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This paper explores the use of lattice Green's functions for calculating the static
structure of defects in lattices, in that the atoms of the lattice interact with their
neighbors with an arbitrary nonlinear (short range) potential. The method is hi-

erarchical, in which Green's functions are calculated for the perfect lattice, for in-

creasingly complicated defect lattices, and finally the nonlinear structure problem is
iterated till a converged solution is found. "For the case where the defect must be
embedded within a very large linear system, and the slip plane, cleavage plane, non-
linear zone, etc. can be made small compared to the system size, Green’s functions
are a very powerful method for studying the physics of defects and their interactions.
As an illustration of the method, we report numerical calculations for an interfacial
crack emitting dislocations from an interface between two joined 2D hexagonal lat-
tices. The supercell size was 4 x 10%, and the crack length was 101 lattice spacings.
After the Green’s functions were obtained for the defective lattice, the dislocation and
crack structures were obtained in a minute or less, making possible detailed studies of
the defects with various external loads, force laws, defect relative positions, etc. wilh
negligible computer time. With practical supercomputer times, supercell and defect
sizes one or two orders larger are feasible, thus making possible realistic calculation

of 3D nucleation evenis on cracks, etc.
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I INTRODUCTION

The purpose of this paper is Lo demonsirate, and in part lo recall, the use of
tattice Green’s functions in the study of the structure and quasi-static properties
of imperfections in lattices, and to show that for many uses, the method outlined
is superior to other numerical techniques for simulating defects in lattices. We will
illustrate this point in the specific case of cracks and dislocations in a 2I) hexago-
nal lattice. The method begins with the computation of the perfect lattice Green's
function, then calculates the Green's function for the imperfection in the harmonic
applmximation. and lastly deduces the final structure from non-linear force laws by
a relaxation technique.

The method described here builds on earlier work by Kanzaki[1] on lattice statics
and Tewary([2, 3] on Green's-function methods. Qur motivation for using these meth-
ods, rather than the direct simulation methods that are more widely used today, is
the prospect for studying very large systems in 3D, with the order of 107 — 10® atomns.
The system size is important for cracks and dislocations, in part because of the long
range character of the strain fields (1/r in the case of the dislocation and 1//7 in the
case of the crack), and in part because nucleation events for cracks and dislocations
require fully 3D computation. In the other methods, the much more limited size of
the possible systems which can be studied brings into play serious difficulties with
the boundary conditions on the surfaces, or at the junction of the periodic supercells
in infinite systems. In addition, localized lattice defects like cracks and dislocations
are ideally suited to the Green’s function approach because the nonlinear part of the
problem is relatively localized, and the long range strain is quite accurately linear.
This feature allows us to treat the nonlinear aspects of the problem in a very efficient
manner.

In our early work[4-7], we largely restricted ourselves to a very simple lattice

which we have called “atoms on rails”. This lattice is a simple cubic (2D or D) in
which displacements are only allowed in one direction. In this lattice, we worked out
a number of qualitative examples illustrating the behavior of cracks. However, this
lattice has a serious defect in that the continuum analogue of the lattice does not
have a symmetric stress tensor. After the early stages of our own work, done initially
with “snapping” linear bonds(4], Esterling[8] pointed out how to address nonlinear
problems in lattice statics, Finally, Tewary, et al[9] have demonstrated how to handle

interfaces in a general manner.

Il. GENERAL RELATIONS.

Here we follow the treatment of Tewary[3). Tl force coustant operator, ,,(1, 1),
or "dynamical matrix"{10] is defined as an appropriate second derivative of the otal
strain energy of the lattice, and is the force exerted in the i direction on an atem at
the lattice point, 1, by an atom at the lattice point I' as the latter is displaced a unit
distance in the j direction. Tlis harmonic spring force on a reference atomn located
at 1 caused by the displacements of its neighbors {or itsell} must be balanced by an

exiernal force, F, applied to the atom, as given in the equation,

¢ (1L, 1%,;(1N = — F(l) (2.1a)

du=—F (2.1b)

In this and all subsequent equations, the summation over repeated indices is implied.
The displacements of the reference atom and its neighbors is given by u;(I'). The
negative sign on the right expresses our force sign convention—i.e. all forces are
positive when exerted on the atom in question. The lattice is shown schematically in
Fig. 1. In case the lattice contains a basis, with more than one atom per primitive

cell, then we will assume this basis is included in the direction indices, (%, 7). Thus,



if there s one atom per cell, (z,7 = 1,2,3), whereas if there are two atoms, then
(7,7 = 1 — 6}, ele. Eqn. (2.1b) is written in the operator form.

A number of general relations on the force constant matrix follow from lattice

symmetry and other requirements(10], and the most useful of them is the expression

of Newton's third law,
Z(#’U“v]') =0 (22)
lJ

Keating's theorem (the invariance of the potential function to rotation of the
lattice requires thal the strain energy must be expressible as a function of dot products
of re! tive atomic displacements} makes possible a considerable simplification in the
complex lattices[1].

By definition, the Green's funclion operator is (in our case the negative of) the

inverse of the force constant operalor,

o'=-G (2.3a)

u=GF (2.3b}

The second of these equations expresses the formal solution of the problem of finding
the lattice displacements, if the applied external forces are known. In the perfect
lattice, where ¢;;(I'.1) = ¢;;(1 —1') and g¢;;(1,1') = gi;(1—I'), because of the lattice

translation symmelry, G is easily obtained in k-space,

g1 1) =
TR LB sone i3 (K) exp(—ik(1 - 1) (2.42)
$is(K) = Tanen $i5(1 — I exp(ik (1 — 1)) (2.4b)

where ¢;;{k) is understood to be the transform function of ;{1 —I'), and B zone

denotes the Brillouin zone.. In these equations, we have assumed Born-von Karmaa

periodic boundary conditions (Fig. 1) with periodicity N in each direction. The
“atoms on rails” simple cubic lattice noted in the Introduction, is one special case
where the limit — co can be made, because one of the integrations over the B-zone
is analytic[4]. Formally, the sum over the “shell” is 2 sum over the Born-von Karman
supercell, but because the forces between atoms are always short ranged {Coulomb
forces have to be dealt with separately}, the sum in Eqn. (2.3b) is actually only over
the region within the shell of atoms defined by the range of the force.

The Green's function operator has a similar Fourier expansion, and the inversion

of ¢ is simply

g:’j(k) = [‘15-1"“0];1

= 13" ¢i(1 = V) explik(l - 1)) (2.5)

shell
Since in 3D, ¢ is a 3x3 (or 3nx3n matrix, where n is the number of atoms in the
lattice basis), the right side of (2.5) requires the inversion of a small matrix for each
value of k. Noting that ¢;;(k) in Eqn. (2.5) is the sum over the shell of atoms within
the range of the force law, the perfect lattice G’s are easily determined, numerically.
When the inverse Fourier transform is petformed on the g;(k), then the Green’s
function operator in real space, g:;(1 — I'}, is determined. In 2D, the normalization
constant in front of the summation in Eqn. {2.4a) is replaced by 1/{4x*N?).
Although the analysis to this point seems benign, there is an important subtlety
in the physics which needs to be clarified. Strictly speaking, the Green’s function
operator we have defined gives the response to a unit point force source, and the
lattice is thus subjected to a net force. It is consequently not in static equilibrium.
This anomaly is connected to the fact that gi;j(k) is singular at the point k = 0,
and in the continuum limit, ¢(1) is Jogarithmically divergent. Although one could

set up the analyis for a dipole source with no net force[4], it will be more straight
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forward to have an analysis representing a single force, and we will in this case simply
delete the singular term in the Brillouin sums at k = 0. This stratagem is permitted
because when the balancing forces are added during the solution of the total problem,
the singular terms exactly cancel—that is, the singular term does not depend on the
lattice position. What results is a Green’s funclion which, in 2D, has a logarithmic
asymptotic form, and depends explicitly on the density of points in k-space, reflecting
the logarithmic singularity at the origin. When the actual {net zero) forces are finally
applied Lo the latlice, these artifacts are removed, and physical resulls are generated
which are independent of the size of the supercell for large supercells.

A similar requirement pertains to the conservation of angular momentum. In
this case, when torques result from the application of forces on atoms in the system
(normally applied to aloms near the center of a supercell), then cancelling torques
will be required by adding small forces on the boundary of the supercell. In our
experience, when the initial torque lever arm is small, and the supercell is large, we
find that the results are altered only in a small way when the balancing torques are
applied. Thus the zero-torque requirement can safely be ignored.

At this point in the analysis, a sel of perfect lattice Green’s functions have become
available in real space coordinates. It is then necessary to address the imperfect
lattice, Fig. 2. We will treat imperfections in the lattice via changes in the couplings
between the atoms, such as for example bond-cutting at a crack. When the number
of altered sites is a minority of the sites in the lattice, a straightforward approach
offers itself through the Dyson equation. That is, we consider changes, §®, in the
springs connecting the perfect lattice, and write the defining equation for the Green’s

function in the altered lattice,

(® +60)G* = -1 (2.6)

where the star represents the Green’s function for the lattice containing a defect. Now
we multiply (2.6) on the left by the Green’s function operator for the perfect lattice

and obtain the Dyson equation

(1-Géd)G" =G, {2.7)
from which

G" = G(1 - 60G)™! (2.8)

If both arguments of G™ are in the defect subspace, then in Eqn. (2.8) only the picce
of G involving this subspace is needed. This picce, as well as 8¢, are matrices whosce
order is equal to the number of degrees of frecdom in the defect subspace. Thus one
simply has to perform a simple matrix inversion, and then wultiplication, to obtain
G~ in the defect subspace. To obtain G* outside the defect subspace, one expands

Eqn. (2.8) as follows {12]:
G* = G+ GHPG + GIPGEPG + - - (2.9)
This gives the exact relation
G =G+ GTG (2.10)
where
T =601 - Géd]™". (2.11)

Here, T, 1, and G are considered as 3n by 3n matrices acling in the defect subspace
{2n by 2n in 2D). Thus the basic mathematical operation is simply the inversion of
a finite-dimensional matrix.

The Dyson equation has a particularly useful pictorial representation in terms of

a “Feynman” diagram, as shown in Fig. 3. The product, GS®G" in (2.7) represents
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in scattering theory a propagator G (heavy directed line) from the source point I
to the intermediate point 1%, where it is scattered (wavy line) by 6@ to the second
intermediate point, I, where the propagator G (directed line) takes the process to the
final field point, }. We will use the heavy line, wavy line, etc. notation in subsequent
figures without designating G, 8¢, etc. for clarity in the diagrams. This pictorial
representation is quite useful in writing down the detailed operators, because one can
easily check that all the paths leading from a specific initial point to a specific final
point have been accounted for via all the necessary “scattering” events. In the special
case of pair force bonds, the annihilation of a bond involves two diagrams for each of
the two atoms connected by the bond. Fig 3a depicts a “scattering” due to the force
that displacement of one atom causes in the other, while Fig 3b shows the eflect that
displacement of an atom has on itself. By Newton’s third law (Eqn. (2.2)), 89 for
the two cases are the negative of each other.

The final step in finding the structure of the defect is to move out of the harmonic
world into the final nonlinear one. Here the underlying principle is that the sum of

all the forces acting on each atorn must vanish, that is, from Eqn. (2.1b),
F+f+du=0 (2.12)

Here, ® is the spring constant operator in the defective lattice. ¥ are the known
externally applied forces, and f are the forces which are exerted by atoms whose
bonds may be stretched into their nonlinear regimes. They include all the higher
order anharmonic terms in the potential energy. These latter nonlinear bonding
forces, are, by definition, not a part of the linear part of the problem, and the atoms
which contribute such forces are removed from the problem, and placed in the defect
space during the construction of the linear system, described by the Green’s function,

G*. In the nonlinear problem, the atoms in the defect space and their nonlinear bond

forces are added back into the problem, in a formal way, as “external” forces. When

Eqn. (2.12) is multiplied on the left by G*, we obtain
u=G'F+ Gf{u} (2.13)

In this equation, we have highlighted the special character of the nonlincar bonds by
identifying them with a specified force law, f = f{u}, where f is a functional of the
positions of the atoms in the vicinity of the reference atom. If the displacements, u
can be made everywhere consistent with the forces in the nonlinear bonds so that
(2.13) is satisfied, then the problem of the lattice structure of the defect is solved.

To summarize, the defect subspace is constructed in order to accomodate a sct
of nonlinear bonds, and additional bonds may have to be annihilated to form free
surfaces, etc. After the necessary defect Green’s functions, G*, are constructed [rom
the Dyson equation, the nonlinear bonds are reattached to atoms in the cohesive zone
portion of the defect subspace, and the nonlinear set of equations, (2.13), are solved
for the atoms in the cohesive zone. The true external forces, F, may be applied to
atoms either within or without the defect subspace,

Eqn. (2.13) is a set of nonlinear equations, to be solved by an iteralive relaxation
technique. Their number is pn where n is the number of atoms to which nonlinear
bonds are attached, and p is the dimensionality of the problem. It is necessary to
introduce damping in the process, otherwise the solutions generally gyrate wildly
when the trial is not close to final convergence. That is, if u!” is the new solution
on the left generated from a trial function, ul® on the right side of (2.13), and if
§ = 1) — 4, then the new tria! solution is taken to be ul!) = u(® + €6, where ¢ is
a small number, optimized by trial and error.

The reader may be puzzled that we have used an equation, (2.13), which is ap-

parently valid only in the linear regime, to solve a nonlinear problem. The method, is

10



nevertheless completely rigorous, because any set of “external” forces, f, can be spec-
ified on the right side of (2.13). By trial and efror, the iteration proceedure simply
finds that set which is consistent with a specified (nonlinear) force law.

Equation (2.13) is the discrete analogue to the Barenblatt integral equation for a
distribution of cohesive forces in the continuum approximation[i3].

At this point, it is necessary to make two general comments about the method.
The fiest concerns the overall accuracy of the method. Once one has iterated Eqn.
(2.13) to convergence the remaining inaccuracies in the method come from treating
the forces outside the nonlinear region as being perfectly harmonic. Since one often
finds displacements many times larger than a lattice parameter, this might appear
to be a questionable assumption. However, it is not the absolute displacement which
is important, but the displacements relative to other atoms in the force shell, which
must be small compared to a lattice parameter. That is, the Green’s function analysis
is a small strain theory.

The second point concerns a complexity involving the cutting of bonds in problems
like the crack. If the force laws extend beyond the first neighbor shell, then the springs
Lo the first coordination shell will often be in compression, while the springs to the
second are in tension, and so forth. In the expansions of the potential functions for the
harmonic lattice, these forces do not appear, because the lattice is expanded about its
equilibrium position, and the symmetry of the lattice cancels out such forces. But, in
the Dyson equation analysis, when bonds are cut, the lattice symmetry is destroyed,
and these forces must be accounted for, explicitly, on the right side of Eqn. (2.13} as
additional constant forces at the appropriate lattice sites. In Tewary’s paper([2], he
has dealt with these terms in a different, and more formal, way than we have here.

These forces are also discussed in the first chapter of Maradudin, etal{10].
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III. INTERFACES.

Tewary, etal(9] have demonstrated how to i'ncorporate an infinite interface into
the analysis, and we will briefly repeat and extend their argument here using the
point of view and terminology of thjs paper.

The central idea is that the imperfect lattice with the interface will generally
be periodic for translations parallel to the interface, but it will not be periodic in
directions normal to the interface. This property allows us to introduce a mixed
tepresentation into the ¢ and g at the Dyson equation stage, ¢i;(k., ky;1;,12), which
again projects the Dyson equation into the defect subspace corresponding to tle
single coordinate, z, normal to the surface. We will arrive al interfacial Green's
functions by first constructing free surface functions, and then gluing two half spaces
together to form the interface. The mixed-basis bond-cutting method for obtaining
the surface Green's functions is quite similar to that used by Kalkstein and Soven[13)
for electronic Green’s functions; Dobrzynski et al[16] have subsequently calculated
electronic Green’s functions for interfaces using a “gluing” method.

In Fig. 4, we show a schematic drawing of the Born-von Karman periodic solid
with a cul through the middle of a supercell. The lattice is then separated at the
cut into two non-interacting parts. Because of the periodicity, if a cut is made in
one supercell, this cut is also automatically repeated in every other supercell above
and below the cut in question. Thus, a disconnected set of slabs is created, each
with thickness equal to the supercell length, N. Thus, it is possible to deal with a
single slab as the total system. In such a construction, the number of cut bonds
within one of the supercells is of order N2 {in 3D}, and the defect sub—space is not
small, as assumed in the previous section. However, if the cut is made in a symmetry
direction of the lattice, then, ihe lattice points contained in the cut constitute a

periodic 2D} array, and all quantities, ¢, g, etc. for the defect sub-space are periodic
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in the coordinates contained within the cut. No quantities are, of course, periodic in
the direction normal to the cut.

For the sake of simplicity of argument, a cubic 3D lattice, with a cut on the [001]
plane is assumed. Consequently, just as in the perfect lattice, in the z and y directions,
all quantities in the slab may be written in the form ¢,{I. — I, {, — L I, ), etc. After
all quantities in the x and y directions are converted to the mixed representation
alluded to above, then, following the steps leading to the Dyson equation, (2.7), one

finds

(6.‘&611,1'; — Gim (kza kys In [;”)éqﬁmk([‘z”! 1‘;))

Xg;}-(k,, kv;rz"[lz) = gij(kt’kv' l, - [;) (31)

Note that &¢ is only a function of the z—coordinate, and does not depend on z and
v. This equation is now a set of linear equations for the different lattice points, I,
contained in the defect sub-space, that is for the lattice points on the surface where
the bonds have been cut.

However, it is important to straighten out one issue here, which is the interpre-

tation of I and I’ in ¢°. Since there is a IJ and a I layer in each slab, it is not
immediately obvious precisely which pair of {¥ and [, layers g* refers to. The answer
is that ¢* always refers to the I and ¥ layers inside the same slab, Depending on the
partitioning of the system into unit cells (which have the same thickness as the slabs
but are not necessarily identical to them), this may mean that ¢* actually describes
connections between different unit cells. This happens, for example, if the edges of
the unit cells are placed at the centers of the slabs, which is sometimes a convenient
geometry. In this case, if { is at the top of a slab, and I} is at the bottom, then ¢*

describes not the connection between the top of one slab and the bottom of the above

slab (which might seem to be the obvious interpretation), but rather the connection
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between the top and bottom of the same slab. Because of this connection, the Green’s
functions for the finite slab are different from those for a semi-infinite half space. If
the size of the supercell, N, is large, the numerical difference will of course be quite
small. It may seem surprising that ¢*, which is built up of quantities that have peri-
odicity N (which equals the slab thickness) can exactly describe properties of a single
slab. This is made possible by the fact that the slabs are noninteracting after the
bonds are cut, which makes the artificial stab-to-slab periodicity irrelevant. These
points are illustrated in Fig. 5 where the Feynman diagrams for the slab construction
are shown.

We note that the rank of the Dyson equation for the slab may be quite small, since
the z and y coordinates are not in the problem. For example, if n bonds per unit cell
are annihilated at the surface, and if (1,7 = 1,3), then the slab Dyson equatioi? has
rank (6n). (Remember that both upper and lower slab surfaces must be included.)
If they are needed, the slab Green's functions in real space may be found by taking
the Brillouin sum over the appropriate cut in (&, k,} space.

If it is desired to obtain interfacial Green’s functions, then it is necessary to take
the additional step of gluing two slabs (characterized by different spring constants)
together, Fig. 4b. Still working in the mixed representation of Eqn. (3.1), the bonds
which were cut in constructing the slab are reconnected (with a third spring constant
between the two slabs).

The new Dyson equation for the interface has exactly the same form as (3.1),

(Jijsl.,l",' - gim(k:) ky; I:a r;”)aqsmk“;”: l:))
xgni{ksy by U = giglks, by L~ 1) (3.2)
In this equation, the g* are the interface Green’s functions, and the g’s are the slab

Green’s functions, calculated in (3.1). There are, however, two sets of ¢'s, one for an
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upper slab, (b), characterized by one set of spring constants, and another for a lower
slab, {a), characterized by a second set of"spri'ng constants. (A separate notation
for the slab Green's functions has not been introduced, in order to retain a tidy
Eqn. (3.2)). The reader must simply remember that slab g's are constructed from
perfect lattice g’s, interface ¢’s are constructed from slab g¢’s, etc.) In contrast to
the slab construction, in the interface construction, the two slabs are joined at only
one interface, and atoms on the upper surface of one slab are connected to atoms
on the lower surface of the second slab. Thus, the interface Dyson equation, (3.2},
has rank enly (3n). If the slabs are joined at both edges, one would instead obtain a
long-period (a)-(b) superlattice.

Fig. 6 shows the Feynman diagram for the interface Dyson equation.

The interface Green’s functions which result from the solution of the interface
Dyson equation are again in mixed representation, and must be converted to the
full real space representation by performing the Brillouin sum over the (kg, &) cut.
The interface Green’s functions will be functions of three seis of parameters: elastic
constants in slab (a), elastic constants in slab (b}, and spring constants connecting
the two slabs. In practice, these constants can be normalized to one of the slabs, say
(a), so that only two sets of parameters are involved. The Green's functions must be
recaiculated for every choice of these parameters,

Once the interface Green’s functions have been obtained, then cracks and other
defects can be studied as before. That is, the crack must be made by cutting a finite
number of bonds on the interface, etc., new crack Green's functions constructed, and
so forth. We have described a staged process: One starts with a perfect lattice Green’s
function, constructs as many levels of defect sub—spaces as are necessary, and then
finally solves the indicated non linear problem in Eqn. (2.13) with the the Green’s

functions constructed from the highest level defect sub-space.

13

V. 2D HEXAGONAL LATTICE.
In the following, the formal analysis of the previous sections will be illustrated
by applying it to a crack in a hexagonal 2D lattice, Fig. 7. The lattice is bonded by

springs connected only to nearest neighbors with central forces. If the spring constant

is @, then the individual ¢ matrices are given by

0 0

10 )
¢(10)=0( ):¢(m) (4.1a)

af 1 V3 ]
¢(01) =7 (\/'i \ ) = ¢{01) (4.1h)
P R ]
o(il)=7 (*\/g ; ) = $011) (4.1¢)

30
qs(ou):-a( ) (4.1d)
0 3

The lattice sites in the matrix ¢(1,1'} are given in the units of the primitive hexagonal
lattice cell, Fig. 7.

When the crack is made in the lattice, bonds are cut in the cleavage plane, as
shown in Pig. 7. The crack Green's functions are obtained from the Dyson equation,
{2.7). For each choice of field and source point, there is a sum to be carried out over
all the cut bonds. We will discuss the calculation in terms of a sum over the various
Feynman diagrams in the problem.

We have also studied a different configuration corresponding to a crack progressing
to some point in the cohesive zone, and either emitting a dislocation on one of the
planes at 60°, or cleaving on that plane, This configuration is shown in Fig. 8.

Finally, we have studied a crack on an interface between two hexagonal lattices.
That is, the atoms below the cleavage plane in Fig. 7 are characterized by @ = oy and
those above by & = a;. For bonds which cross the cleavage plane, a = ay2. There are

two consecutive Dyson equations to solve, the first to make the slab, and the second
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to connect two slabs to form the interface. As discussed in §I11, both these Dyson
equations are to be solved in the mixed representation.

After the appropriate Green’s functions have been determined, the relaxation
probiem for the reconstituted bonds in the cohesive zone, Eqn.(2.10}), is solved with
force laws appropriate to the problem. We used the universal binding relation of
Rose, etal|17], for the energy, U, in a bond between two atoms which have been
streiched from equilibrium by amount u. In the following, we normalize all distances

and displacements to the lattice spacing.

U=-aff(u+ Dexp(-uff)+ C (4.2a)

f=—ouexp(—~u/g) (4.2b)

Here, f is the range of the force law, and « is the linear spring constant term. In the
first of these equations, C is a constant chosen to make U continuous at the cutoff
distance, which is inside the second-neighbor distance. In the second, f is the force
on an atom when its neighbor is given the displacement, u, along the radius vector
hetween the two,

In Figs. 9-11 some results are shown for our calculations. Detailed discussion of
the physical implications of the computer calculations will be presented in subsequent
papers, but the figures illustrate the kind of results we have been able to obtain
with the Green's function methodology. The parameters for the calculations were
N = 2 x 10% total length of crack line equals 101; length of cohesive zone at the crack
tip where the bonds are reconstituted with the forces given by Eqn. (4.2b) in Figs.
9, 10 is 20.

In Fig. 9, we show the atoms in the cohesive zone at the right end of the crack
where nonlinear bonds are attached. {These atoms correspond to the two atom pairs

with wiggly bonds in Fig. 2.) The external load, F, for the system was a pair of
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forces applied to the atoms at the center of the crack, see Fig. 2. Here, however, the
force is composed of both tensile and shear'coniponents. In Fig. 9, the tensile force
is sufficient to open the crack tip against the bonding forces which tend to close it.
That is, the crack is loaded by a tensile force at its Griffith load. In addition, a shear
component is added so that the atoms at the tip are sheared, and a dislocation is
shown just before it is emitted from the crack core. The parameters in the universal
binding curve, Eqn. (4.2b), were o = 1.0, § = 0.2. In this calculation, the cleavage .
and dislocation emission are restricted to the cleavage plane of the crack. We call this
a Mode II emission configuration. This crack was found to have very small lattice
trapping of about 8%. The ratio of the critical stress intensity for emission relative
to the Griffith stress intensity was 0.38. All these physical features change with the
force law parameters. This configuration is particularly appropriate for studying the
emission properties of cracks, and will be compared with both elastic[18] and quasi-
elastic Peierls models[19] of the crack in subsequent papers.

In Fig. 10, the same phenomena are displayed for a crack on an interface between
two hexagonal crystals. In this case, the displacements on top and bottom are no
longer symmetric relative to one another, indicative of the elastic mismatch between
the two lattices. We have chosen a; = 1.0, a; = 2.0, oy = 0.5 for the elastic
constants, and in the interfacial force law, # = 0.2. The emission to Griffith load
ratio is 0.2 for a positive shear and 0.6 for negative. In addition, the Griffith value
decreases by about 12% in going from positive to negative emission, corresponding to
an embrittlement under negative shear. (That is, the Mode I loading at Griffith equi-
librium for positive Mode 1T emission is greater than that for negative emission.) The
figure is shown for the configuration just before emission under positive shear. These
results for interfaces suggest an interesting mechanism for interfacial embrittlement

for interfaces between misfitting lattices, which will be pursued in subsequent papers.
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In Fig. 11, we have opened a cohesive zone in the spur direction, so that the crack
can either branch off its original plane, or emit a'dislocation in the spur direction. We
call this the Mode 1 emission configuration. In the figure, we illustrate the branching
of the crack. This particular erack will not emit dislocations, but is brittle. In the
simulation, the crack was grown to the base of the spur under pure Mode [ load,
and then a negative Mode 11 was imposed, and branching occurred for ratio of Mode
Il to Mode Lol 04, o = 0.5, 3 = 0.15..In the figure, we have plotted additional
atoms in the linear region above and below the horizontal plane, in order to check
that in this complex configuration, the atoms lying in the region of the branch are
not. violating our assumption that their displacements are in the linear range of the
force law. Visual inspection reveals that their displacements are, indeed, small. These
additional atoms are all painted black, consistent with the assumption that they lie
in the linear portion of the lattice,

One of the special features of this work is the computer time on our Model 35
SGI workstation at 33 MIPS which is required to obtain the results reported abave.
It required ahout 20 minutes to construct the perfect lattice Green’s functions for the
problem as outlined for the Mode 11 crack, several hours for the Mode 1 crack, and
about 20 minutes to construct the interfacial Green’s functions. In each case, about a
minute is required to solve the Dyson equation. The final iteration requires from ten
seconds to a minute for full convergence {= 107 lattice spacing)! QOune should note
that once the defect (s are calculated, a large variety of problems can be explored
using various force law and loading parameters without calculating new G’s. Thus,
the realistic time required for making a calculation of a configuration is of the arder
of a minute. When one realizes that the system we use is very large—4 x 10° atoms

in the supercell and crack length of 101 atoms—the power of the method is apparent.
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V. CONCLUSIONS.

Detailed discussion of the physical implitati;ms of the computer calculations will
_be presented in subsequent papers. Out purpose here has been 1o present the basic
mathematical background and methodology for making defect calculations in lattices
using lattice Green's functions, and to illustrate the methology with calculations in
a simple 2D lattice. Crack/dislocation effects are a natural application of the lattice
Green’s funciions, but a variety of other defects, such as defects in grain houndaries,
and 3D computations of kinks on cracks and dislocations obviously invite exploration.

The compirtational speed of the present method, outlined above, is a direet conse
quence of the procedure of viewing the defect as a perturbation in an otherwise perfeet
medium. The speed is well beyond that of the other standard techniques for doing
quasi-static lattice calculations. For example, in molecular dynamics, a systematic
study of crack tip effects such as that we will be reporting in subsequent papers would
be a very time consuming, if not impossible task. Although the Green’s functions can
only be used in static equilibrium situations, activation energics are casily obtained.
Further, the sequential intermediate configurations in a relaxation calculation mimic
time dependent behavior, if the damping is large. That is, when the [orces acting on
a configuration are large, the Green’s function response is also large, just as in a true
time dependent problem. Thus, for example, we learn from our calculations that the
dislocation emergence from the crack tip during during the early stages of emission
is a slow process, compared with cleavage processes. This effect may turn out to
be important in dynamic cracking experiments, where normally brittle materials can

cleave if the crack moves fast enough.
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FIGURES

FIG.1. {a}2D representation of an infinite periodic lattice, Burn-von Karman bound-
ary conditions are assumed with period N in all coordinate directions. (b) A diagram of
a lattice with a spring connecting two points in the lattice. A displacement, u;(I'), of the
atom at I of in the direction j causes a force, f,(1) on the atom at 1 in the direction i.
Springs extend from the reference atom, |, only out to atoms contained within a finite shell

surrounding the reference atom.

FIG. 2. Defect sub-space. A set of bonds in the supercell are aliered, forming a
“defect sub-space” in the lattice. The number of such altered bonds is small compared to
the number in the supercell. In the figure, a crack is represented by bond annihilation over
a plane constituting the cleavage plane of the crack. Forces, £, are applied to the cenier of
the crack, which provide the load on the crack. Al the ends of the crack, a “cohesive zone" is
defined over which nonlinear bond forces may be reconstituted, consistent with ar assumed
force law. Dotted lines in the figure correspond to bonds which have been annihilated, and
wavy lines to bonds which have been first annihilated and then reattached with nonlinear

bonds.

FIG.3. Feynman diagram. The term, G6®G" in the Dyson equation, (2.7), or (2.8),is
analogous to a multiple scattering Feynman diagram with propagators G* and G connected
by the scattering operator, é®. In the diagram, the heavy directed line corresponds to
the propagator, G*, and the light directed line to the propagator, G, while the wavy

line corresponds to the §&. Source and field points, {I,1), are connected by all possible
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intermediate “scattering” events, §&, corresponding to all the altered bonds of the lattice.
When a bond is cut for a two body force, there are t-wo diagrams for each atom of the pair.
One diagram, {(a), relates to a force generated by displacement in the neighbor, and the
second, (b}, is the force generated at an atom by its own displacement. The 68’s for the

two are the negative of each other by Newton's third law.

FIG. 4. Interface construction. (a) In an infinite Born—von Karman lattice (repre-
sented here in 2I}), cuts are made in the zy plane (y direction normal to the page). The
cut is repeated in every supercell ahove and below the original cut, creating a series of
disconnected slabs. (b} To form an interface, two slabs with different force constants,
$A(1L, 1), $8(L, '), are reconnected at the cut with a new set of springs, ¢*5(1, ¥). The (AB)
springs may be different from either slab. In general, the slabs may have different Iattice
structures, provided they fit at the interface in a periodic manner. Qur definition thus

encompasses the grain boundary, as well as an interphase boundary.

FIG. 5. Feynman diagrams for slab Dyson equation, {3.1), showing the terms for the
bonds annihilated across the upper surface in {a) and (b). These terms are equivalent
to Feynman diagrams to the lower surface, as shown in (c) and (d), and are included

automaticaliy in the Dyson equation for the periodic structure.

FIG. 6. Feynman diagrams for interface Dyson equation, (3.2). There are terms cor-

responding only to the reconstructed bonds at the interface,

FIG. 7. A crack in a 2D Hexagonal lattice with nearest neighbor central forces, (a) In
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the perfect lattice, the coordinate system for displacements are computed in the rectangular
coordinate system, centered on an atom site as shown. For purposes of identifying lattice
sites, however, we choose a different coordinate system based on the primitive lattice cell
of the hexagonal lattice. (b) The crack is constructed by annihilating bends between atom
sites on top and bottom of a cleavage plane. The crack tip at the left is symmetric to that
on the right. A cohesive zone is defined in the vicinity of the right hand tip (but no cohesive
zone is constructed at the left tip). As in Fig. 2, dotted lines indicate annihilated bonds,

and wavy lines annihilated bonds which have been reattached with nonlinear forces.

FiG. 8. Crack cohesive zone when dislocation emission can accur on a slip plane
intersecting the crack, or in which the crack branches onto a different plane. The spur is at

G0° to the original cleavage plane.

FIG. 9. Dislocation formation by a crack. The figure shows the cohesive zone (plus
one additional atom pair to the left of the cohesive zone). The dislocation is indicated
by the vertical orientation of the atoms in the core, which corresponds to a horizontal
relative displacement of half a lattice spacing. The atoms are represented by the filled
circles centered at the atom positions, whose radius is the radius of the atom in the lattice,
and with a gray scale color which varies from full black to full white. Full black corresponds
ta zero force exerted on the atom from atoms across the cleavage plane, and full white
represents the maximum force which can be exerted by the universal binding relation. An
additional circle centered at the atom position indicates the range of the force law. Note that
on the left, the range circles for the completely black atoms do not touch their neighbors
on the opposite cleavage plane. The cohesive zone overlapped by the dislocation core is

indicated by the nearly white atoms, and the increasingly black atoms to the right indicates
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the decreasing elastic stress.

FIG. 10. Dislocation emission from a crack on an interface. WITH the same size crack
and cohesive zone as in Fig. 9, a crack is formed in the cohesive zone, and then emits under
Mode I1. In this case, the interfacial bonding is weaker than in Fig. 9, and the dislocation
care is much broader. Note the unsymmetric displacements in the upper cleavage plane

relative to the lower.

FIG. 11, Branching of a crack. The crack length is the same as in Fig. 9, (but with
the cohesive zones shown). Because of the spur in the cohesive zone, relaxations can occur
on one plane outside the normal cleavage plane. In the same way as in Fig. 9, after an
equilibrium crack is formed in the cohesive zone at the spur base, under negative Mode 11

loads, the crack cleaves on the spur cleavage plane.
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