack, the wedge crack, and the externally blunted crack. These different
morphological classes also correspond to three different broad mechanisms
of fracture corresponding to differing regions on the ductile/brittle spectrum
ol material response. (The reader should note that the crack classes to be
described here are based on different physical mechanisms for fracture, and
are, categorically speaking, different from the modes of fracture (Modes 1, 11,
111) which relate to the way in which external loads are applied to a crack.

a. Slit or Brittle Cracks

The stit crack corresponds to a crack which is atomically sharp at its tip, as
in Fig. 42, and its most important attribute in comparison with the other two
types of cracks is its ability to propagate rapidly. This crack may be a purely
brittle crack as envisioned in the mathematical description of Part 111, or it
may be a crack which has absorbed a finite number of dislocations on its
cleavage surfaces so that the crack surface behind the tip has a greater crack
opening displacement, as shown in Fig. 42b. In cither case, because of the
atomically sharp tip, from the elastic point of view, this crack is characterized
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FiG. 42. In (a) an initially sharp slit crack is shown which activaies two sources in its neigh-
borhood. When the antishielding dislocations which are atiracted o the crack are absorbed by
the cieavage surfaces, they create steps which lead to a finite opening of the crack called the
COD. The COD is related to the dislocation Burgers vectors absorbed {and to those remaining) by
£g. (33.3). If the source is not precisely lined up with the crack tip, then the tip remains sharp
locally.

by a local k field at the tip. The atomic structure at the tip corresponds to the
“decohesion” model depicted for the simple cubic lattice in Fig. 3.

It is assumed here that the crack is stable in the lattice in the sense of Part VI,
and that the k to which the crack is subjected is less than that at which
“decohesion” model depicted for the simple cubic lattice in Fig. 3.

When the criterion for cleavage is met, Eq. (28.5), then the static equilibrium
condition for the crack and any associated dislocation cloud (screcning and/or
antiscreening) is that each defect in the total configuration is subjected to a net
zero force. That is to say, the elastic driving forces derived and discussed in
Part 1V are exactly balanced for each defect by other forces supplied by the
material. In the thermodynamic sense, this criterion for the brittie crack is met
by the Griffith condition, Eq. (25.3)

Se =21 33.1)

In this equation, y is the surface free energy in the Gibbs sense, and will be a
function of the chemical activity of any external chemical species. f is given in
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terms of the Yocal k,, and when mixed loading is applied, we will assume that
only Mode | assists the crack growth, although some assistance from Modes 11
and 111 is possible, as discussed in Part V1,28.

For the dislocations in the total configuration, in equilibrium, similar
conditions must be postulated:

(f2); — bloy),; = 0. (33.2)

This equation is expressed for the jth dislocation in the cloud in terms of an
effective friction stress g, at the point j. Typically, this stress might correspond
to a Peierls “stress,” or interaction with impurities or a grain boundary. They
should not refer to interactions with other dislocations, except in special cases,
because we shall usually include these interactions in the elastic forces
explicitly on the left-hand side of Eq. (33.2).

One of the major difficulties met in applying Eq. (33.2) to real situations is
that the interactions envisioned in the second term are usually three di-
mensional in character, while the formalism adopted here is only two
dimensional. Thus, some appropriate averaging process to collapse the third
dimension is always envisioned, because the enormity of a [ull three-
dimensional description is far too great to countenance in its entirety.

The coupled equations (33.1) and (33.2) represent a complete set of con-
ditions for two-dimensional equilibrium. A direct attack can be carried
through when the number of dislocations is small or other simplifications are
made, but generally speaking, successful attacks on the problem involve rather
drastic approximations.

b. Wedge Cracks and Slide-Off

The wedge crack in its pure form is one where the crack is unstable against
dislocation emission, and its characteristic shape is determined by the
geometry and symmetry of the distocation slip planes at the crack tip. In this
case, the crack advance is not by opening of bonds, but by ledge formation as
the dislocation is emitted. Thus one dislocation must be emitted for each
Burgers vector increment of crack advance. The wedge is formed therefore
by alternate “sliding-off” on the equivalent slip planes at the crack tip, as
in Fig. 43. This crack morphology was first recognized conceptually by
Cottrell'® and is best confirmed observationally in the work of Vehofl and
Rothe,®® as shown in Fig. 11. Cottrell believed that the slide-ofl mechanism
would not be observed commonly because the crack can only continue to
advance without limit if the dislocations continue to advance toward the
external surfaces until they exit from the material there. This is exactly what
Vehoff and Rothe observe, of course, in their single crystal specimens.

1s A H. Cotteell, Proc. R. Soc. London Ser. A 285, 10(1965).
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Fii. 43: Inan in‘ilially sharp slit crack, when k, < k., a8 the stress is raised, alternaic emission
from thf tip on equivalent slip planes intersecting the crack create a wedge crack whose opening
angle a is complementary 1o the angle between the two slip plancs. Whether slip occurs on slip

plmlc: onc or many atom planes separated from one another makes no difference 1o the final
result.

¢. Externally Blunted Crack

When a crack exists in a material containing bulk sources of dislocations
then as the external stress is raised, these sources may be activated. Figure 42,
ll!uslral_es what happens to such a crack. In the two-dimensional description
dislocations are always produced from a source in pairs of opposite Burger;
vector. By reference to the relevant force expressions in Part IV, it will be
founq that the dislocation attracted toward the crack is also the antishield-
ing dislocation. In the formalism of Part 1V, this corresponds (o a negative
Burgers vector. On the other hand, the shielding dislocation (positive Burgers
vector) of the pair is repelled when the distance to the crack tip is beyond the
range ‘of the image force, Generally, then, one will expect that many of the
antishielding dislocations will be absorbed in the open (cleavage) surface of
the crack. Starting with a slit crack, the result is a crack with a finite opening
called the “crack-opening displacement” (COD,) given by the total absorbed
Burge(s vector. Given that the total Burgers vector is conserved during source
operation, i.e.,. by production of compensating pairs, the COD, aside from a
cosine factor, is just equal to the remaining total shielding Burgers vector,

COD = ;bj cos§,. {313)
#; is the angle made between the crack plane and the Burgers vector. Note that

the QOD b)'! this definition does not include the elastic part of the crack
opening which even a slit crack has by virtue of Eqgs. (9.13)-(9.15). This

PHYSICS OF FRACTURE 93

FiG. 44, When a slit crack is blunted continuously by external sources, the crack tip eventually
takes on a rounded macroscopic shape because of the randomness of the plastic process. The
rounded crack is then best ireated from a continuum approximation.

expression is also valid, of course, if the source of dislocations is the crack tip
itself.

IT the material surrounding a crack is sufficiently soft, then, as the external
stress is raised, it may transpire that neither kg nor &, is ever reached, and
continued operation of the external sources progressively blunts the crack, as
discussed in Part I1. Figure 44 (and Fig. 7) is a schematic drawing of successive
blunting and hole formation, in the way presumed to lead to fully ductile
fracture. Wilsdorf's observations in Fig. 14 of very clean thin films, although
showing highly crystallographic features, is apparently also an example of the
same process. Crack advance in the ductile case is possible only because of
the nucleation and coalescence of new hotes, and the COD is controlled by the
distance between the large holes. Otherwise the material will simply neck to
rupture on a macroscopic scaie, as in Fig. 1.

Analysis of this case is obviously very complicated, and much effort has
been expended on it in the continuum mechanics and materials communities,
Although this work will not be reviewed here, the major result is that the
maximum triaxial stress in front of a blunted crack occurs at a distance in front
of the crack roughly equal to the radius of curvature of the tip. When this
region of maximum stress reaches out to precipitate particles in the bulk, they
fail, and a new hole forms, as shown in the figures of Part Il. For a general
review of this subject, see Knott,'® and Rice.?

In principle, the processes of ductile fracture have little to do with fracture
as we have described it in this article, because only in the early stages of hole
formaticn do any events involving bond breaking occur. However, on a gross

193 ). Knott, Proc. Int. Conf. Fract., 4th 1, 61 (1977).
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macroscopic level, the failure is cracklike because the COD is given by the hole
size, and this of course is on a scale given by the material microstructure. But
even on an atomic scale, the hole-growth mechanism can switch over to
cleavage when conditions at the tip change, as for example by chemical em-
brittlement. Thus the important conclusion is that it is the relative size of ke,
k., and kg which governs which of the physical classes of fracture occurs. (Here

ke is a measure of the k necessary to activate sources in the medium in a
continuous manner.)

d. Mixed Fracture Classes

The previous discussion has arbitrarily separated the three Qasses for di-
dactic reasons, when the more usual case, and the more interesting one, in-
volves a mixture. Thus, very few materials are so brittle that no dislocations
are emitted, or created by external sources. Indeed, one of the major purposes
of this article is to consider the shiclding provided by such dislocations, and
the source of these dislocations must have been either the crack tip or external
sources. If the conditions at the crack tip do not turn decisively in only one
direction, so that for example alternating emission and cleavage can occur, of
alternating cleavage and external source activation, then significant toughness
can be generated for a crack which remains atomically sharp (or nearly so) at
its tip. It is toward such a crack and the conditions for its existence that the
main discussion of this section will be directed.

In the same way, the careful distinction made here between the externally
blunted and wedge cracks is also probably not a sharp dividing line in real
materials. In the thin-foil experiments of Wilsdorf (Fig. 14), emission and
external dislocation generation are observed in the same specimen. Also, the
double-wedge configuration taken by the “holes” of Wilsdorf generate long-
range stress not unlike that of a smoothly rounded crack, so that hole
generation ahead of the crack is to be expected (and is observed!). Thus it is
probably moot whether the typical hole-growth mechanism in its later stages
as seen in ductile polycrystalline materials is due primarily to dislocations
emitted from the crack itself or to external sources.

On the other hand, in the opinion of the author, the crucial question of
whether a material will be capable of sustaining a brittle crack stably ina
cleavage mode, without blunting the tip and arresting the bond-breaking
process, will be determined by the emission of dislocations at the tip rather
than by absorption of externally gencrated dislocations. The reason is that the
externally generated dislocations must collide exactly with the tip in order to
blunt it, which is an unlikely event, whereas dislocations emitted from the
crack blunt the tip by definition. However, the precise conditions under which
external sources can halt a cleaving crack are important and unknown at the
time of writing.
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34. ONE-DIMENSIONAL DISLOCATION DISTRIBUTION

If dislocations are distributed along the cleavage plane in front of the crack
in a one-dimensional array, the problem of finding the equilibrium distribu-
tion is amenable to analytic treatment, if the number of dislocations is large
enough to be considered from a continuum approximation. The first such
treatment was by Dugdale (Mode 1,'°¢ followed shortly by Bilby et al.
(Mode [15),'®" hereafter called simply BCS. In the BCS theory, the crack is
considered 10 be a continuum distribution of virtual screw dislocations
whose Burgers vector distribution, f(x), is related to the crack displacement
u, by the equation

u,=§—ﬂ, db = Blx,)dx,. (34.1)

Xy

(See Part 11,4)) These virtual or “crack” dislocations are set in equilibrium
with each other and with the external stress distribution at the point x on
the cleavage planc. The resultant distribution thus gives zero stress on the
cleavage plane, and therefore “solves” the crack problem. The stress external
to the crack is then just that provided by the “crack” dislocations, and the
results are equivalent to that of Part [11. BCS, however, go further and let a
distribution of “real” dislocations be placed on the external cleavage plane,
and then solve the total equilibrium problem of “crack™ plus “real” dis-
locations. The external dislocation distribution is presumed to start at the
crack tip. The BCS theory has been used extensively to interpret the plastic
zone of cracks, because its results are analytic and casy to understand.'®® The
BCS theory is a direct extension of dislocation pileup theory to a situation
where the stresses are inhomogeneous, and, because of this simple picture, the
BCS description has thus been very appealing to those familiar with dis-
location theory.

An extension of the BCS model was developed by Chang and Ohr#8:109:110
to explain the experimental results by Ohr and co-workers'®!"'~*!7 and

19 . §. Dugdale, J. Mech. Phys. Solids 8, 100 {1960).

197 §_A_ Bilby, A. H. Cottrelt, and K. H. Swindon, Proc. R. Soc. London Ser. A 272, 304 (1963).

108 £ Smith, in “Dislocations in Sofids” (F. R. N. Nabarro, ed.), Vol. 5, p. 364. North Holland
Publ., Amsterdam, 1979.

199 g Chang and S. M. Ohr, J. Appl. Phys. 52, 7174 (1981).

110§ Chang and S. M. Ohr, Int. J. Fract. 13, R3 (1983).

111 3 Narayan and $. M. Ohr, Proc. Int. Conf. Electron Microsco, oth 1, 580(1978).

12 g Kobayashi and 5. M. Ohr, Proc. Annu. Meet. EMS A, 37thp. 424 (1979).

113§ M. Ohr and J. Narayan, Philos. Mag. A41, Bl (1980).

L4 g K obayashi and S. M. Ohr, Philos. Mag. A42, 763 (1980).

113 g M. Ohr and $. Kobayashi, J. Metall. 32, 35 (1980).

116 g Kobayashi and S. M. Ohr, Scripta Merall. 15, 343 (1981),

117 | Horton and $. M. Oht, J. Mater. Sci. 17, 3140 (1982},
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FiG. 45. Dislocation shielding configurations. (a) A Mode-111 slit crack is depicted with &
distribulion of screw dislocations on its cleavage plane. The solid curve represents a continuous
distribution function of the same set of dislocations, on the interval from x,=ctox, =d

Chia and Burns''® on dislocations emitted from cracks which showed
a dislocation-free zone near the crack tip. The path to be followed here is a
further simplification of their work, published independently by Majumdar
and Burns''® and by Weertman et al.'® Starting with BCS, all the
mathematical developments make essential use of the Muskhelishvili integral
equation of the Appendix.

In the follewing, the description will be a Mode-H1 crack in antiplane strain,
but the analysis is also applicable to Mode I with edge dislocations with
Burgers vectors perpendicular to the cleavage plane or Mode I1 with Burgers
vector in the cleavage plane. To make the transition from Mode I1I to Mode I
or I, simply make the substitution g - (1 — v)u in the equations. In Mode 111
and 1, the cleavage plane is a glide plane, while in Mode 1, the dislocation
motion in the cleavage plane is by climb.

Consider a semi-infinite Mode-II1 crack with its tip at the origin, and a
distribution of screw dislocations on the x, axis as shown in Fig.45. Forsucha
distribution on the x, axis, Eq. (15.7) becomes

2 ¥
g, = Kb _ pb? i Y %b__ ! (fi)m_ (34.2)

{Inx  4Rx X~ x\x

The subscript on x has been dropped here and subsequently where the
meaning is clear.
Making the continuum approximation,

db = B(x)dx. (34.3)

Then

df, = Kwfidx _ B dx)? + dx J“ up(x’)B(x) (’-"

12
— ‘. 34.4
{nx 4nx ¢ 2n(x — x') x) dx (344)

' K. Y. Chia and S. J. Burns, Scripta Metall. 18, 467 (1984).
"1 B. Majundar and S. Burns, Int, J. Fract. Mech. 21, 229 (1983).
120 J Weecrtman, I. H. Lin, and R. Thomson, Acta Metail. 31, 473 (1983).
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If the distribution is in equilibrium, then from Eq. (33.2)

df,
Tr = +Bx)ax) (345)

and the equilibrium equation (34.5) can be written

zf(—ﬁq(x) + %) =- J: NEL LI (34.6)

x-x'

The term in (8*dx?) is of course dropped because it is a higher-order
differential.

Equation (34.6) has the canonical form of the Muskhelishvili integral
equation, (A.44), and its solution is given by (A.45),

) 2 ((x — o)d — x))”’ r g(x")dx’
B(x) x x e (X'~ x) /X' —cld - x7)  (34.7)

o) = —/x6(x) + K/ /2%,

Because f is assumed to be zero at infinity, all polynomialsin (A.45)are zero. If
o(x) is a constant, the solution of this equation can be written in terms of
clliptic integrals'® (Fig. 45). The general form of 8, however, is seen from the
square-root factor in front of the integral in Eq. (34.7). There is thus a sharp
maximum near the front edge at ¢, and a decrease to zero at point d. A solution
can also be given numerically'?! for an arbitrary function g;(x).

The continuum solution is only useful when ¢ « d, and for this case when q,
is a constant, a very simple set of relations can be written!2°

32\ 4 4
k= —(;) q\/z(lll? + ‘3‘). (348]

n
2 12
K= 2(;) a./d, (34.9)
‘ K (2d\'7?
ﬂ= L ﬂ(x)dx = ;(;) . (34]0)

Strictly speaking, in these equations, in Mode 111, o; must correspond to a
friction force on the dislocations, which in the simplest terms would be lh_c
Peicrls force of the lattice against the dislocations. More generally, lhough.. it
could be any other resistive force in the lattice, such as interactions with
impurities, or grain boundaries. Such resistance terms are usvally thermally

31 N. Louat, unpublished resutts.
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dependent, however, and are not entirely consistent with the time-independent
mode! assumed here.

In Mode 1, the stress is usually interpreted as the yield stress, and the reason
for this is best seen from Dugdale’s original figure (Fig. 46). In a thin plate with
a crack under tensile load, the deformation zone is concentrated ahead of the
crack because of the tendency of the plate to thin down in this region. The
overall effect is that of a distribution of edge dislocations running parallel to
the crack tip, and with Burgers vector perpendicular to the crack plane. The
opening of the crack, COD, is given by the relation, Eq. (33.3). Since the
dislocations are produced by localized yielding in the deformed region, the
siress in this region is given by the yield stress o,. Without work hardening, o,
is a constant. Thus, depending upon the details of the modeling, & in Eqgs.
{34.8)-(34.10) and the equations leading to it, may variously take on the
meaning of a static yield stress, or a friction force. If the dislocations are
thought of as being created by sources in the region of a static crack, then their
local density will be fixed seil-consistently by that value of g, which gives a
local stress equal to the yield stress. 1, on the other hand, the dislocations have
been created, for example out of the crack tipin Mode 111, or Mode I1,and are
mobile, they will move into a configuration consistent with the local frictional
resistance forces. These two cases will be discussed in detail in Part ViL,35.

When ¢ — 0 in Egs. (34.6)—(34.10), the BCS or Dugdale limit is obtained. In
that case B is given by an analytic function,2? and for a finite crack with tips at

x=+ta pis
ﬁ_2afa N xJIE—a +aJF = x?
=_ — 3 _ 7_ 2|
mu o x Jd -at —ad - x G4.11)
o 1, SCrew
; (l'—\‘), edge

This distribution contains a singularity at the crack tips, x = ta. Equa-
tions (34.9) and (34.10) are still valid.

Dai and Li'?? have carried out numerica) calculations for the equilibrium
of a discrete set of dislocations, with Eq. (34.2) directly, with much the same
results as shown for the continuum analysis.

The most important result in the BCS limit, however, is that the local k
disappears, and the crack is completely shiclded from the external stress. This
resull was already anticipated in Part V11,32 in the introductory comments.
The point of view expressed in this article is that without a local k at the core

crack, the stress environment there cannot be adjusted to the requirements of

122 | Weertman., Int. J. Fract. Mech. 2, 460 {1966).
123§, 4, Dai and J. C. M. Li, Scripta Metall. 16, 183 (1982).
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.FIG_. 46. Dugdale configuration. If a thin plate containing a crack is pulled in tension, the plate
will l‘llp shead o_f th'e crack on planes through the thickness as shown, leaving edge di.r:locations
running on the inclined planes through the specimen. The two dislocations, however, have the
overall effect of a single edge disiocation with Burgers vector normal to the cleavage plane.

local equilibrium for the core crack. That is, if the crack is a cleavage crack, the
lc.)cal k must reflect the requirements of the bond strengths of the atoms at the
tip(k,), and if it is an emitting crack, the local k must do the same for emission.
Qn the othcr.hand, if the crack is completely shielded, the stress at the tip is
given by the limiting value of g;, which is a parameter describing some kind of
plastic response of the materiai, such as the yield stress, and does not provide a
yalue c_)I' the ultimate bond strength. Thus a completely shielded crack is an
inconsistent §olulion of the total problem. Nevertheless, Eqs. (34.9)and (34.1 0)
donot contam‘the crack-lip parameters ¢ and k, and are predicted correctly by
!hc BCS continuum solution. These results are useful by themselves and
indeed, books on fracture such as the classic one by Knott,'** and the reviews
such as the excellent recent one by Smith,!°® make much worthwhile use of the
BCS theory and these last two relations,

35. THE FRACTURE CRITERION IN CLEAVAGE

A-s promised in the introductory subsection, Eqgs. (34.8)-(34.10) provide a
rudimentary form of a fracture criterion. A fracture criterion should predict K.

124 3 K nott, “Fundamentals of Fraciure Mechanics.” Butterworths, London, 1973.
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in terms of intrinsic malerials variables for crack equilibrium, If o is a true
[riction stress, and independent of the properties of the dislocation shield, then
Eq. (34.8) is decoupled from the other two in the sense that then the first
equation relates only to the crack tip region. The weak dependence ondin the
logarithm can be safely ignored in first approximation. In effect, Eq. (34.8) sets
¢ and k so they are consistent with one another, independent of the magnitude
or extent of the shielding zone. In a sense, there is no predicted K., because it
depends on B or d, which can be set at will. Then, Eqs. (34.8)(34.10) are
underdetermined until some additional information is provided, such as a law
giving the magnitude of the shielding charge B,

One way to provide the missing information is to identify g, as a yield stress,
and link it to the local dislocation distribution g by a work hardening law.
Such a law, however, would change the character of the integral equation,
(34.6), and the solution, Egs. (34.8)-(34.10) would not be valid. Weertman
et al.'*® have proposed that another, less satisfactory constitutive law can
be obtained by linking g; to the total B by an cquation such as

0 = 0o{B/B, )" (35.1)

With this equation, the set of equations (34.8)-(34. 10) is fully determined, and
the critical k is given as'2° ,
K = x(ki/c)?*mm

(,: J)u + miam V2Bt
K=|—
o 1/2m (

18 4d 4)(1 tm)iim

(35.2}
In— + =
8 c +3

k}=4py.

In th_is eq u_alion. « depends primarily on macroscopic quantities, white k and ¢
are Lip region parameters. k. is the critical k for crack advance, and is given here
in lerms.of the Griffith relation and y. In this form, one sees that, in spite of the
large shielding which might be provided by B, the entire fracture process is
very sensilively controlled by the conditions of atomic bonding at the tip
because of the overall balance and equilibrium which is required. The
appearance of ¢ in this relation is interesting. In Eqs. {34.8)-(34.10) o; has been
@entiﬁe_d as a yield stress, but the model does not let local sources of
dlsloc'at_lons operate within the clastic enclave x < ¢, and the physical reason
for this is that in real solids, the sources for dislocations are not ubiquitous on
an atomic scale. In this picture, then, c is the distance to the first source of
dnslpgahons, a parameter which is linked back to the inhomogeneity or
gramniness of the scale of plasticity in a real material. Without this plastic
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“grain size,” of course, the crack would be fully shiclded again, and all the
objections already voiced about that situation would pertain.

Equation (35.2) shows qualitatively the required dependence on the physical
parameters u, o, (which is the initial yield stress), work hardening parameter,
etc. However, it is based on a very primitive one-dimensional model. Another
relation which uses the inner cutoff idea, but uses a two-dimensional treatment
of the plastic region gives a somewhat different and probably better

relation 7%
2 (1 +m)/lm
K!= 2::(%) / (G3e)t ~miam (35.3)
In this equation, the work hardening law is written
o = dol€/€)” (35.4)

in the traditional manner, where € is the strain, and g; is a local function of
strain, in which the local strain is related to §.' 2® Equation (35.3) is a correction
of the original expression in Thomson.'?® Equation (35.3) has been tested
against steels which have been embrittled with results which are satisfactory,
but no intensive effort has been made to validate the prediction. The reader
will find additional discussion of the clastic-plastic enclave approach by
Weertman'?"!2# and Fuller and Thomson.'?$

36. EmissiON-CONTROLLED SHIELDING

When k = k, dislocation emission occurs. This class of fracture has been
studied intensively in Mode Il by S. M. Ohr and his collaborators at Oak
Ridge,!%!*1-1"7 by Wilsdorf and collaborators at the University of Virginia,®
by P. Neumann and collaborators at Dusseldorfl,’*® and by Chia and
Burns.''® In a typical experiment, as performed by Ohr, a small rectangular
specimen is thinned through its center, as shown in Fig. 12. When stressed in
the transmission electron microscope, shear is induced in the thin portion of
the foil, as shown in Fig. 13b. If dislocations are injected into the thicker part
of the foil from the thin edge, eventually when the total Burgers vector
component normal to the foil nearly equals the thickness of the foil, the foil
shears apart, and a Mode-111 cracklike artifact is formed. From the geometry,
in pure shear, the “crack”™ line would have zero length at its tip, but in the
experiments, some Mode [ develops because the crack possesses a small finite
length at its tip associated with the dislocation free zone. Figure 13 has already
displayed results for copper.

133 E_Fuller and R. Thomson, AIME Symp. Micro Macro Meck. Crack Growth 49 (1981).
126 R Thomson, J. Mater. Sci. 13, 128 (1978).

127 ). Weertman, Acta Metall. 26, 1731 (1978).

128 } Weertman, J. Mater. Sci. 15, 1306 {1980).
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The primary results of these experiments are:{1) the dislocations are emitted
on the crack plane {which coincides with a slip plane) from the crack tip as it
grows into the foil; (2) there is a significant zone in front of the crack devoid of
dislocations, called a dislocation free zone; (3) the number of dislocations
emitted is correiated with the thickness of the foil; i.e., COD = Lb;cos8,,
where 8, is the inclination angle of the slip plane to the normal of the foil; (4)
the distance to the first dislocation is a function of the stress on the crack, such
that when the stress is iowered, this distance also decreases; {5) the distribution
observed is that of an inverse pileup, with a sharp maximum in the vicinity of
the first dislocation; (6) when the crack grows into a relatively thick portion of
the foil, it often develops more Mode-I character, so that emission is then
observed on slip planes intersecting the crack plane at a finite angle, blunting
the crack as discussed in Part VI; and (7) quantitative interpretation of the
results can be correlated with the emission criteria of Part V1and the shiclding
results of Part V11,34, to which we now turn.

Chang and Ohr'%® and Ohr and Chang®® have interpreted these results in
terms of the one-dimensional continuum model of Part VII,34 with a finite
value of ¢ in Eqgs. (34.8)(34.10). In the experiments, 6; and ¢ can be measured.
From Eq. (34.8) k,y and Ky, can be caiculated. In this case, of course, the
critical value of k,, in Eq. (34.8) is the critical value for dislocation emission,
called in Part V1, ky;.. The results taken from Ohr and Chang®® are shown in
Table 1.

Several comments are in order regarding the validity of the models. First,
the experiments are performed in thin foils, and the theory pertains to thick
specimens. In the elastic analysis, the stresses on the foil faces must be zero
[Eq. {7.3)]. If the crack were normal to the foil surface, and the stress state
were Mode 1 or Mode I, then plane stress (see Part HLY9) would apply.
Howeves, the crack is primarily a shear crack in Mode II1, and the axis of the
crack and its associated dislocations is inclined to the planc of the foil at a
finite angle. Eshelby and Stroh'?® have analyzed the problem of screw
dislocations normal to a surface and shown that screw dislocations in that case
have a truncated long-range stress field of the form r~ 127 (incorrectly
quoted in their paper), where t is the foil thickness, because of the image terms
in the foil surface. Edge dislocations retain their long-range 1/r stress fields,
however. For the same reason which leads to the truncated screw stress field,
the Mode-111 crack if normal to the foil surface would also be expected to have
a truncated long-range stress field in a foil. However, the crack and slip plane
are at an inclined angle to the foil, so only a portion of the a, and o,, stress
fields will be cancelled by the boundary condition on the foil surface. Thus the
inclined crack and dislocation distribution will retain a portion of their long-

2% 5 D, Eshelby and A. N. Stroh, Philos. Mag. 42, 140t (1951},
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FiG. 47. View of fracture planc for the foil. The crack lineis a small fraction of the foil thickness,
and the thickness is a function of position in the plastic zone. The sress state at the crack line must
possess al least a small amount of Mode 1in order to open the crack al that point, bul the stress
cannot be 1wo dimensional because of the variable thickness of the crack planc.

range interactions and the crack and dislocations will interact with one
another at distances well beyond the foil-thickness distance. However,
buckling in the foil will still serve to orient the system so that the image terms
can operate to some extent, and will tend to decrease the long-range
interactions further. Chang and Ohr'*® have studied the effect of finite
thickness on the integral equation Eq. (34.6) in Mode 111, but because of the
inclination of the slip plane to the foil surface, the configuration is not pure
Mode I as explained above.

The second point concerns the question of whether the geometry of the
sheared foil really represents a two-dimensional Mode-III crack. A view of
the crack plane would schematically be that shown in Fig. 47. Because of the
variable thickness of the foil in the plastic zone, the stress state cannot be
entirely two dimensional. In effect, there must be a higher effective k at the
crack tip relative to the two-dimensional k used in the equations, roughly in
proportion to the ratio of the crack-line length to the undeformed foil
thickness. Thus, the foil geometry generates an inherent uncerlainty in the
two-dimensional antiplane-strain analysis. However, there is no question that
the qualitative picture is correct and the surprising quantitative results shown
in Table 1 indicate that the approximations in the analysis are not serious or
that they cance! one another.

It is important to note that these Mode-111 experiments do not bear directly
on the Mode-1 emission—cleavage dichotomy of Part V1. The discussion there
emphasized the independence of the modes relative to this question, and
emission of screw dislocations in Mode 111 was shown to be unaffected by
cleavage events in Mode L. There is an observable short Mode-1 crack in the
experiments, as shown in Fig. 47, which coexists with the Mode-111 emission,
but the value of k, at the tip has not been calculated. (For self-consistency, of
course, it must be at the Griffith value.) The general configuration of the

130§ Chang and S. M. Ohr, Imt. J. Fract. 21, 3 (1983).
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overall loading in the (non-2D) foil dictates that the k, and ky;; values must be
about equal, but the detailed analysis has not been carried out. Hence, a direct
quantitative comparison of kg with k,g based on these experiments cannot be
made. It is very interesting, however, to note that in the same configuration,
MgO does not emit screw dislocations, but cleaves, showing that the ex-
periments do have a qualitative bearing on the cleavage/emission dichot-
omy. These mixed mode loading questions are further pursued in Part VI1,37.
The Mode-IIl foil experiments do not relate directly 10 any perceived
macroscopic failure mode in a bulk material, but they throw a very strong
experimental light on two general principles in fracture: They confirm direct
emission of dislocations from a sharp crack tip in fec and bec metals, and they
confirm the general proposition of crack tip shielding including the im-
portance of the local k at the crack tip. However, we suggest there is one
important mechanism operating in the failure of practical ductile materials
where the Mode-Ill (or its sister Mode-11) crack discussed here could play a
role, and that is the observed shear breakdown found to occur between
neighboring holes in the later stages of hole growth fracture. (See Fig. 14,)

Experiments reported by Chia and Burns''® on cracks in LiF do provide
general confirmation of the picture presented here in bulk specimens. An
additional feature found, however, relates to the effects of nonblunting glide
dislocations in shielding the crack. Unloading in their case also had the
interesting effect of increasing the deformation zone in a nonlincar fashion, a
result of interest for fatigue crack growth,

The experiments of Wilsdorf and collaborators® have focussed on the final
stage of ductile rupture of a specimen. Some experiments have been performed
on macroscopic sized specimens, which neck to a fine chisel cdge, as shown
in Fig, 5. TEM studies of the thinned neck during final rupture are similar
to results of prethinned foil specimens stressed in situ in the microscope.
Figure 14 shows that, just before final rupture, a ductile “crack”™ develops
composed of a regular series of rectangular holes. The nucleation and growth
of these holes has been studied in a variety of ductile materials: Ag, Al, Ay, Cu,
and Fe and Be in the pure form and stainless steel and Al alloys. Both
polycrystalline and single crystals were included. For a general review of the
results, sce Wilsdorf.* The major results were: (1) the voids are nucleated in
dislocation cell boundaries; {2) the holes formed take a highly crystallographic
shape determined by the operation of dislocation sources cither at the sharp
corners or from bulk sources very near these corners where stress concen-
trations are high; the void in other words grows at each of its corners by the
slideofl mechanism for an emitting crack; and (3) there is an observable
difference when the strain rate is “high” typical of that to be expected in a
specimen deformed in an Instron machine, and “low™ corresponding to a creep
regime. In the “high"-strain range nucleation and growth take place by both
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dislocation avatanches and twinning, with resultant regular hole formation. At
lower strain rates, individual dislocation events are observable, but' t‘he overall
results arc less regular in appearance, corresponding to the Ibllll).f of the
dislocations to achieve lower-energy configurations by strgin apneahng. The
first stage of hole initiations is the growth of a rapid dyl'uumc brittle a:ack toa
length equal to the leagth of the final void, and then it stops. Blunting then
takes place slowly by deformation at the crack tip. The initial fast dynamic
growth is not consistent with the subsequent behav_iof ass ductile process. In
Fig. 48, a high magnification micrograph shows the initiation of a holein a cell
bo:nalytic treatment of the emitting cracks of Vehoff et al. (Fi.g. l'l) and the
growing voids of Wilsdorf and co-workers involves the application of t_hc
wedge-distocation interaction analysis of Part 111, and has not bg.m carried
very {ar as yet. The reader is referred to the paper of Chang et al.

37. SHIBLDING BY EXTERNALLY PRODUCED DISLOCATIONS

Even for a stable cleavage crack which does not emit dislocations, cx!.crnal
sources for dislocations nearly always exist in a material, and when sufﬁqcmly
close to the crack, the stress concentration can cause them to operate. Lin and
Thomson'*! have investigated the shielding provided by a single external
source (Fig. 49) and analyzed the stress on the source and the shneldmg' of the
crack tip as a function of the number of dislo.cntio.ns produced. Neglecting the
effect of ledge formation by the antishiclding dlslocatlons_ whlcl? might be
absorbed by the crack, they show that the back siress 9[ the dislocations on th_e
source is stronger than the shielding of the crack tip, because the source is
closer to the dislocation pileup than the crack is. Thus, as (!lc e:'tterm_ll stress of
the K ficld is increased, the cleavage criterion at .thc crack tip will ultimately be
achieved again for a finite number of dislocations produgd by_the source.
Thus, neglecting the eflect of crack shape change due to d:slocauqn absorp-
tion, the crack will remain brittle in the sense that the sources will provide
only a limited and finite shielding for the crack. Brittle crac!t propaga-
tion will then always be possible for some value of external K, which depends
upon the source location and source hardening parameters. _

This model has not been adequately pursued to explore the toughening
properties of a discrete distribution of external sources for dislocations.
Crossover o the ductile fracture mechanism is inherent in such a model,
however, if the shape change in the crack can pennancn'tly lower the local k

below k. while external sources continue to operate. This question is closely

13 ¢ H. Lin and R. Thomson, Scripta Metall. 17, 1301 (1983).
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Fii. 48. Tnitiation of a hole near a crack in the Wilsdorf configuration.* (Courtesy H. G.F.
Wilsduef.)
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Fic. 49. Operation of a Frank-Read source near a crack 1ip. {r is the distance 1o the source
and { to the dislocation loop Lip.

related to the phenomenon of blunting the tip by external sources already
discussed in Part VII,33. It is important to find out by further theoretical
modeling as well as by experimental investigation if external sources can by
themselves provide a path for the cleavage-ductile transition in a material
without invoking dislocation emission from the crack tip.

Dislocation shielding of cracks in any real case is probably due to a mixture
of external sources as well as emission. For example, any emitted dislocation
pileups will certainly interact with sources in the medium, and the overall
shiclding will be a mixture of the two types. Modeling of such situations
probably is best accomplished by material-deformation constitutive laws,
which suggests that an ultimate “solution” of the practical problem will
probabtly involve a continuum solution of the outer parts of the deformation
field with a discrete approach to the inner region reminescent of the lattice
modeling of Part V. -

318. MobDEg-1 AND MiIXED-MODE PROBLEMS

The shielding problem in Mode [ is sufficiently difficult that relatively little
analysis has been carried out for it except for numerical calculations in the ID
BCS approximation. We have given the general 2D results for interactions
between cracks and dislocations in Part 1V, however, and some general
comments can be made here regarding the character of these interactions.
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The shielding relation, Eq. (16.7), can be written for the real and imaginary
components for the contribution K, of cach dislocation to K as

B ¢ sing 36 . 30
[b, oosi + —2-(b. cos > + b, sm—)],

(K = (} —v)/2nr 2
. (38.1)
u # sing 30 .3
=—Ft b cose 4 0 e b
(K (- V)\/i;l: lcosz + 3 (bz Cos 3 b[ sin 3 )]

The overall shielding situation is somewhat complex, because, not only is there
an anguiar dependence in (Eq. 38.1) which changes sign with 6, but for any
given crack, there can be a mixed-mode loading. By a mixed mode, we mean
that the external loading of the crack can be a combination of Modes], I1, and
I11. The loading in turn will in general produce the dislocation distributions
typical for such loading through dislocation emission.

The characteristic dislocation distributions (from emission cvents at the
crack) will be those depicted in Fig. 50. Figure 51a shows the shielding of a

®@ @ © @
®

FiG. 30. Typical dislocation configurations for pure loading situations. Mode 1 produces
shielding dislocations on slip planes at an angle to the crack plane. by = ~(b)yild,), = (b)), . In
Mode 11, Lhe dislocations are produced on the plane of the crack, bul sotne crons slip can be
expecied. In Mode 111, no specific slip plane is necessary because of the screw character of the
dislocations, but in practice, the dislocations will tend to be formed on the crack plane. In cach
mode, as the crack moves lorward, the dislocations will be left behind as a wake.
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FiG. 51. In (a), the K, shielding contribution to Mode 1 of a dislocation with Burgers vector
(I/JI 1/ /Z0)b is displayed as a function of angle 0 relative to the crack tip. See Eq.(38.1). In (b)
the shiclding of & nearly pure edge dislocation in Mode I1 [b = {,0,0)] is shown as a function of
angle lo the crack 1ip.

dislocation with Burgers vector b = b (1/\/Z, 1/,/2,0) as a function of angle
relative to the tip. Maximum shielding occurs roughly at the 8 ~ =/2 point.
Dislocations on the two slip planes shown in Fig. 50a contribute symmetri-
cally to K,.

When a Mode-11 dislocation interacts with a Mode-I crack, cross slip is
assumed to spread the dislocations off their initial slip plane, which is
coincident with the crack plane, into a thin region on either side of the crack
plane in a symmetrical manner (Fig. 50b). The second term in the first equation
of Eq. (38.1) is the relevant one, and it is antisymmetric in 8. Thus no net
contribution to K, will be made by a symmetrical distribution of Mode-II
dislocations.

Figure (51b) shows the shiclding of a dislocation in a pure Mode II
configuration as a function of angle 6.

When a Mode-1I crack interacts with a symmetric pair of dislocations in
8 Mode-1 configuration (Fig. 50a), all three terms contribute in Eq. (38.1),
because the Burgers vector has both x, and x, components. However, the first-
term contribution is zero because (b,),, = ~(b,),,. The second term is an odd
function of 8, and hence one dislocation again cancels the other. The third
term also contributes zero because (b, ),, = —(b,),, and the angular function is
an even function of 6.
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Mode HI is essentially “orthogonal” to the other two modes, and no
Crossover terms ocCur.

The overall result is thus that, so far as shielding is concerned, there are no
significant cross terms in the shielding contributions, and the modes can be
considered individually. This result, of course, depends on the assumption of
symmetry. When 2 single dislocation is being emitted from a Mode-1 crack,
then there is a contribution to Ky, and a reaction in Mode Il This point is
further discussed in Part VI11,39. T

The most interesting mixed-mode crack is one where sufficient Mode 1
exists Lo ensure that the crack develops an open surface on the crack plane, but
where the primary loading is Mode I11 (the “Ohr” configuration of Fig. 13)of
Mode I1. In pure Mode 11 or 111, of course, the bonds are not separated across
the crack plane, and no physical crack exists, as discussed in Part VI,28.
Suppose initially, then, that a sharp stable Mode-1 crack exists so that the
Griffith relation is satisfied at the crack tip,

k} = 4y(} — v)/p (38.2)

No dislocations are presumed present initially. As Mode-11 loading is applied,
the local &, starts from zero and increases. Because of the clastic lincarity
of the Mode-1 and -11 stress states, the Mode-1 stress is not changed by the
Mode-11 loading. As noted in Part V1,28, the fracture criterion at the tip is
slightly modified, because the bonds at the tip will be sheared, and in general,
less k, will be required to hold the atoms open there. However, we expect this
effect to be small, as proposed in Part V1,28. Thus, as ky is increased, no
additional cleavage occurs, but Mode-11 loading can induce distocation
emission, and the standard dislocation emission conditions of Part Vion the

erack plane will be valid. We now presume that the crack plane is a slip plane,

and the standard one-dimensional dislocation distribution of edge disloca-
tions will be generated, controlied by the local emission criterion in Mode 11
and the total externally applied Kp. In this mixed-mode case, the Mode-11
dislocations exert little shielding on K, of the crack, as explained earlier in this
section. So long as the Mode-1-type dislocations are not produced by either
emission or exiernal source activiation, the crack can cleave at very low k;
values, yet generate an indefinite number of Mode-11 dislocations with large
amounts of plasticity. Thus in this mixed-mode case, high ductility and
cleavage comfortably coexist.

Lynch'*? has in fact observed phenomena very similar to that described
above in chemically embrittled metals. In his experiments, the external
chemical environment presumably modifies the Griffith criterion through its
effect on y so that a cleavage crack is stable. Large amounts of deformation are

131§ P. Lynch, AIME Symp. Liquid Metal Embrittlement (1983).
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then observed close to the cleavage plane, as described above for emission in
‘I:\g:)::]s :;: amli1 .Ll_lt.l:.hesc idt;ash suggest in practice cleavage fracture should
only exhibit this type of shear- issi i
e e Modo | I_:')EZ iy mode emission because of the difficulty of
An important proposal has been made by Sinclair and Finnis®® that the
clcav_age/emlsslon balance can be altered after emission of a group of dis-
jocations has occurred. Their proposal is built on a cleavage criterion like
Eq. (28.8) and an assumption that emission occurs in Mode Iin an asymmetric
manner so that mixed loading at the tip occurs. We have argued that Eq.(28.8)
is not the correct cleavage criterion, but there remains the issue mentiolncd 'in
Pari V1,28, wh.ere cleavage and emission are finely balanced against one
Enotller, that m|x_od-mode loading might still alter this balance. Indeed, in the
Ohr” configuration of Fig. 13,a small and presumably stable Mode-1 c’rack is
observed as schemgtically shown in Fig. 47. This crack does not emit in the
Mod'e-l configuration of Fig. 50a, as demonstrated in the electron micrograph
of Fig. 13, even though the material is the supposedly intrinsically ductile
metal, copper, where stable Mode-1 cracks are not supposed to exist in pure
Mode I. This result has not been analyzed yet in terms of the available slip
system geometry and stress state in the films. Two possibilities exist. The first is
lha.t some h{lod.e-ll loading exists of sign and magnitude sufficient to raisc the
emission criterion from Eq. (28.2) relative to the cleavage criterion, and the
second i$ tl_mt the Mode-111 loading changes the cleavage/emission b,alancc at
the craf:k tip. This is an important issue, and requires further study
Having explored shielding effects on the crack, we turn now' to some
theorems regarding the forces experienced by the dislocations. The first

theorem which can be proved is that in Mode 1, f i
. ) _ , for tw
dislocations with the configuration of Fig. (50a), o symmetrically placed

{fdl')lllp plane = 0. (383)

The second theorem of interest relates to the relati

deformation thepry of cracks using the J integral, it is sht(len E;:tlnon) .lhl: Iirt:if
of‘ small-scale y"lelding where the region of deformation is small compared
v«fnth the crack size and the specimen size, the force on the total configuration is
given by the generalization of Eq. (15.10); that is,

- 2 2
Re(f = KEEKR  _y) 4 K
u 2u
This theorem is also valid when the deformation field is compose i
(]ivllslocalmns. The reason is that the far-field asymptotic l'orr[:r}l0 ofdtl?i ::I:egsl;l?;
\ ode 111 anfl the potential functions in plane strain are all dominated by the
/ﬁ term given by the far-field K field in each case. (See Eqs. (10.3), (10.11)
and (10.12}) The next term in the expansion at infinity is not thé sil';lp'lt;

(38.4)
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dislocation term in I/\/;. but a higher-order term in l/\/z_’. In the Jimit of
large |z, the intcgration of these z7? gtresses around a contour where
2| > |{;l on the contour ({; is the position of any shielding dislocation)
in either the J-integral expression, or the Eshelby theorem [Eq. (14.8)],
contributes a zero contribution Lo f. The reason, of course, is the image that
the dislocation develops in the open crack which cuts off its long-range 1/z
field.

Using Eq. (38.3) and the shielding results of Eqs. (15.6) and (16.7), some
simplification in the force equations is possible. Writing

K=k+ K, (38.5)
which will be valid for cach mode, then for each mode,
- K2
Re(f) =Re f, + Re;(f‘), =,
2x
(38.6) .
‘= {u Mode 1l
B —v) Mode L, I1.
Using Eq. (38.5), Eq. (38.6) becomes
KK K
Re = b _ 2o
pXIAR PR~ (38.7)

Since the first term is linear in K, it represents the direct force term on the
dislocations, while the second term is the combination of image and
dislocation-dislocation interactions. Using the shiclding relations, Eqs. (15.6)
and (16.7), these become in turn for each dislocation

Re(feuha = Kby Re(1//22{)),  Mode 111

+K 8, sing 36 38
Re(fodho = —'[bucos—‘—' +—2{ b,,cos =< + b,,sin =L Mode 1
J2nr; 2 Y 2 L 2 &

2
K g sind.
Re( fyahos = — 1 [b”cos-i! _Sing, (busin?—al - b,,cosg-q‘l)]. Mode II

J2ar, 2 2 2

(38.2)

The term in K3 is a double sum over the dislocation distribution. The terms in
bb; represent dislocation-dislocation interactions. The b} term represents the
sell-image term. These expressions are not written here, but are explicit

manifestations of the more general expressions in Eqgs. (16.13) and (16.16),
which can be useful,
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In the only serious attempt at Mode-I shiclding calculations to date, the
BCS model has been exiended by Riedel!?? and Vitek '2* to the Mode-! crack
with a pair of slip planes intersecting the crack tip at an angle of +8. The
resulting singular integral can be converted to one of Fredholm type which
can be numerically integrated. The numerical results compare in all major
aspects to the full two-dimensional continuum plastic-deformation theory
results; so the approximation that slip only occuts on two symmetrically
oriented slip planes is apparently a good one. This work, however, did not
include considerations of the local k and local crack equilibrium. The results
suggest that including such a dislocation-free zone in these calculations would
lead to a quite satisfactory description of shielding in Mode I, and hence to
a realistic toughness relation. Sinclair!** has carried the problem one step
further, and made a numerical calculation for a wedge crack created by
emission of a symmetrical distribution of dislocations on symmetrical stip
planes making angles of + 8 to the symmetry planc of the wedge. In all these
cases, one of the important results is the generation of a maximum dilatation
at some distance ahead of the crack tip, which is thought (o be correlated with
the generation of new cracks in the hole-growth model.

39. GrowING CrACKS

A growing crack differs from a static one in two important respects. A
growing crack has a past history in the sense that its deformation zone has
passed through the specimen and left behind a wake of work-hardened
material extending some distance on cither side of the open flanks of the crack.
Secondly, a growing crack is also a time-dependent phenomenon, and will
involve rate-dependent dissipation processes in any plastic response of the
material, and may also involve dynamic or inertial effects as well. Both of these
aspects of moving cracks lead to important physical effects different from
static cracks.

a. Quasistatic Cracks

In the quasistatic case, inertial effects are neglected. Hart ' has treated this
problem in an clegant approach using a coatinuum {but two-dimensional)
form of the shielding theory in Mode I11. In his work, the crack is assumed to
move with constant velocity, and the dislocation density is generated by a

13 H. Riedel, J. Mech. Phys. Solids 24, 217 (1976).
Y ¥_Vitck, J. Mech. Phys. Solids 24, 67, 273 (1976).
3% ) Sinclair, Nucl. Metall. 20, 388 (1976).
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deformation-rate constilutive law which is consistent with laws describing
creeping materials, but is not 2 strain-hardening law. In his carlicr work, the
deformation zone is also assumed 10 move with the crack, and the problem of
the wake is not addressed. In jater work, yet to be published, however, the
wake is included, so that a true dissipation takes place. The feature of Hart's
work which will be familiar to the reader of this article is that a local k is
detived. For a moving crack, even in a continuum theory, this is possible so
long as the creep deformation near the crack tip is sufficiently slow so that the
crack tip is not completely shielded. This requirement becomes an assumption
for Hart's treatment, and it turns out to be attainable provided the creep law,

é = Ao" + d/p, (39.1)

in the vicinity of the tip has an exponent, a < 3 and far from the crack tip,
n> 3. Hui and Riedel* 3¢ have published 2 general analysis of the asymplotic
forms of the stress fields at the crack tip and at large distances with creep laws
of the form of Eq. {39.1). When n > 3 near the crack tip, no k field is possible,
and the field is dominated by the plasticity. That is, the crack tip is essentially
fully shiclded, even though it has a stress singularity.

The interesting predictions of Hart’s analysis are that (1) the crack must
have a finite velocity, or the creeping material at the crack tip will completely
shield the tip and destroy the crack k field, and (2) that for high velocities a
breakaway phenomenon occurs corresponding to the crack outrunning the
ability of the material to form a significant shiclding charge of Burgers vector.
1n the analysis, this breakaway actually corresponds to an analytically double-
valued solution (Fig. 52).

The work of Hart and of Hui and Riedel is of considerable interest, because
it shows that, when the crack is moving, rate-dependent continuum solutions
can be constructed which are not timited by the Rice theorem *24¢ discussed in
the introduction, Part V11,32. When v— 0, as Hart shows, the creeping
material at the crack tip will eventually damp out any static stress concen-
tration, and the k field will be destroyed. Then no atomic-bond-breaking
process at the lip can be invoked, because at best the stress field is restricted to
the much lower stresses allowed by deformation processes, and Rice’s theorem
applies. When v is greater than some critical value, and when n < 3, then the
plastic creep does not have time to fully shield an atomically sharp crack when
it moves into a new region of the material. Thena local k can be sustained, and
.he bond-breaking stresses at the tip can be achieved. But if n > 3, then these
results are no longer possible, and the atomic crack breaks down. One might
say the physical reason for this breakdown is that the condition described in
Part V11,33 leading to Fig. 44 obtain, and Rice's theorem takes over.

13 ¢ ¥ Hui and H. Riedel, Int. J. Fract, 17, 409 (1981).
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Fic. 52. Predicted form of K(v) for a creeping crack after Mart.'®® The curve stops at the

tower limit for v and has a branch with negative siope corresponding to dynamically unstable
stales.

These rate-dependent results for moving cracks are closely related to the
generat point of view of this article, that conditions in the near tip region of a
crack involving the distribution of dislocation sources and their ease of
operation determine whether the sharp crack can be sustained. The condition
n < 3, physically, is another statement of the same general type. Indeed, as we
will show below, one can derive some analogous moving-crack behavior on
the basis of the shielding ideas developed here in Part VIL,34.

Imagine that a brittle crack is moving at velocity v, and that a dislocation
cloud has been attached to the crack by some prior event which will not enter
further into the analysis. Suppose the slip plane for the dislocation is parallel to
the crack plane, that the Mode-111 analysis applies, and that the entire config-
uration is in steady-state motion with velocity ». With the use of Egs. (34.8)-
(34.10), the configuration is consistent with a steady-state velocity if the
friction stress is determined by the stress—velocity law for the dislocations,
o,(v). Fora given B,and K, the size of the pileup, d, is determined by Eq.(34.10).
The velocity is then determined by Eq. (34.9). Equation (34.8) is a relation
between k and ¢, because all the other parameters in Eq. (34.8) have been
determined by the external conditions or by Eqs. (34.9) and (34.10). Thus il the
crack local k is a function of v, or in a quasistatic limit simply given by the
Griffith relation, k? = 4uy, Eq. (34.8) sets ¢ so this local k can be maintained.
Hence a K(v) law is generated consistent with the dislocation g;(r) law and the



1

116 ROBB THOMSON

1 i 1 i

Ct

1 1 1 1

FiG. 53. A simple two-slip-plane mode| of a dislocation shielding configuration. The closest
approach of the first dislocation 0 the crack is ¢*.

shielding relations for all velocities p, However, unless the dislocation slip
planes are exactly coincident with the crack Plane, there is a lower limit to c,
and a maximum limit to K or v. This configuration is shown in Fig. 53, and is
due to the fact that when the closest dislocation is on a slip plane a distance c*
above or below the crack plane, the lower limit of ¢ in Eq. (34.8) is c*. For k
values above this initial point, the shielding of the crack tip “runs out of
steam,” and the crack breaks away from its dislocation shield.

An actual physical situation approximating the above description is that
found in LiF in early experiments on dislocations interacting with cracks by
Burns and Webb.'” In their case the slip planes of the dislocations were
inclined to the plane of the crack (in the x, direction), so that the dislocations
wrapped around the crack to form a hairpin shape. The limiting value of ¢ in
this case would correspond to the distance between neighboring dislocations
in the x, direction, and ¢; would be the sum of the actual g; for the part of the
dislocations looping around the crack and the line tension of the straight
segment forming the wake. The interpretation and analysis originally given by
Burns and Webb is not inconsistent with this picture, and their experimental
results showed the kind of breakaway proposed above.

If, on the other hand, the crack generates new dislocations from sources in
the medium as it moves along, 2 shielding charge is built up and then left
behind as a wake as the crack moves on, Speaking physically, the shielding
charge generated would again lead to relations between the external K, o; (or
yield stress), and the size of the deformed region satisfying Eqs. (34.9) and
(34.10) provided the system is steady state. Again, the conditions on the loca) &
would involve the distance (o the first shielding dislocation. This distance will
always be greater thap zero, because sources of dislocations are always
distributed in the bulk matrix on a very heterogeneous scale. Since k is
determined by this close-in dislocation distribution for steady-state shielding,
there will again be a limiting lower bound for c associated with the dislocation

7S ) Burns and W. W. Webb, J. Appl. Phys. 41, 2078, 2086 (1970).
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source distribution. Since B is a decreasing function of ¥ because of the rate
dependence of dislocation generation, there will always be a limiting velocity
where the required shiclding at the crack tip cannot be achieved, and the crack
will break away from its shiclding charge.

Thus the shielding relations of Part VII,34 lead to the same breakaway
physics as Hart's continuum analysis. However, the shielding relations show
that the breakaway is intimately connected with the dislocation structure close
to the crack tip, whereas the physical basis for breakaway is less clear in Hart's
analysis.

The prediction by Hart that the crack will be completely shielded in the
creep regime at very low velocities so that stationary cracks are impossible is a
statement which should be taken seriously for some cases. It suggests that a
material can behave in a brittle way for sufficiently high strain rates, but blunt
out any brittie crack at low strain rates by deformation in the bulk, Materials
which are brittle at room temperature (even though some deformation may be
present), but ductile at very high temperatures for ordinary testing machine
strain rates, suggest this behavior. On the other hand, of course, there are
many cases where a static description of a shiclded stationary crack is a valid
picture.

The discussion of this subsection raises an important property of moving
cracks, namely that when shielding dislocations are present, and the crack
moves, then a wake is left behind as the crack moves. For purposes of
modeling the toughness of the material, the existence of the wake is a crucial
factor, because it represents a part of the dissipation, and it contributes to the
overall stress. Hart has dealt with this term in an analytic way in work yet
unpublished for the Mode-IH continuum solution, but Hirth er af.,!3® and
Thomson and Sinclair®* also discuss the problem from the standpoint of the
forces on the total configuration. This problem has also been extensively
investigated in the continuum plasticity approximation.'39

b. Inertial Effects

The mathematics of time-dependent crack motion is subtle and fascinati ng.
This result wili not be surprising to those familiar with the analysis for
dynamic dislocations.?® For a recent review of the elastic problem, the reader
is referred to an excellent paper by Freund,!40

The steady-state stress problem is relatively easy to solve, and complex
function methods quite similar to those of Part 1] lead to the result that the

"% 1. P. Hirth, R. G. Hoagland, and C. H. Popelar, Acta Metall 32, 371 (1984),

13% J. Rice, in “Mechanics of Solids™ (H. Hopkins and M. Sewell, eds ), p- 539. Pergamon, Oxford,
1982,

4% L. B. Freund, Mech. Today 3, 55 (1976),
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moving crack is again characlerizc.d by a K field, but that the value is
decreased by comparison 10 the static value. Thus

K(vy= \/% hiv) r (vt — x)"**alx) dx, (39.2)

0

in complete analogy to the static semi-infinite crack, but whe:ql: h I:s 1 2::;?;
linear function of v given in Fig. 54 for Mode 1. In Mode Ir , the rens
contraction comes into play on the displacement and stress uncts?rg &
expected way on the x axis. Thus, the complex function, n(2), of Eq. (8.

becomes
1 - vfe\* ( x - ut ) (39.3)
=|—" ———= ¥ s .
nx — o1h = (l * vlc) o\ /1 = vije

where 71 is the static crack function and ¢ is the shear sound speed. 1n this case,
the function h(v) becomes simply

_ 14 pT\I4
hio) = (11 +Z§‘;) (l ‘?) . (39.4)

Further, the instantaneous force on the crack tip can be found (140) and is
given in Mode 1 by the result

f = (K3EX1 — vgl) (39.5)

where K , is the static value of K, and g(v)is again stfov»:n in Fig. Sfl. This l‘::l;l:
states that, when a fracture criterionsuchas f = 2yis given andyisa conls th;
then the external load as specified by K, must be mcteased to supp {imo
energy to open the crack surface. The extra energy input 18, of course, pu

the radiation field of the crack.

hiv)

glv}

1

V/VR

FiG. 54. Functions g{t) and h(v) for Eqs. (3%.5) and (39.2).
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The startling result for non-steady-state motion is that an elastic crack has
no inertia. As a source of stress ina medium governed by a wave equation, one
would expect a radiation resistance inertia for the crack such as exists for the
classical electron and for the dislocation.?® In Mode 111, the solution has been
discussed by Eshelby, and in an elegent paper,'*' he shows that the lack of
inertia follows from the fact that the Mode-III crack solution is a “distortion-
less” solution of the wave equation. That is, a general solution of the wave
equation in two dimensions exists of the form

1
o= Wf {r + ci), 96

z = re®,

from which a crack solution can be constructed for arbitrary motion. The
characteristic crack 1/z'/* function is thus a fundamental form for the two-
dimensional wave equation. The result which can be constructed easily from
Eq.(39.6)—and the argument is almost transparent from Eq. (39.6)—is thata
crack can be stopped suddenly from a state of uniform motion, and the precise
steady-state stress distribution is radiated out from the center with velocity c.
Since the radiated solution is precisely the static solution, no radiation re-
sistance is exerted on the crack. This surprising result is true even though the
crack is equivalent to a virtual dislocation distribution over the cleavage
surface, and these dislocations, singly, do possess an inertia. The point is that
the coherent interaction between the crack dislocations cancels the inertia of
the coliective motion when they move as a crack.

Freund has shown’#? that the full static solution is not radiated when a
crack is stopped similarly in planc strain {Mode 1 or I1)for all angles. However,
the static solution is generated along the crack line in front of the crack, and
this is sufficient for the Mode-1 and Mode-IT cracks to possess 2ero inertia also.

The foregoing results are valid only for semi-infinite cracks. Freund shows
that for finite cracks interactions between the crack tips modify the non-
steady-state character of crack motion in an essential way.'*®

40. TiMe-DEPENDENT CLEAVAGE/EMISSION CONSIDERATIONS

There has already been occasion 1o note that several cases exist where brittle
cleavage cracks appear to be observed running at high speed in materials
which are demonstrably ductile in the sense of the criterion, Eq. (28.5).

141 J D, Eshelby, in “Physics of Strength and Plasticity” (The Orowan 65th Anniversary Volume,
A. Argon, ed.), p. 261. MIT Press, Cambridge, Mass., 1969. ’
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Pugh'*? has shown that a crack in brass started at an embritiled site is able to
propagate for a distance of the order of tens of micrometers in fast cleavage
before coming to rest. There are similar findings in pure copper under
corrosion conditions.'** Alfter nucleation at sites in dislocation celt bound-
arics, Wilsdorf finds that fast cleavage occurs in foils of copper and gold under
stress for distances of the order of a few to 10 micrometers.® Ohr et al.!® report
that cleavage is initiated in Al in the configuration of Fig. 13 and again runs as
a fast cleavage crack through the foil for a distance of micrometers before
arrest. Gerberich'*¢ has shown that cracks in Fe/Si single crystals can be
made to propagate as cleavage cracks at high velocities with some, but small
dislocation activity, whereas stationary cracks in this material take the wedge
shape, according to Vehoff and Rothe.®® The observations in thin films may be
affected by the thin-film geometry, e.g., by rapid slideoff, but the results in
thicker specimens are nol subject to this objection.

These results suggest that the competition between cleavage and emission is
velocity dependent, and proposals along this line have been made by various
authors. Jokl et al.'*> proposed a model of combined emission and cleavage,
where shielding of the crack plays a part in the emission criterion, Rather
crude assumptions are made, however, about the basic mechanisms compet-
ing at the crack tip. Knott!*S has proposed a very interesting model for virtual
dislocation emission, in which an emitted dislocation falls back into the
cleavage surface after the crack moves on. Such a mechanism would lead to an
enhanced effective y for a fast-moving crack, because of the energy dissipation
of dislocations popping in and out of the crack, but would yield a clean
cleavage crack as a result. Paskin et al.®* have simulated fast moving cracks in
materials which are ductile for static cracks, and the cleavage is clean. On the
other hand, a paradox exists, because if a crack has zero inertia, an emitted
dislocation will stop the crack. Once stopped, of course, by postulate, the
crack wiil simply emit dislocations as the stress builds up. Thus, an adequate

understanding of the dynamic crack-dislocation interaction does not yet
exist.

Appendix

In this appendix, some essential basic mathematics of clasticity is collected.
The Appendix is in three parts. In the first, the governing equations for planc

1 E.N. Pugh, in “Atomistics of Fracture™ (R. Latanision and J. Pickens, eds}, p. 997. Plenum,
New York, 1983.

'4* K. Sieradsky, R. Sabatini, and R. Newman, Met. Trans. A 15, 1941 (1984).

'** W. Gerberich, unpublished results.

42 M. Jok|. V. Vitek, and C. J. McMahon, Acta Metall. 28, 1479 (1980).

'4* J. Knolt, in “Alomistics of Fracture” (R. Latanision and J. R. Pickens, eds.}, p. 209. Plenum,
New York, 19823,
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strain are developed in terms of the Goursat potential functions. In the second,
a generalized conformal-mapping analysis for these functions is developed. In
the third part, the mathematics relevant to the use of Muskhelishvili's singular
integrals is presented.

L. PLANE-STRAIN FIELD EQUATIONS

The mathematical development of this and the following section is based on
papers by Stevenson,'*? and Tiffin,'*® but some of the same results will be
found in the Muskhelishvili treatise.'* In plane strain, the displacement u,
satisfies and u; = 0. u will be taken to be a complex vector

u=u, +iu,, (A1)
and

e Y
dx, 0z 9 dx, \oz @7

Derivatives of u (which is not yet assumed to be analytic) are given by

2% =80+ 21*/; g= Ui W = i(uu _ uj,l}- (A2)

@ is the dilatation, and ¥ the rotation.
The equilibrium equations (7.1) become

Gia +013:=0,

(A3
0332+ 0y, =0
Multiplying the second equation by i and adding yields
d i g =0 A4
a(au -0y +2W|z)+a—f(ﬂu +05)= (A4)

This equation states the condition for the existence of a potential function F,
such that with Egs. (A.1} and (7.2),

aF . . du
-5 T % -0, + 2ig,, =4p5;_. (A.5)
?}_f =0, +0;;= 2(1 + p)ﬂ (A6J

147 A. C. Stevenson, Proc. R. Soc. London Ser. A 184, pi29, p218 (1945).
148 R. Tiffen, Q. J. Mech. Appl. Math. ¥, 352 (1952).
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Equation (A.5) is immediately integrable to give

4uu = fi2) - Fa. ) (A7)
Substituting Eq. (A.2} into (A.6) gives

1 oF du
LI, hiuy, I+ o A8
W+ ) 0z 254 A8

From Eq. (A.6), because O is real, F fOzis rea{l; and Eq.(A.8)is also real. Hence,
substitution of Eq. (A.7) into (A.8) leads to

oF _ A+u 10 (é—z)]=2'z + %) (49)
;37—2(1+2u)[62+ 0z o) + o)

The function ¢' is defined by Eq.(A.9). This equation is now integrable, giving

F(z.5) = 2[e(2) + zo*(D)] + ¥ *(2). (A.10)

The star operator is defined by
o'z} = @7)  clc. (A1)

and is a convenient way to show explicitly that @and ¢ are functions of Z, not

z.
Now Egs. (A.5), (A.6), and {A.7) take the form

0y, + 032 =2[0°02) + P (A.12)

032 ~ 01y + 2i6,; = 2[T@"(2) + '), (A.13)
2uu = k@(2) — 2073 — V(2 (A.14)

x =3 —4v  {planc strain). {A.15)

Equations (A.12)-(A.15) are the new field equations of plane-strain clasticity.
They are expressed in terms of the two independent complex functions, ¢(z)
and (z), even though the stresses and the displacement functions are not
necessarily complex functions of 2. If the displacement is a single-valued
function of z (and perhaps 7), then the elastic probiem automatically satisfies
the incompatibility equations discussed in all elasticity books. In the form of
the theory used here, however, they need not be addressed explicitly. For
example, if dislocations are present as singularities, then ¢’ and ¢’ have poles
at the position of the dislocation, and the 1 function is multivalued there, with

Aul =b=b, +iby. (A.16)
z={

We will not consider continuous distributions of dislocations, but in that case,
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the appropriate Burgers-vector density function can be defined. The functions
@ and  are the standard potential functions of Goursat,'*? e.g., as used in
Muskhelishvili.'® In plane strain, the Burgers vector defined by Eq. (A3
corresponds Lo an edge dislocation with components b, and b,,and to a crack
in either Mode | or Mode 11.

The general clastic solution, combining antiplane strain with plane strain,
with a screw component of a Burgers vector as well as edge components, and
including mixtures of Modes 1, 11, and I, is a simple linear combination of
stresses and displacements calculated from the three independent poten-
tial functions, n(z), @(2), and Y(z) with stresses and displacements given by
Eqgs. (8.1) and (8.2) and (A.12)~(A.13).

Generally speaking, since ¢, y, (and n) are complex functions, solutions are
obtained for an elastic problem by applying considerations of analyticity and
function theory to the potential functions in the light of the boundary
conditions set on the problem by the existence of free surfaces, behavior of
stress at co, multivatuedness of u, etc.

2. CONFORMAL MAPPING

One of the important ways to solve two-dimensional boundary value
ptoblems is by means of conformal mapping, in which complicated problems
are transformed into simpler soluble ones. The same is true of elastic prob-
lems, except that in this case, since tensors are involved, the analysis must be
generalized beyond that familiar in electrostatics or hydrodynamics.

Consider a coordinate transformation which maps the z plane (the initial
problem) into the £ plane (the simpler problem) and the real coordinates, x,,
X3, into the new coordinates, y,, y. In real coordinates the transformation law
from the tensor A;.{x,,X;) into the new tensor Al (¥1,2) is given in
standard notation

A;,..n(}‘n)’z) = BBy A,,._.(x,.xz),
ﬁplﬂp} = &ijn

dx
de, = 5% gy — .
5= 3y, 4= Bhubud

(A7)

Here the f are the rotation matrices, and the tensors are not separated into
their contra- and convariant parts. The advantages of this form of the
transformation law is that stress tensors do not change their dimensional

149 B Goursat, Bull. Soc. Math France 26, 236 (1898).
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units when transformed into a new coordinate system. (See Morse and
Feshbach'®?) The f are functions of position in general.

A rotation suitable for transforming vectors and tensors which are complex
functions is now required. If the mapping of z into ¢ is given by the functional
relationship

z=2z({), (A.18)
then the rotation angle « of the x, coordinate into the y, coordinate at the
position z is given by

dz
dz = =5
: ’ z

and the transformation law Eq. (A.17) for a complex vector A(z) into the new
vector A¢(¢) is given by

e dg, (A.19)

Ar(l) = e A2). (A.20)

A problem in notation arises here, because the standard notation for a
transformed quantity is the prime as used in Eq. (A.17). In the complex plane,
however, the prime will be reserved for differentiation with respect to a
complex variable. Hence the subscript T will be used to denote a transformed
quantity. Since z' in general is a function of position, the rotation angle varics
also with position z. The reader is also reminded that the functional form of
A+(&) is recovered from the substitution

A1{0) = A (§2) = Al(2)e™™ = A(z)e ™. (A21)

In this article, it will be implied that when the new coordinate £ is used as an
independent variable in a function f, the functional form is defined by
S = [z

Transformation laws can now be written for the relevant elastic quantities.
In antiplane strain, relative to rotation in the x,, x, plane, u, is a scalar
quantity. Also g, relative to the same rotation transforms as a vector.
However, since the complex “vector” defined in Eq. (8.2) is related to the
complex conjugate of the “true” vector a,,, the function transforms as follows.

a. Antiplane Sirain
ur(¢) = u(z()) = u{z), (A.22)
0+(¢) = e"a($(2)) = e*a(2). {A.23)
In plane strain the following relations hoid.

'3 p_Morse and H. Feshbach, “Methods of Theoretical Physics,” Vol. 1, p. 2). McGraw-Hill,
New York, 1953,

¥
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b. Plane Strain
(5“ + 623)1- =0y + 0323, (A.24)
(02; = 0y, + 2igy )y = €033 — 04y + idy,)
zm(a,, — 6y, + 2id, ), (A25)
(f)
ur = e "u. (A.26)

The first of these equations follows because the contracted stress tensor is a
scalar, the second is from direct substitution in the tensor transformation laws,
and the third because u = u, + iu;, is a true complex vector.

With these transformation laws, the transformed clastic field equations
become of the form following.

c. Antiplane Strain

nld) = %lm[n(Z)] - Elm[n(Z(f))}. (A.27)
- ol - i: in df dﬂ(Z(f))
ar = e"a{z) = 2" — = 2¢ % df {A.28)
d. Plane Strain

@4, + 033)r = o' 2} — 9'()] = 2[®() + BE)], (A.29)

(02— 0y, + g 3)r = zem(Z((?)q’ () + ‘I‘(f])

(%) 2'(¢) )

¢’ b 4 (A.30)

( 5 €+ &
iy = e “[k@(2(E)) — 2(E)BE) ~ P(2(EN)] (A1)

o) =28, ota) = ot - I FQBE) . (A32)
etc. In these equations, the derivatives of the potentials in the £ planc are
awkward to handle, so for both ¢ and ¢, the capital functions ® and ¥ are
defined in Eq.(A.32).

The strategy in the use of the conformal-mapping procedure for Egs.
(A.27)-(A.32) is 10 map the original complicated boundary into a simpler
geometry, €.g., a wedge into a half-plane, etc., and solve the new transformed
boundary problem in the simpler geometry. There is a “trap” in this strategy,
however, when a mapping function is used where the scale factor & is not unity,
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then the two coordinate systems are not physically equivalent, since the scale
of length is different in the two. Hence, a comparison of two a priori solutions
in two such coordinate systems without considering the scale factor for length
measurements between the two systems will lead to error. For this reason, the
strategy here will always be to express the physical problem in the “natural”
coordinate system, and use the ¢ system only as a mathematical convenience in
handling the geometry of the boundary conditions. Note also that in this spirit
the potential functions corresponding to the z system are used, exclusively,
without ever writing down the transformed potentials. The relations between
o, ¥, etc., and the transformed displacements and stresses are, of course, given
by Eq. (A.27)-(A.32). When these potentials are written in terms of the new
coordinates &, however, it does not mean the new functions are then the new
transformed potentials, which would refate to the new stresses by relations
such as Egs. (A.12)-(A.15), etc.

In order for this strategy to work conveniently, it must be true that the
boundary condilions are “covariant.” That is, if on the initial boundaries,

an =0, (A.33)
the condition on the new transformed boundary is also given by
aun;=0. (A.34)

This statement is proved by direct substitution of the transformation laws. If
there are external forces exerted on the boundaries F,, then these are, of course,
transformed into the forces F;.

3. THE HILBERT PROBLEM AND THE INTEGRAL EQUATION
OF MUSKHELISHVILI

In treating slit cracks and dislocation pileups in the text, the elegant
mathematical theory developed by Muskhelishvili and the Russian school has
been invoked.'® These results will be summarized here. The reader is also
referred to an alternalive real-variable treatment of some of the same singular
integrals by Bilby and Eshelby in the Appendix of their article in “Fracture.”!®

In the fracture problem in Part I11, it is desired to find the complex potential
function generated from a stress distribution on the crack surfaces. To thisend,
we write the Cauchy formula for a function f(z) at an arbitrary point not on
the cleavage surface in terms of an integral over the contour of Fig. 55:

_t[fim t [ fal®
fo(z) = 2_1'[] ILF——_Zdt ———_—— ‘—‘—"“—dt

2ni Jot—2z

+ L ;['L@.dc_ {A.35)

27". Ce -2

e
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FiG. 55. Contour for integrals in Egs. (A.35) and (A.43). The contour encloses the cut L. It
contains & pole at 2 for Eq. (A.35), and circles around ¢, for Eq. {(A.43).

Mathematically, the cleavage surface is a branch line, and is denoted by L. fo(2)
is assumed to be analytic everywhere in the complex plane except on L, and to
approach zero at oo in such a way that the integral over C,, is zero. f, o and fg
are the limiting values of fo{{) on the positive and negative sides of L. Hence

_1 | e
fo@) =35 Lt - zdt' (A.36)

gty = f3(0) ~ f5Q).

This equation is a solution of a form of the Hilbert problem. That is, it gives
f(2)in terms of an integral over a boundary. It should be noted that Eq. (A.31)
and other similar results in this Appendix are valid only when f{z) is suf-
ficiently continuous on L, and at its end points.

In the fracture problem, the known stress function on the cleavage plane is
not f§ — fo but f§ + f5.To proceed in this case, a property of the function

x(2) = [(z — a)fz + &))"\ (A3
is noted. Thatis,on —a <t < a.
=1 (A.38)

Hence, the ratio f4(2)/x(z) has the property

[&@T _ [M] z{é_j_o’[ﬁ] fotfe (aa)

X2 x(2) MY X
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Substitution of Eq. (A.39) into (A.36) yields

2 k)
PO =0 ) e =9 (A.40)

h(t) = fo(t) + f5 ().

In this discussion, the function x thus serves the role of an integrating factor,
and Eq. (A.40) is a solution of a second form of the Hilbert problem, suitable
for application to [racture when the function h is known.

The solutions, Eqgs. (A.36) and (A.40), are not the most general functions
which can be generated, when g and k are known, because analytic functions
can be added to them, which are continuous on the boundary L. Thus, when P,
is a polynomial of degree n, a more general solution is

z h{t
f =52 J-Lf—mfz)fz)‘“ FAORE,  h=ft 4T (A

A similar generalization holds for Eq. (A.36). The polynomial is, of course,
fixed by the behavior of f at co. Further generalization of Eq. (A.41) can be
derived when L consists of multiple segments, not necessarily straight.'* In the
special case of a set of segments lying on the x axis, the integrating factor is
simply composed of a product of functions, Eq. (A.37), one for each segment.
The results for this latter case have been summarized by Head and Louat,!3!
but these more complicated cases will not be required in this article.

The second invocation of the Muskhelishvili theory is in Part VII, where the
problem of a pileup of dislocations in the presence of a crack is addressed. In
this case, it is desired to invert a singular integral equation similar to those
above, a solution which was first given by Muskhelishvili."*? In this
development, the so-called Plemelj equations arise, and we begin with their
derivation.

Consider the Cauchy integral

L)
J Fod=0 (A.42)

on the contour given in Fig. 55. In this case, 1, is on the contour L. Then

Jp SO g P Lo, P Sol)

= i {—2z¢ 200 ot —t, 2nmi Lr-tod'
L I 1 (4 P I A A (¢ IOV B S X4
2mi J, {— rodc * mi J, L —zq ai + mi Jo_ {~ [od’C. (A43)

V1A K. Head and N. Louat, Aust. J. Phys. 8, 1 (1955).
"*7 N. Muskhelishvili, “Singular Integral Equations.” Noordhoff, Groningen, 1953.

PO
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P (without subscript) denotes the Cauchy principle value, and fy{cw) = 0 50
that the integration over C is zero. Rearranging terms, Eq. (A.43) becomes

f.j 904 = hio),

nl f""o
g=f")-sF" (),
h=f* 0+ f @)

Equations (A.44) are the Plemelj equations,'* and their inversion is desired for
the solution of the dislocation pileup probiem. That is, h represents the known
external stress on the dislocations, and g represents the dislocation distribu-
tion which is sought.

The inversion of Eq. (A.44) is obtained immediately by the application of
Eq. (A.41) first to calculate f*(¢) and then to calculate f (1). Noting the
property, Eq. (A.38), then subtraction of f* (1) from f (1), yields

1"t} h(1)
glto) = i PJ‘L 2o — 1)

The polynomial is determined once more by the property of f at w. Again,
though there will not be a need for it in this article, when L consists of a set of
segments on the x axis, the solution proceeds from an integrating function
composed of products of functions like Eq. (A.39), and a general prescription
wili be found in Head and Louat.'*’

(A.44)

di + x' (1) Pi1,). {A45)
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