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1‘ CHAPTER ONE

crystalline interfaces
D. Wolf

Atomic-level geometry of

Introduction - Basic terminology - Microstructure - Coherency, epitaxy and topotaxy - Commensurability -
Degrees of freedom of crystalline interfaces + Atomic-level geometry of planar stacking - Grain boundaries -

Characterization of the atomic structure of interfaces

1.1 INTRODUCTION

Any attempt to systematically investigate physical
properties of solid interfaces, structure—property
correlations in particular, should from the ourtset
be based on a thorough understanding of their
basic geometry. Moreover, a prerequisite for the
atomic-level investigation of solid interfaces is a
description of their basic structure and geometry
not only in macroscopic terms but also at the
atomic level.

The terms ‘geometry’ and ‘structure’ are often
used interchangeably. However, when referring to
the geometry of an interface, one usually thinks of
the more macroscopic and purely crystallographic
aspects of the structure, while by the structure one
}lsually implies the atomic or electronic structure,
cmluding the chemical composition locally at the
interface. The distinctions between, for example,
coherent and incoherem interfaces, commensurate
and incommensurate systems, homophase and
heterophase interfaces, between ‘special’ and
‘vicinal’ surfaces, and between low-angle and high-
angle (tilt or wwist, symmetrical or asymmetrical,
‘special’ or general, wwinned or non-twinned,
coherent or incoherent) grain boundaries add to
the terminology used to describe the geometry,

. Structure, and chemistry of solid interfaces. This

mteructory chapter represents an attempt to
clarify (or at least to collect) some of the termin-

ology used in this diverse area of materials research
and to formulate a unified atomic-level geometrical
description applicable to all crystalline interfaces,
including internal (homophase or heterophase)
interfaces and external surfaces (i.e. solid-vacuum
interfaces). It is our hope that such an undertaking
will facilitate and clarify the communication among
the different groups of the materials research
community, broadly known as the interface
community.

By close analogy to the distinction between
crystallography and physics, throughout this
chapter a sharp distinction will be made between
the ‘geometry’ and the ‘structure’ of an interface.
The latter term will therefore be reserved for the
atomic and/or electronic structure (including the
local distribution of chemical species), which in-
cludes the fully relaxed positions of all the atoms in
the system and contains all the detailed information
on phenomena such as reconstruction, misfit local-
ization or delocalization, elastic strains and inter-
facial dislocations, impurity segregation, interface
reactions, etc. at the interface. In common to all
these phenomena is their origin in the physics of
the system (by contrast with its crystallography), as
prescribed by the nature of the electronic and
atomic bonding near the interface,

In our discussicn of the ‘geometry’ of crystalline
interfaces, the macroscopic crystallographic aspects
will be distinguished from the atomic-level charac-
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terization of the basic interface geometry. The
macroscopic geometry, 10 be discussed in section
1.6, includes all aspects of the geometry and
crystallography determined bv (i) the crvstal struc-
ture(s) forming the interface and (ii) the degrees of
freedom (DOFs) of the interfacial system, includ-
ing the five macroscopic and three translational (or
‘microscopic’) degrees of freedom (sections 1.6.1
and 1.6.2). Taking the geometrical characterization
further, down 1o the level of the atoms (albeit in
their unrelaxed positions), naturally leads to the
concept of the atomic-level geometry (section 1.7).
Based on unrelaxed atom positions, i.e. strictly
crystallographic concepts, this description provides
information on the plane-by-plane arrangement
of the atoms near the unrelaxed interface, most
importantly on the size and shape of the planar unit
cell (if the atomic structure is, indeed, periodic),
To illustrate these concepts by a simple example,
we briefly consider a stacking fault (for details
seec sections 1.6.3 and 1.7.3). As illustrated in
Figs. 1.1(a) and (b), the macroscopic geometry of
a stacking fault is fully characterized by the two
macroscopic DOFs associated with the fault (x-y)
plane (here characterized in terms of Miller indices,
(kkl), associated with the interface-plane normal)
and the two translational DOFs in the translation
vector, T = (T,, T,), which characterizes the
stacking discontinuity in the fault plane. Based on
this information, it is apparent that the interface
may be generated by first choosing a particular
crystallographic plane in a perfect crystal (Fig.
1.1(a)) and subsequently translating one half of that
crystal relative to the other half, parallel to the
intended fault plane by the vector T (Fig. 1.1(b)).
Generation of its atomic-level geometry, illustrated
in Figs. 1.1(c) and (d), provides information on the
unrelaxed atom arrangement in the defect, includ-
ing information on (i) the size and shape of its
planar unit cell (which are obviously identical to
those of the perfect crystal in Fig. 1.1(c)}, (ii) the
spacing of atom planes, d(hki), parallel to the fault
plane, and (iii) the number of lattice planes in the
repeat stacking sequence, P(hkl), in the direction
of the fault normal. In some cases this strictly
geometrical atomic-level information on the defect
may be very usefu! in predicting some of its basic
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physical properties, but without a knowledge of
the detailed (i.e. relaxed) atomic structure of the
interface and its chemical composition, both of
which are governed by the electronic-structure-
based physics of the interactions between the
atoms.

Because of the complexity of the basic geometry
of grain boundaries (GBs), involving both macro-
scopic concepts (such as the distinction between
tilt, twist and general boundaries, and between
low- and high-angle, symmetrical and asymmetrical
boundaries, to name only a few) and atomic-level
concepts (based on the geometry of Bravais lattices),
a consistent atomic-level characterization of their
basic geometry is particularly desirable and useful.
In section 1.8 we will make an attempit to clarify the
GB terminoclogy by defining the atomic-level geo-
metry of GBs within the framework, applicable
to all interfacial systems, of the macrescopic and
atomic-level concepts developed earlier in sections
1.6 and 1.7, respectively. Such a characterization
of GBs, although not commo 1ly used in the GB
community, paturally exposes their close geo-
metrical relationship to other planar defects and
interface systems. In particular, the sirnilarity
between GBs and free surfaces has not been fully
appreciated in the past, a fact which might be
one of the reasons why only relatively little is
known about the ideal-cleavage energy (or work of
adhesion) of even the simplest GBs. Efforts based
on the recognition of the considerable similarities
in the atomic-level geometries of GBs and free
surfaces therefore appear particularly promising
1o better elucidate the basic physics of interfacial
decohesion.

The chapter is organized as follows. Section 1.2
contains a collection of terms and concepts, some
macroscopic and some atomistic, the clarification of
which at the outset might be helpful. The concepts
of macroscopic and atomic-level geometry are
developed and illustrated in sections 1.6 and 1.7,
respectively. The goal of these two sections is
to formulate a unified geometrical framework
applicable to all types of interface systems. Then,
in section 1.8, the geometry of GBs is reviewed
within this general framework; a good under-
standing of sections 1.6 and 1.7 is therefore
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P '-.' : A T { hkl). The concept of the stacking period,

(©) P(hkl), the interplanar lattice spacing, d(hk!),
e and the planar unit cell are discussed in detail in
Perfect crystal Stacking fault section 1.7.1.

required. It is our hope that this atomic-level view
of the geometry of GBs, and the definition within
this framework of much of the ‘jargon’ used to

I describe this geometry, will bring out the parallels
| that clearly exist with other types of crystalline

interfaces. Finally, to emphasize and clarify the

| distinction between the geometry and atomic

structure of solid interfaces, the chapter concludes
with a brief review of the concepts and methods
used to characterize the atomic structure of

. crystalline interfaces.

1.2 BASIC TERMINOLOGY

As discussed in the Editors’ Introduction [1},
three types of interfacial systems (labeled ‘bulk’,
‘semi-bulk’, and ‘thin-film’ interfaces) may be
distinguished. This admittedly somewhat arbitrary

classification is based on the fundamentally dif-
ferent effects of interfacial stresses and strains in
the three types. Within the framework of this or
any other classification, a variety of terms is used
to describe the microstructure of polycrystalline
materials as well as the macroscopic and atomic-
level geometries and the atomic structure of indi-
vidual interfaces. Although a common terminology
to describe all structural aspects of crystatline
interfaces has not evolved to date, in the following
we will collect and define some of the more
commonly used interface vocabulary.

1.2.1 Three basic types of interfaces

Depending on whether an interface is embedded in
bulk materizl on both sides, on only one side, or
not at all, we distinguish three basic types of inter-
faces, namely ‘bulk’, ‘semi-bulk’ and ‘thin-film’
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Fig. 1.2 Distinction of three types of interfacial systems.
Depending on whether the system is embedded in bulk material
on both sides of the interface, on only one side, or not at all, we
distinguish ‘bulk’ (or ‘buried’ or ‘internal’), ‘semi-bulk’, and
‘thin-film’ interfaces. A and B are gencrally different materials
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interfaces (Fig 1.2). This (highly idealized and
somewhat subjective) distinction is based on the
observation that (i) lattice-parameter changes in the
interfacial region, induced by interfacial stresses,
may have a pronounced effect on the physical
properties and chemical composition at or near an
interface and (ji) these stress-induced effects are
fundamentally different in these three types of
sysiems.

1.2.2 Bulkinterfaces

The first type, a bulk interface (sometimes also
called a buried or internal interface; see Fig. 1.1)
represents the greatest experimental challenge
because (i) an extremely small fraction of the atoms
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(tvpicallv about one in 10'") actuallv experience
the presence of the interface. and {ii} by contrast
with a {ree surface, the disturbed atoms are sand-
wiched between {or buried in) buik material. [For a
review of the related experimental methods, see the
following chapter in this volume [2].)

In the bicrystal shown in Fig. 1.2, the interface
is conceptualized as being embedded between two
well-oriented single crvstals, and is hence charac-
terized geometrically by five macroscopic and three
translauonal (‘microscopic’) geometrical degrees of
freedom (see section 1.6 below). Since crystalliniry
is only a necessary — but pot a sufficient — condition
for commensurability (section 1.4), a bicrystal may
thus contain either 2 commensurate or an incom-
mensurate interface in its center. If the two
materials A and B forming the bicrystal are not the
same (or at Jeast represent different phases of the
same material), the interface is usually referred to
as an interphase, a dissimilar-material or a
bimaterial interface, or as a phase or heterophase
boundary, while the bicrystal comains a grain
boundary (or homophase interface) or a stacking
fault if A and B are identical materials and phases.

1.2.3 Semi-bulk interfaces

The second type, a semi-bulk interface (Fig. 1.3),
is obtained by removing one of the two bulk semi-
infinite crystals from Fig. 1.2. Containing both an
external free surface and an internal interface, this
type of interface may be viewed as consisting of a
thin film of material B attached to a bulk substrate
of material A. The term ‘thin-film overlayer’ there-
fore provides an alternate, equally descriptive
characterization of this type of interface. A free
surface is obviously included here as the case in
which materials A and B are the same. According
to Fig. 1.3, a ‘bulk free surface’ may be viewed
conceptually as a homophase interface consisting of
a strained (because of surface stresses) thin film
which is attached 10 a bulk substrate.

We mention that the semi-bulk interface defined
here is sometimes also referred to as an ‘epitaxial’
interface, or simply ‘epitaxy’. As discussed further
in section 1.4, this terminology arises from the
manner 1n which a thin-film overlaver with a
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Fig. 1.3 ‘Semi-bulk’ interface, containing both an cxternal free
surface and an internal interface. This type of interface may be
viewed as consisting of a strained (because of surface stress) thin
film of material B attached 10 a bulk (i.c. rigid) substraic of
material A. This type of interface may conceptually be obtained
from Fig. 1.2 by the removal of one of the two bulk regions.

mostly coherent epitaxial alignment relative to the
substrate is usually produced. However, in many
instances the interfaces (‘epitaxy’) obtained from
‘epitaxial-growth’ processes are coherent only up
10 some critical thickness, i.e. a ‘perfect epitaxy’
in the crystallographic sense [3] is not always ob-
tained. To avoid confusion, in the above definition
of a semi-bulk interface we mean simply an inter-
f{nc!: consisting of a thin film attached to a bulk,
rigid substrate, thus avoiding any reference to the
Iloquc-level qQuality of the thin-film overlaver.
While the overlayer may stretch or contract 1o
enable l_‘ormation of a coherent interface (section
1.4), this definition includes incoherent interfaces
:n.d a possibly rotated (and even incommensurate)

-film overlaver as well (section 1.5). Con-

©,

sequently, while the term semi-bulk interface will
be used to emphasize its distinction {rom a bulk or
thin-film interface, the atomic-level geometry and
structure of such interfaces will be characterized
in terms of the concepts of coherency (and the
related concepts of epitaxy and topotaxy) and
commensurability, discussed in detail in sections
1.4 and 1.5.

1.2.4 Thin-film interfaces

Finally the third type, a thin-film interface (Fig.
1.4), is obtained from Fig. 1.3 by replacing the
bulk substrate by a thin film itself (i.e. by removing
both bulk regions from Fig. 1.1), thus creating a
second frec surface and, hence, an unsupported,
free-standing thin film (or a thin slab).

The two free surfaces in Fig. 1.4(a) may be
eliminated conceptually by periodically extending
the geometry in Fig. 1.4(a) in the z-direction,
thus creating the thin-film superlattice sketched in
Fig. 1.4(b) in which — ideally — all interfaces are
identical. Such a material is also known as a
composition-modulated or a dissimilar-material
superlattice. If, in spite of a lattice-parameter mis-
match, coherent interfaces can be sustained in
the superlattice, it is also called a strained-layer
superlattice.

If materials A and B are identical, the system in
Fig. 1.4(a) degenerates into a thin slab with a grain
boundary or stacking fault (or no interface at all)
in its center, while the system in Fig. 1.4(b)
becomes a superlattice of homophase interfaces (or
a grain-boundary superlattice [7]). Although such
superlattices have not actually been investigated
experimentally, by the elimination of interfacial
chemisiry as a factor, they represent ideal model
systems for investigating, by means of computer
simulations, the strictly structural aspects of the
phvsical properties of superlattice materials, against
which any effects due to interface chemistry can be
probed.

1.2.5 Effects of interfacial stresses

As already mentioned, the above distincuon be-
tween bulk, semi-bulk and thin-film interfaces is

- e —— %
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called a ‘strained-layer’ composition-modulated superlattice.

based on the observation that (i) lattice-parameter
changes in the interfacial region, induced by inter-
facial stresses, may have a pronounced effect on the
physical properties and chemical composition at
or near an interface and (ii) these stress-induced
effects are fundamentally different in these three
types of systems.

It has been widely recognized in recent years
that the surface-stress tensor, oup (a, B = x, y, 2),
may play an important role not only in surface
reconstruction [4] but also, for example, in the
elastic response of thin films [5, 8, 9] and thin-film
superlattices [6, 7, 9]. To illustrate the concept of
interfacial stress, here we briefly consider a free
surface. o4 is then defined as the variation of the
specific surface energy, v, as a function of the
strain, g, i.e. Oap = 8y/8e,4p. In a fully relaxed

Superlattice
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ace (a). The geometry of this interface may be
y extending the geometry in (a) in the 2
surfaces by internal interfaces. The latter may be

or heterophase interfaces. If all interfaces are coherent, the system is

‘bulk’ free surface (i.e. one attached to a bulk
substrate; Fig. 1.3), Cup is usually diagonal, with a
vanishing component, o,,, in the direction of the
surface normal (z direction). Its only non-zero
elements, o,, and O,y are usually tensile and of
significant magnitude, favoring contraction in the
(x~y) plane of the surface. However, in a bulk free
surface this stress can only be relaxed by recon-
struction; by contrast, a thin film may in addition
contract, giving rise to a uniform reduction in the
average lattice parameter(s) in the film plane, with
a consequent Poisson expansion in the z direction
(Fig. 1.5).

In the thin-film system sketched in Fig. 1.4(a),
interfacial stresses arise not only from the two film
surfaces but also from the interface between the
films. By contrast, in the superlattice sketched in
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Fig. 1.5 Effect of the surface stresses, o,, and O, on the
average lattice parameters of an unsupported thin film (‘thin
slab*) parallel and perpendicular to the film plane. The in-planc
contractions of the film, Aag, and Aa, (<0), are accompanied
by a Poisson expansion, A, (=0}, in the direction of the film
normal (g direction). Notice that G.. vanishes identically both
in the bulk free surface and in the fully stress-relaxed film (8].

Fig. 1.3(b) all stresses originate from the presence
of the interfaces between the two materials. Being
entirely unconstrained by any bulk material, both
the thin slab and the thin-film superlattice will
adjust their lattice parameters to values governed
by the relaxing surface and the interfacial stresses
[7-9], hence creating favorable conditions for the
formation of a coherent interface even if the cor-
responding bulk lattice parameters are mismatched.

To illustrate the role of interfacial stresses in 2
bulk interface (Fig. 1.2), we assume that both sides
of the interface are indeed crystalline. Because the
interface is embedded between bulk material, the
lattice parameter(s) at or near the interface is (are)
governed completely by that of the surrounding
bulk material. Interfacial stresses associated with
the atomic-level structural disorder at the interface
can therefore not be relaxed, thus preventing any
change in the average lattice parameter(s) near
the interface. By contrast with 2 thin-film system,
this constraint renders atomic-level reconstruction
and/or a redistribution of chemical species (i.e.
segregation) as the only possible stress-relaxation
mechanisms.

The effects of interfacial stresses in the semi-

9

bulk svstem sketched in Fig. 1.3 differ qualitatively
from those of the thin-film and the bulk interface
svstems. Because the substrate consists of bulk
material, its lattice parameter is undisturbed by
the presence of the thin overlaver. However, the
thin overlayer may, in principle, be strained relative
to its ‘intrinsic’ lattice parameter when not attached
to a substrate (i.e. relative to the lattice parameter
of the surface-stress relaxed thin slab in Fig. 1.5).
This straining of the film as it is attached to the
substrate usually enables the film to be in more
or less perfect regisiry (‘coherency’ or ‘com-
mensurability’; sections 1.4 and 1.5 below) with
the substrate. It therefore appears that the physical
properties of this type of interface should lie some-
where between those of a bulk interface and those
of a thin film, the latter usually being strained,
however.

1.3 MICROSTRUCTURE

The above classification, leading to the distinction
between three basic types of interfaces, is highly
idealized for two reasons. First, a ‘real’ material
may contain a muititude and variety of interfaces;
and second, in many instances the interfaces are
not atcmically flat but contain steps, ledges, dis-
locations and/or voids, and may be roughened,
amorphous, etc. Hence, before discussing the
atomic-level concepts of ‘coherency’ and ‘com-
mensurability’, we briefly clarify several terms
commonly used to describe the microstructure of
‘real’ interface materials.

By contrast with the bicrystal sketched in
Fig. 1.2, a polycrystal contains many interfaces
separated by crystallites of various orientations.
For a ‘large’ grain size (typically of the order of
microns or larger), one can expect the structure,
chemistry, and properties of individual interfaces
in the polycrystal to be similar to those of a bulk
interface. In addition, however, the poorly under-
stood triple junctions (i.c. line defects along which
three interfaces meet) play an important role as
well.

If the grain size is very small, typically of
atomic or nancmeter dimensions, the polycrystal




1s referred 10 as a nanocrystal or a nanophase
material. The interfaces mav be either of a homo-
phase or heterophase tvpe; in the latter case the
material 1s also called a nanocomposite.

The interfaces in these srall-grained materials
are not usually embedded between bulk material,
thus permitung interfacial stresses to be relaxed.
One would therefore expect their physical pro-
perties 10 be governed by both the presence of the
interfaces and the deviation in their average lattice-
parameter(s) from that of bulk material. Presum-
ably their properties are therefore more similar
to those of thin-film interface materials (section
1.2.4) than to those of bulk polycrystalline inter-
face systems (section 1.2.2).

1.4 COHERENCY, EPITAXY AND TOPOTAXY

The epitaxial growth of one crystal on another is
of considerable practical interest in the semicon-
ductor industry which requires crystals free from
dislocations and other defects. With the size of
components in el:ctronic devices rapidly approach-
ing atornic-level dimensions, the need for atomic-
level perfection of the crystals comprising such
devices is ever increasing.

Central to the growth of nearly perfect epitaxial
devices is the concept of a coherent (or dislocation-
free) interface. Following Christian [10], a coherent
interface between two crystals is defined as one for
which corresponding atom planes and lines are
continuous across the interface, i.e. one whose
atomic structure is characterized by an atom-by-
atom matching across the interface. Conversely, if
there is no continuity of planes and lines across the
interface, i.c. if a one-on-one atomic matching does
not exist even locally, the interface is referred to as
incoherent.

The terms epitaxial and coherent are sometimes
used interchangeably to describe a planar defect
with an atom-by-atom match across the interface.
To illustrate the widespread confusion in the use of
the term ‘epitaxy’, we here give two commonly
used definitions. Webster’s Dictionary, focusing on
the growth process, defines epitaxy as ‘the growth
on a crystalline substrate of a crystalline substance
that mimics the orientation of the substrate’. By

Atomic-level geometry of crystalline interfaces

contrast, the International Union of Crvstallography
[3] focuses on stricty crystallographic factors, by
defining epitaxy as ‘the phenomenon of mutual
orientation of two crystals of different species, with
two-dimensional lattice control (mesh in common)’.
While Webster’s definition clearly includes the
usual distinction between homo- and hetero-epitaxy
and berween a thin-film overlayer and a bulk inter-
face, the second definition is iimited 10 hetero-
interfaces with bulk material on both sides; it
iIs hence much more restrictive than Webster’s
definition. Also, the purely crystallographic de-
finition does not seem to require the continuity of
lines in Christian’s definition of ‘coherency’. The
concept of epitaxy is therefore less restrictive than
the concept of coherency, as evidenced for example
by the distinction between ‘perfect epitaxy’ (i.e.
presumably coherent) and ‘rotated epitaxy’ (such as
Au on Cr) in which 2 one-on-one correspondence of
atoms across the interface may not exist. To avoid
confusion, we will use the term ‘epitaxy’ when
referring to the growth process, while the atomic
structure at the mterface will be characterized in
terms of the concepts of coherency and com-
mensurability (section 1.5),

(We also mention that the International Union of
Crystallography has recommended avoidance of
the term ‘epitaxial’ in favor of the terms ‘epitaxic’
or ‘epitactic’, with preference given to the term
‘epitaxic’ [3]. Webster’s Dictionary, by contrast,
finds the term ‘epitaxial’ perfectly in order; because
of its wide and common use, throughout this
chapter we will therefore use the latter.)

Another concept sometimes used in this context
is that of topotaxy, which is defined as ‘the
phenomenon of mutual orientation of two crystals
of different species resulting from a solid-state
transformation or chemical reaction’ [3]. This is in
contrast with epitaxy, where we imply a layer-by-
layer growth.

In both the coherent and the incoherent semi-
bulk interfaces illustrated in Figs. 1.6(a) and (b),
respectively, the lattice parameter of the substrate
(open circles) is that of the bulk material, a4. In the
epitaxy shown in Fig. 1.6(a), the thin overlayer, of
thickness A, is strained relative to its bulk lattice
parameter, ag, io match that of the substrate. In
the incoherent case sketched in Fig. 1.6(b), by
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contrast, the lattice parameter of the overlayer is
more similar to that of a fully relaxed, unstrained
thin film.

To illustrate the concepts of epitaxy and
topotaxy, experimental examples for both are
shown in Figs. 1.7 (courtesy of K. L. Merkle) and
L.8 (courtesy of C. B. Carter). Figure 1.7 re-
presents a high-resolution transmission-electron
microscopy (TEM) image of a perfectly coherent
epitaxial interface (dashed line) formed between a
thin film of TiQ, and an Al;O; substrate [11].
Figure 1.8 shows a TEM image of spinel which has
Brown topotactically in an olivine matrix as a result
of internal oxidation [12).

Because of the elastic energy involved, a co-
berent interface (j.e. ‘epitaxy’) can be formed only
for a relatively small lattice-parameter mismatch,

f= (QB_GA)/GA (.1}

where A and B denote the substrate and thin-film
overlayer, respectively. The ‘critical mismatch’, f,,
3_¢hl¢Va‘blc for particular combinations of materials
{lnvol\?ng, for example, the foc and bee lattices)
15 obvxously not only a function of the interfacial
3°°1_11¢try but also of the local thermo-elastic be-
havior at the interface which, in turn, is a function

Fig. 1.6 (a)Coherent and (b}

incoherent dissimilar-matetial

Incoherent interfaces, consisting of a thin-film
overiaver attached to a bulk
substrate. The coherent system
represents an cpitaxy in the

(b) crystallographic sense [3].

-.ed
S S s Esasavee

Fig. 1.7 High-resolution transmission-electron micrograph of a
perfectly coherent epitaxial interface (dashed line) formed be-
tween a thin film of TiQ; and an Al,O, substrate. Notice the
small change in the ‘i’ angle across the interface, resulting
from a virtually sudden change at the interface of the fattice

parameter in the direction of the interface normal [11] (Courtesy
of K. L. Merkle).

of the film thickness, A. Also, the energy difier-
ence between the coherent and incoherent struc-
tures sketched in Fig. 1.6 depends critically on the
relative strength of the interaction between atoms
across the interface, as well as the modulus for




shear locally at the interface [13, 14]. By contrast
with strictly crystallographic geometrical concepts,
the concept of coherency therefore also involves
the elastic behavior of the material locaily at the
interface [14}.

In practice, above a certain ‘critical thickness’,
A., coherency cannot be sustained. and the 1nter-
face becomes incoherent. The incoherent structure
in Fig. 1.6(b" is therefore usually replaced by either
of the semi-coherent tvpes of structures sketched
tin Figs. 1.9 and 1.10 in which a strict one-1o-one
correspondence between atoms across the inter-
face, as well as the continuity of lattice planes and

Atomic-level geometry of crystalline interfaces

Fig. 1.8 (a) TEM image of spinel
which has grown topotactically in
an olivine matrix as a result of
internal oxidation. The precipitate
and the matrix are closely Iattice-
matched on one plane but the misfit
is larger on the other ~ hence the
elongated shape of the particles. (b}
High-resolution image of one of the

particles in {a). [12] {Courtesy of C.
B. Carter).

lines, exists only locally in various regions along the
interface. By contrast with extraneous (i.c. regular
lattice) dislocations, the so-called inherent (or
misfit) dislocations {15) in Figs. 1.9 and 1.10 at a
critical distance, A,, from the interface are an
integral part of the long-range interface structure
and, hence, its geometry and crysialiography.
Depending on whether or not the inherent dis-
locations are long-range ordered, we distinguish in
Figs. 1.9 and 1.10 the wwo types of semi-coherent
mterfaces, formed by commensurate and incom-
mensurate crystal latrices, respectively (section 1.5
below). In most practical cases, if the materials or
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phases forming the interface are not the same, only
g the incommensurate structure in Fig. 1.10 exists,
s unless both the thin-film overlayer and the sub-
~ strate can adjust their lattice parameters. While this
" I8 impossible for the bulk substrates sketched in
Figs. 1.6, 1.9, and 1.10, in the thin-film super-
lattices shown in Fig. 1.11 both ay and ag are
adjustable due to the effect of interfacial siresses.

€ strained-layer (i.e. coherent) superlattice
shown in Fig. 1.11(a) can therefore be expected to
'ﬂhibit 2 wider range of stability against becoming
Incoherent; therefore, in Fig. 1.11(b) we assume 3
!ll‘ger critical mismatch and critical thickness than

I the corresponding semi-bulk epitaxial svsiem in
Fig. 1.6a).

; T
B O R MR
“ e L 0,
i
4
%
1
h by }‘:'hﬁ.
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While eq. (1.1) provides a useful measure of the
mismatch for a bulk-substrate epitaxial system, it is
nol very meaningful for thin-film svstems (in which
neither constituent ‘knows’ its bulk lattice par-
ameter). The mismaich is then better characierized

in terms of the average lattice parameler, @ = {ap +
a4)/2, by defining [14]

f=tay—ax)a (1.2)

The definitions of the mismatch parameters in eqs.
(1.1} and (1.2) for semi-bulk and thin-film interface
svstems, respectively, have proven useful in the
determination of their critical mismatch and thick-
ness. f and A, by means of continuum-elasticity
theory [13, 14].
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Fig. 1.9 ‘Semi-coherent’ but commensurate (section 1.5) thin-
film overlayer in which a strict one-t0-one correspondence be-
{ween atoms across the interface, as well as the continuity of
lattice planes and lines, exists oniy locally in various regions
along the interface.
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I)_. y "seml-coherent”

x fincommensurate)

Fig. 1.10 ‘Semi-coherent’ but incommensurate (section 1.5)
thin-film overlayer. A planar periodic unit cef! cannot be defined
for such a system, as indicated by the mismatch berween the
lateral dimensions on the two sides of the interface.
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Fig. 1.11 (a) Coherent or ‘strained-
laver’ and (b) incoherent thin-film
superlattice. By contrast with the
semi-bulk system in Fig. 1.6 (in
which the substrate is a buik
material), in the thin-film system
sketched here the lattice parameters
parallel and perpendicular to the
interfaces can adjust in response to
interfacial stresses.
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1.5 COMMENSURABILITY

In a commensurate interface the atomic positions
on both sides of the interface are long-range
ordered parallel to the plane of the defect, an.d a
common planar unit cell exists which describes
the periodic (i.c. crvstalline) structure. Cor_wersely,
if the atomic structure is non-periodic, the interface
is usually referred to as incommensurate. The
concept of commensurability obviously requires
crvstalline long-range order in both sets of lattice
p]..a.nCS forming the interface. An interface bereen
a crvstal and an amorphous material or a liquid can
thefcfore never be commensurate. On the other
hand, as evidenced by the existence of incom-
mensurate GBs, the necessary requirement of
crystalline order is not sufficient to guarantee the
formation of 2 cornmensurate interface.

To formulate the criterion for commensurability
between two lattice planes, we define two planar
Bravais lattices by the Bravais vectors @, @; and b,
b, (Fig. 1.12). The task then consists of finding
the planar vectors, C; and C, which define the
primitive unit cell of the common 2D superlattice —
if it exists. As an example, Fig. 1.13 illustrates the
formation of a planar superlattice in which four
primitive unit cells of the first {(a,, @) plane are
combined with nine of the other (by, b;). At first
sight one is tempted 10 require as the condition of
commensurability that, in addition to the coordinate

-

a4 b,

)

origin, there are infinitely many common points
which satisfy the relauon,

ma; + naa; = mb, + mib, (1.3)

with ny, ny, my, my = 0, £1, *2, etc. (In the
example of Fig. 1.13, n; = n; = 2 and m; =
m; = 3.) Equation {1.3) would rule out lattice
planes with irrational unit-cell dimensions from
being commensurate. Yet, as the example in Fig.
1.14 shows, two square planar lattices with a V2
ratio of the unit-cell dimensions are commensurate.
As illustrated in the right half of the figure, how-
ever, In spite of the fact that eq. (1.3) cannot be
satisfied, the two lattices are actually commensurate
(albeit incoherent) if one allows for a 45° rotation
about the common plane normal. The condition
(1.3) is hence too restrictive, as it does not permit
for the rotation of the two planes relative 10 one
another about their common normal. As discussed
in section 1.6.1 below, such a ‘twist’ rotation by
some angle O is a macroscopic geometrical degree
of freedom of the interface and hence should be
included in the criterion for commensurability.
Equation (1.3) then becomes

may, + may, = (mby, + myby)sin 0
— (myby, + myby)cos 0 (1.4a)

na), + nydaz, = (ﬂ’hb], + mzbz,,)cos 0
+ (m,b.y + m;bzy)Sin o
(1.4b)

Fig- 1.12 Two sets of planar Bravais vectors a;,

» x a;and b,, b;.
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Fig. 1.13 Example illustrating the formation of a commensurate interface by corabining four primitive unit cells of the first (e, a3)
crystal with nine of the other (b,, &;). A; and A; are the related planar unit-cell areas.

From egs. (1.4a) and (b) it follows that
(may, + myay Xmby, + myby,)
+ (may, + maay Xmby, + myby,)
(may, + may,Xmby, + myby,)
= (Mm@ + max X(m by, + myby,)

tan 9 =

(1.5)

For a given set of Bravais vectors a,, a;, and by,
by, eq. (1.5) provides an infinite set of 0 values
associated with ny, ny, my, my; = 0, +1, +2, ete.
This does not necessarily mean, however, that the
two planes are commensurate since, for some
allowed angle 8, eq. (1.5) merely describes a line of
coincident points in common to the two planar
Bravais lattices obtained when the two lattices
are rotated relative to each-other. The first non-
vanishing point on this line, given by the integers
n?, n3, m$ and m2, defines one of the two primitive
vectors, say C,, of the superlattice (expressed here

in the unrotated x-y coordinate systern  in
Fig. 1.14):

C] = n?a, + ngaz (] 6)

For the two planes 10 be commensurate, for the
same angle 8 a second vector,

C; = nla, + nla, 1.7

which is not collinear with C 1> must also exist.
The condition of commensurability hence requires
that, for the same value of 8, eq. (1.5) yields at least
two vectors which satisfy the condition

[lC) x C3)f >0 (1.8)

As is well known, the vector product [C), x C,]
defines the area vector (parallel to the plane
normal) of the plane of the common superlattice.
Equation (1.8) hence expresses the requirement for
the existence of a planar unit cel] of the superlattice
with a non-vanishing area.

We mention that C, and C; could have equally
been expressed in the rotated x'—y" coordinate
system in Fig. 1.14 as follows:

Ci = mibi + mdb; (1.9)

C; = mib] + mib; (1.10)
and the condition of commensurability becomes:

IfCi x C3)| >0 (1.11)

From the existence of a planar superlattice, it
follows that the related primitive planar unit-cell
areas, A, and A,, of the underlying Bravais lattices
are compatible with one another in that they are
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rational multiples of each other, 1.e.
nd, = mis (1.12)

where n and m are posilive Integers. Expressing the
areas in terms of the basis vectors, this condition

becomes:
n(a;x @2 — Qiy Az = m(bi, bz,\- - bl_vblx) (1.13)

Although the compatibility of the primitive
planar unit-cell areas is clearly necessary for two
lattice planes to be commensurate, in order to form
a superlattice, the two lattice planes also have to
share infinitely many common (albeit not necessarily
all) lattice points, i.e. satisfy eq. (1.5). (If they
share all lattice points, the interface is ‘coherent’;
section 1.4.)

To illustrate the above expressions with a simple
example, we consider the two square lattices of Fig.
1.14, with the Bravais vectors:

a = {a,0), a2 = (0, a);

by = (V2a, 0), by = (0, V2a) (1.14)
Inserting eq. (1.14) into egs. (1.4a) and (b) gives

“ma = m;VV2a sin 8§ — myV2a cos 9 (1.15a)
. nmya = myV2a cos 8 + myV2a sin 0 (1.15b)

" and, according to eq. (1.5), the angle 0 is given by

" tan 8 = (mymy + nam(ngmy — nymy) (1.16)

)=

1

vaL

®

As already discussed, for mym, + nym; = 0 (tan 8 =
0, i.e. 8 = 0% or npm; — mymy = 0 (tan 6 = =,
i.e. B = 90°), a superlattice does not exist and, as
readily verified, the condition (1.8) can therefore
not be satisfied. The smallest integers for which
eq. (1.16) yields a value of tan 6 that differs from
zero and infinity and which satisfy the condition
(1.8) are, for example, n§ = 1, n8 = 1, m} = 1 and
m2 = 0, for which eq. (1.16) yields tan 6 = 1, or &
= 45°, According to eq. (1.6) the first vector of the
superlattice, C,, expressed in the unrotated (x=y)
coordinate system in Fig. 1.14, is hence given by

C, = a + a (1.17)

To determine C,, for the same value of 8 a second
superlattice point has to be extracted from eq.
(1.16) which is not collinear with C,. One such
point, also nearest to the origin, is obtained for

example forn} = 1,n} = —1,m] =O0andm} = 1;
hence according to eq. (1.7),
C,=a, —a; {1.18)

C, and C; could have been equally determined in
the rotated coordinate system, i.e. in terms of the
rotated vectors b} and bj. Inserting the values for
m, and m, into eqs. (1.9) and (1.10), we find that
(Fig. 1.14)

Ci=b,C=b (1.19)

=]

=3

Fig. 1.14 Example illustrating that
the formation of a commensurate
interface may involve a rotation
about the interface normal, in this
case by an angle of 45°,
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To summarize. two Bravais-lattice planes are
commensurate if ‘a’ undera general (1wist’ rotation,
the two lattice planes share inftnitely manv common
lattice points {eq. 1.4)). and (b: their primitive
planar unit-cell areas are compauble (eq. (1.12)).

1.6 DEGREES OF FREEDOM OF
CRYSTALLINE INTERFACES

The macroscopic geometry of interfaces to be
discussed in this section includes al aspects of the
geometry and crystallography determined bv (i) the
crystal structure(s) forming the interface and (i1)
the degrees of freedom {DOFs) of the interfacial
system, including the five macroscopic and the
three translational (or ‘microscopic’) degrees of
freedom.

The macroscopic geometrical description of
crystalline interfaces has been an area of consider-
able activity during the past 30 years. Much of this
work, particularly in the grain-boundary area, has
focused on the formal description, in terms of
linear algebra, of the misorientation relationship
between the two crystal lattices forming the inter-
face. The description of GB structures in terms of
the coincident-site lattice (CSL), the displacement-
shifi-complete (DSC) lattice, and the O-lattice are
the main outcome of this work {16-19]. Within
this framework the macroscopic DOFs are defined
either within what we call the CSL-misorientation
scheme or in terms of the tilt-inclination scheme;
the underlying concepts will be discussed in detail
in sections 1.8.1. and 1.8.2.

In common to these two methods for defining
the macroscopic DOFs is their focus on how,
hypothetically, a particular 2d interface structure
can be generated by a single CSL rotation of IWo
interpenetrating 3d crystal lattices. Considering the
fact that solid interfaces are planar defects, this
focus on a three-dimensional superlattice in
common to the two crystals forming the interface
appears somewhat surprising. Apart from the
obvious limitation of such a description 10 com-
mensurate interfaces, intuitively one would expect
that the physically relevant geometrical features

Atomic-level geometry of crystalline interfaces

of crystalline interfaces are related to (i) the
crystallographic orientation of the interface plane
and (ii) the size and/or shape of the planar unit cell
(if the interface is commensurate).

Here we will therefore adopt a more widelv
applicable definition of the macroscopic degrees
of freedom of solid interfaces [20], referred to as
the interface-plane scheme [21], which is applic-
able 10 all types of crystalline (homophase and
heterophase) interfaces, commensurate or in-
commensurate, and which enables 2 direct com-
parison of the geometry of all three basic tvpes of
interfaces from a common point of view, While the
underlying terminology, to be developed in section
1.6.1, is rather commonly applied 1o semi-bulk and
thin-film (coherent or incoherent) dissimilar-
material interfaces, in the GB area it js not widely
used; instead, the geometry of GBs is usually
described in terms of the CSI.-based terminology.
As an example, the three simplest interface systems
{from the point of view of their underlying number
of DOFs) will be discussed in section 1.6.3. Later,
in section 1.8, we will consider the conventional
GB terminology within the framework of the
interface-plane nomenclature. Apart from pro-
viding a basis for the geometrical description of all
types of interfaces, the main advantages of the
interface-plane terminology over the two CSL.-
based definitions of the macroscopic DOFs will
then, hopefully, become apparent. The three
principal advantages are the following:

1. The number of macroscopic DOFs of any
particular type of GB is readily apparent, which
is of considerable aid in structure—property
investigations.

2. The geometrical resemblance between sym-

metrical and asymmetrical GBs is rather trans-
parent, thus greatly facilitating the comparison
of their physical properties.

3. The fact that — from a purely geometrical point
of view - symmetrical and asymmetrical-tilt
boundaries represent a special subset of sym-
metrical and asymmetrical-twist boundaries,
respectively, is incorporated naturally into the
interface-plane description of the Macroscopic
geometry.
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'‘Degrees of freedom of crystalline interfaces

1.6.1 Macroscopic DOFs (‘interface-plane
scheme’)

As is well known, in addition to the crvstal struc-
wure(s) and lattice parameter(s) eight geometrical
parameters are needed to characterize the geometry
of a single bicrystalline interface. These eight
DOFs are usually subdivided into the five macro-
scopic and three translational or microscopic
ones [18). The latter, to be discussed in section
1.6.2, are usually represented by the components
of a vector, T, associated with rigid-body trans-
lations parallel and perpendicular to the interface
plane. By their very nature, the determination of
the three components of T requires experimental
methods capable of detecting ‘microscopic’ (i.e.
atomic-level) translations. By contrast with the
macroscopic DOFs and the atomic structure,
these three translational DOFs are therefore often
. referred to as the microscopic DOFs of the GB
7 (section 1.6.2 below).

3+ A simple, unified method of defining the five
'? macroscopic DOFs of an arbitrary (commensurate

i ‘or incommensurate) bicrystalline interface is the

,I;:.‘_':{gllowing (Fig. 1.15): [20]
% . {DOFs} = {h,, iz, 0} (‘interface-plane

©

Here the unit vectors #1; and f; represent the
common interface-plane normal, #, in the two
halves (Fig. 1.15(b}}, referred to the same principal
coordinate svstem (Fig. 1.15{a)). For example, the
(x, v, 2) svstem in Fig. 1.15(a) might be aligned
along the {100} principal cubic directions, relative
to which the interface-plane normals in the two
halves may be defined. In Fig. 1.15(b) the two
normals are then aligned parallel to each other, as
indicated by the planar structure in the figure, thus
defining the (x;, ¥, 2, and {x3, ¥, ;) coordinate
systems. (Naturally, for crystalline interfaces f
and #; have to be directions permitted by the
particular crystal structure.) Since each unit vector
contributes two DOFs, the interface plane there-
fore represents four DOFs. Having thus fixed the
interface plane in the two semi-crystals, the only
remaining DOF is the one associated with a so-
called ‘twist’ rotation, by the angle 6, about the
common interface-plane normal, because any
other rotation would change #;, and #, (Fig.
1.15(c)).

Because of the emphasis placed on the interface
plane (by assigning to it four out of the five DOFs),
we will refer to the definition in eq. (1.20) as the
‘interface-plane scheme’ for defining the macro-
scopic DOFs. As already mentioned, two other

i scheme”) (1.200 CSL-based definitions, referred to as the ‘CSL-
e : zz\ fig Z; g fiz
hY
ot | Z A 1
» LY 1,., P Yz
! T e — o
J 1 y Zy o A, Zy 52T A,
=x ~.1 1 ~~] ] ¥1
A / /
P X' Xy
(a) {b) (=]

Fig. L15 A definition of the five macroscopic DOFs of an arbitrary {commensurate or incommensurate) bicrystalline interface {20,
2 T:he unit vectors f1, and # represent the interface-plane normal, #, in the two halves, however referred to the same principal
eoordinate sysiem. (a) bHilustrates the orientations of #ty, 712, and Ry in a space-fixed (x, v, o) coordinate system (oriented, for exampic,
along the principal cubic axes); kit = [#, % fi;]/sin y. A tilt rotation of two identical (x, v, ) coordinate systems of (a) such that &, || &,
the (x,, y;, z,Yand (x3, ¥, 2;) coordinate systems in (b). Finally, in (¢) the twist component of the GB is introduced by rotating
the t10p crystal in (b) about the GB-plane normal by the angle 6.
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misorientation’ and “tilt-inclination’ schemes, will
be discussed in detail in sections 1.8.1 and 1.8.2
(eqs. 11.45) and (1.54", respectively). We mention
that sometimes a sixth macroscopic DOF, rep-
resenting the position of the interface plane in the
direction of its normal, is added to the usyal five
defined here and in the (wo other schemes | 18]; for
a fixed (i.e, immobile) interface, however, thjs
DOF is of no relevance.

In the case of GBs, a distinction is usually made
between pure tilt and pure twist boundaries, with
a general boundary having both tilt and twist
components (and hence characterized by the full
set of five DOFs; see section 1.8.2 below). This
concept is rather useful as jt provides information
about the types of dislocations present in the GB
structure, with the tilt and twist components
defining, respectively, the edge- and screw-
dislocation content. It can be adopted for other
types of crystailine interfaces as well, including
commensurate and incommensurate heterophase
interfaces. As is common for GBs, we thus define a
twist rotation as a rotation about an axis, described
by the unit normal #,, which is parallel to the
common interface-plane normal, & (A, || 7). In a tilt
rotation, by contrast, fi, and f are Perpendicular 1o
one another (&, L #).

From these definitions, the tilt and twist com-
ponents of a ‘general” bicrystalline interface defined
in eq. (1.20) are readily apparent. The angle 6, by
definition, describes a Iwist rotation, since any
other rotation would change the interface normal;
the corresponding rotation matrix is denoted by
R(fy, 8). Provided we define § = 0° as the angle for
which the interface is of a pure tilt type (i.e. its
structure contains only edge dislocations), the twist
component of a general interface, defined by the
rotation R(#,, 0), is immediately obvious from the
DOFs in eq. (1.20). The tilt component, charac-
terized by the rotation matrix R(fir, y), is governed
by the condition that ar L fy, fi; (Fig. 1.15¢a));
hence [21]

it = {ﬁl X ﬁz]/Siﬂ Yy (121)
with
sin g = (A, x 7, (1.22)

Atomic-level geomerry of crystalline interfaces

where #; is a unit vector defining the orientation
of the tilt axis, while v 1s the so-called 1ily angle

" (Fig: 1.15¢ay).

In much of the work on free surfaces, the 1ilt axis
and tlt angle defined here are referred 10 as the
pole axis and pole angle, respectively., This
terminology is related 1o the pole figure in which
the possible orientations of a unit vector are
tepresented on the surface of 2 unit sphere
(Fig. 1.16). This corresponds to defining the two
DOFs of the unit Veclor in terms of spherical
coordinates (section 1.6 below). The so-called pole
of a plane thus Tepresents, by its position on the
urit sphere, the orientation of that plane. [22] A
plane may also be Tepresented by the great circle of
the sphere which is perpendicular 1o the plane
normal. For example, the great circles ABCD and
KDMB in Fig. 1.16 reépresent, respectively, the
planes with unit normals #, and #,, whose poles are
the points P, and P, respectively. The ‘pole” axis
and ‘pole’ angle, fir and v, respectively, are the
same as the ‘tilt’ axis and ‘tj}¢’ angle defined in egs.
(1.21) and (1.22).

Equations (1.21) and (1.22) illustrate that the tilt
component of 2 general interface (i.e. one with all
five DOFs, see Fig. 1.15(c)) is solely determined by
the normals 4, and fiz, i.e. by the interface plane,
Irrespective of the value of the twist angle, 6, in
€q. (1.20), an interface therefore has a tilg com-
ponent whenever #, and fiz represent different cry-
stallographic directions or, if the intérface js
symmetrical (see below), different sets of zﬁystallm
graphically equivalent lattice planes. Because of the
similarity of a general interface 1o 3 pure (i.e.
symmetrical) rwist boundary, a general interface
will also be referred 1o as an asymmetrical-twist
interface; however, because of the asymmetry in
the interface plane, such an interface always has a
tilt component {given by egs. (1.21) and (1.22), in
contrast to the symmetrical-twist interface dis-
cussed below. In the special case for @ = g° {and #
= 180°; section 1.8.2), a pure asymmetrical-tilt
interface with only 4 DOFs is obtained (see Fig.
L.15(b)). If the two lattice planes forming the GB
are incommensurate {section 1.5), a unique defini-
tion of the origin of the twist rotation, j.e. of § =
0°, and of an asymmetrical-tih configuration is not
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Degrees of freedom of crvsialline interfaces

possible. Here, however, by considering only
commensurate GBs, we avoid this issue altogether.

For example, a thin-film overlayer with a
normal, say (100}, which differs from that of
the substrate, say with a2 (111) normal, may be
assigned a tilt axis and angle expressing the
rotation from the substrate normal to that of the
overlayer. If the overlayer is perfectly aligned with
the substrate (i.e. for 8 = 0°), the interface is of
an asymmetrical-tilt type. If the overlayer is,
in addition, rotated about the substrate normal
(i.e. for 8 # 0°), the interface is a general or
asymmetrical-twist interface (Fig. 1.15(c)).

Finally, in cubic crystals the normal # may
be given in terms of the Miller indices, (hkil),
according to

l h
A=+ B+ Dk (1.23)
l

Fig. 1.16 Definition of the angle
between two planes in terms of a pole
figure [22]. The ‘pole’ axis and ‘pole’
angle, i and v, are identical to the
*tlt’ axis apd ‘tilt’ angle defined in eqs.
(1.21) and (1.22). The great circles
ABCD and KDMB represent,
respectively, the planes with unit
normals a1, and iy, whose poles are the
points P, and P;, respectively.

and all relevant geometrical parameters may be
expressed in terms of the h, k and / associated with
a given plane. The definition in ¢q. (1.20) may then
be rewritten as follows:

{DOFS} = { (s Ryy Iy)y (hay 2y 1), 9}
(*interface-plane scheme’) {1.24)

where, in order to simplify the notation, the plane
normals in eq. (1.20) have been replaced by the
actual lattice planes forming the interface.

In a close paralle]l with the terminology com-
menly used for GBs (see section 1.8), one can
classify the various types of interfaces described
by egs. (1.20) and (1.24). Thus, a symmetrical
interface is defined as one for which #, and #;
are linearly related, i.e. there exists a linear
relationship,

ﬁz = L(ﬁl) (1253)
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in the sense thal #, and #n. represent crystallo-

graphically equivalent lattice planes, which reduces
the number of DOFs from five to onlv three:

{DOFS} = {f, 7= LA, e)
(svymmetrical interface) (1.26a)

All other interfaces are hence asymmetrical.
As an example for eq. (1.25a) we consider the
collinearitv condition,

A = *iy (1.25b)
Equation (1.26a) then becomes:

{DOFS} = {ﬁl: iﬁla 9}
(svmmeitrical twist) (1.26b)

An interface characierized by eq. {1.25b) obviously
has no tilt component because [, X #;] = 0. By
analogy to the GB terminology, such an interface is
therefore called a symmetrical-twist (or pure twist)
interface. Analogously, as already mentioned, if the
interface is asymmetrical (eq. (1.20)) we refer to it
as an asymmetrical-twist interface.

For the + sign in eq. (1.26b), the two sets of
lattice planes forming the interface are obviously
identical, while the — sign describes a bicrystal in
which one of its two halves has been turned upside
down with respect to the other. To illustrate a
simple relationship between the two sign choices,
we consider a perfect crystal, which is obviously
included in eq. (1.26b) as the special case in which

{DOFs) = {fn, 7y, 0 = 0°} (1.272)

In a crystal lattice with inversion symmetry,
in which a 180° rotation about some crystallo-
graphically allowed rotation axis inverts any lattice
vector, r (i.e. r — —r; section 1.7.2), a perfect
crystal is also obtained for

{DOFs} = {#;, -, 6 = 180°) (1.27b)

For any other value of 0, a symmetrical-twist
interface is obtained. Since either of the two
perfect-crystal configurations in eqs. (1.27a) and
(1.27b) may be used as starting point for the twist
rotation, the following relationship holds:

{DOFs} = (&, #,, 0}
= {f;, ~—#,, 180° — 0} (1.28)

Atomic-level geometry of crystalline nterfaces

We emphasize that this relation is only valid for a
crystal latiice with inversion svinmetry {section
1.7.2).

At the atomic level, the most characteristic
geometrical feature of a symmetrical-tilt grain
boundary (STGB) is the inverted stacking of the
lattice planes on one side of the interface with
respect to the other (section }.8.3). In a crystal
lattice with inversion symmetry, STGBs may
therefore be viewed as special twist boundaries (for
8 = 180°) [20]. Similar to the perfect crystal con-
sidered in egs. (1.27a) and {1.27b), the STGB
configuration is thus situated at the endpoints of
the twist-rotation range, and is characterized as
follows:

{DOFS} = {ﬁ],ﬁ],e = 1800}

(symmetrical tilt) (1.29a)
or
{DOFs) = {#,, —#;, 8 = 0°}
(symmetrical tilt) (1.29b)

The fact that STGBs may be viewed as a subset of
symmetrical-twist boundaries translates into a
unique atomic-level geometry of STGBs, in com-
parison with all other GBs (sections 1.7.3 and
1.8.4).

This definition of STGBs as a subser of sym-
metrical-twist boundaries is in apparent conflict
with the fact that, according to egs. (1.21) and
(1.22), these interfaces have no tilt component.
Moreover, 1 we identify the tvpe of a GB as tiit
or twist by the edge or screw dislocations in its
structure, then STGBs should be classified as tilt
and not twist boundaries. This apparent discre-
pancy originates from the fact that the example of
the symmetry relation (1.25a) given in eq. (1.25b)
does not cover all sets of crystallographically
equivalent lattice planes which satisfy eq. (1.25a)
but not (1.25b). To formally assign a ult com-
ponent to a symmetrical interface, a non-collinear
combination of i, and #, has to be found which
characterizes the same set of crystallographically
equivalent planes. In a cubic crystal such sers are
readily identified. For example, a GB formed by
the two crystallographically equivalent (albeit not
identical) sets (kh, k, 1) and (&, h, =1}, would
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Degrees of freedom of crystalline interfaces

obviously be vonsidered 10 be ‘symmetrical’, siqce
on an alom-bv-atom basis the two types of lattice
planes are indistinguishable. Generally for cubic
crvstals. if we define 71y by the normal [&, k), 1],
the general condition of svmmetry [eq. (1.25a}}
may be formulated as follows: (21]

{h.'!y k:a 13] = € {<:h13 tk]) I-1I1>} (130)

where the angular brackets indicate that any
permutation of the Miller indices, including their
signs, is permitted. The set of normals, {<_ih1,
+ky, =l)}, obviously includes the collinear
normals in eq. {1.25b) as the special cases in which
Ulz, ks, 12] = [hl) by, 11] or [hz, kz, 12] = [~hy,
—~k,, —4]. Equauon (1.30) thus represents the
general condition of symmetry for cubic crystals.

1.6.2 Translational (‘microscopic’) DOFs

As already mentioned, the different types of
interfaces discussed above still have three in-
dependent translational (or so-called microscopic)
DOFs involving translations, T = (T, T,, T.),
parallel (x, ¥) and perpendicular to the interface
plane (z). From a thcrmodynamicg point of view,
the z component of T (parallel 10 the interface
normal) is particularly important in that it accounts
for any volume expansion at the interface. Such an
excess free volume of the interface can be expected
to (a) be closely related to its excess free energy and
(b) give rise to stresses near the interface that are
similar in nature to the well-known surface stress in
free surfaces.

** Similar to the definition of the excess free energy
of the interface as the change in Gibbs free energy,
G, with interface area, A, at constant temperature,
T, pressure, p, and chemical composition (ex-
pressed in terms of the numbers of atoms, N, of
each species), according to [23)

Y = (8G/8A)r, , n (1.31)

Ehe so-called excess free volume per unit area of the
mterface is defined by [24]

8V = (3VIdA)r , . (1.32)

By definition, 8V is a volume expansion per unmit
&rea (and is conveniently given in units of the

lattice parameter, @) and is 10 be distinguished
from the overall three-dimensional thermodynamic
volume, V.

According 1o egs. (3.31) and (3.32), the Gibbsian
excess free energy and free volume per unit area
are to be determined while the temperature,
pressure, and composition are held fixed. This
constraint may pose particular conceptual prob-
lems in some computer simulations of these excess
quantities. Following these definitions, simulations
always require consideration of an appropriate
interface-free reference system under the same
conditions of T, p, and N, as the interfacial system.
For example, constant-volume simulations lead
not only to numerically wrong values of vy for
a given potential, but energies thus determined
are conceptually not the true excess energy in
the Gibbsian sense (which is the one usually
determined experimentally).

In the case of GBs, the existence of translations
parallel to the interface have been well established
by means of high-resolution transmission-electron-
microscopy (TEM) experiments, as well as com-
puter simulations. These translations contribute to
a lowering of the excess free energy of the system
by avoiding energetically unfavorable translational
states. They are also thought to play an important
role during the process of GB migration [25, 26).

1.6.3 The three ‘simplest’ interface systems

Given that crystalline interfaces are planar defects,
at least two macroscopic DOFs (namely the two
associated with the interface normal) are required
to characterize even the simplest interface.
According to eq. (1.26b), such an interface is
symmetrical and its twist angle must be fixed, or
else be irrelevant aliogether. There are in 1otal
three distinct types of homophase interfacial
systems satisfying this condition, namely stacking
faults, symmetrical-tilt grain boundaries (STGBs)
and free surfaces (Fig. 1.17). Although not an
internal interface, the free surface (a crystal—
vacuumn interface) is inciuded here. Because of its
importance as the final state in interfacial deco-
hesion, a terminology and geometrical description
in common to both internal interfaces and external
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Fig. 1.17 From the point of view of the number of macroscopic DOFs invelved, the stacking fault in (b), the symmetrical-tilt grain
boundary (STGB: (c)) and the free surface in (d) represent the three simplest of all homophase planar defects (schematic). For
cotnparison, a perfect crystal with the same crystallographic orientation is sketched in (a). The shaded arrows indicate the direction of
planar stacking 1o be discussed in detail later. (An atomic-level view of these geometries is given in section 1.7.3; Fig. 1.30).

surfaces might facilitate a better understanding of
interface fracture. From the point of view of
the number of DOFs involved, these interfaces
represent the simplest of all homophase interface
systems. Among the heterophase systems, the
coherent, incoherent and semi-coherent semi-bulk
and thin-film (strained-layer) systems in Figs. 1.6,
1.10, and 1.11 and the topotaxy in Fig. 1.8 could
also be included here. However, because of their
geometrical similarity (particularly the coherent
systems) with the three homophase systems de-
scribed here, they will not be considered in this
context.

First, a stacking fault may be generated on a
given plane by any suitable in-plane translation,
{(T,, T,), of the perfect-crystal configuration in
Fig. 1.17(a), thus destroying the perfect registry
between the planes adjacent 1o the interface. Since
no rotation is involved (@ = 0°), in addition to
these two translational DOFs, the stacking fault is
characterized by only the two macroscopic DOFs
associated with orientation of the fault plane. In
principle, the translation may be accompanied by
a ‘volume expansion, hence requiring all three

microscopic DOFs 1o be specified for its full
characterization.

Second, the symmetrical-tit GB on the same
plane, with its familiar ‘ewinned’ inversion of the
stacking sequence of lattice planes at the interface
(Fig. 1.17(c)), is obtained by simply turning one of
the two halves upside down. As discussed in more
detail in sections 1.7.3 and 1.8.4 below, in crystal
lattices with inversion symmetry, the STGB
configuration on a given plane is obtained simply
from a 180°-twist rotation of, say, the upper
semicrystal. If the components of T are such that
one plane is a mirror plane (i.c. shared by both
semicrystals), this inverted configuration repre-
sents a special twin, to be distinguished from the
general-twin configuration obtained for some
arbitrary translation (and hence merely with an
inverted planar stacking at the interface, but
without a mirror plane; for details see section 1.8.3
and Fig. 1.30).

Third, the free surface on a given plane (Fig.
1.17(d)), also with only two macroscopic DOFs,
differs from the stacking fault and the symmetrical-
tilt configuration on the same plane by not having
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B any translational DOFs, as in the case of the perfect

>
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L

_ ‘crystal. Formally, the free surface may be viewed
as having been generated from the perfect crystal,
L the stacking fault, or the STGB as the lmit in
which T, — <, thus creating a symmetrical
f arrangement of two infinitely separated (i.e. non-
interacting) surfaces. The magnitudes of T, and T,
' are then obviously irrelevant, as is the twist angle
0, and no microscopic DOFs are required to

. characterize the surface.
In spite of these geometrical similarities between
the simplest three interface systems, which will be

A% investigated further at the atomic level in section

g _l_.4.3 below, to date little is known about any
E | similarities in their physical properties [27].

3 1.6.4 “Vicinal’ versus ‘special’ interfaces

While in the case of external surfaces a distinction
between ‘special’ and ‘vicinal’ interface planes has
been commonly made for almost a century (28], in
the case of internal interfaces such a distinction has

A+ AA

AN
AN
N
\\\\\
AN
ARt
\\\

Vicinal'

Fig. 1.18 Distinction between ‘special’
and ‘vicinal’ surfaces. While the special
surface, with normal #, represents a
cusped minimum-energy orieniation in the
v{#) plot, the geometry, atomic structure,
and physical properties of vicinal (i.c.
nearby) surfaces are governed by those of
the special surface and by the spacing
between and the geometry of its steps.

only recently been suggested [29]. To illustrate
these concepts for the case of free surfaces, we
consider a ‘special’ low-index surface with normal #
which is as nearly as possible atomically ‘flat’ (i.e.
free of steps), and a second surface with a slightly
different orientation, say, # + A# [27]. If A# is
small, the second surface will look just like the first
one, except for the appearance of widely separated
steps (Fig. 1.18). Because each step adds to the
surface energy, y(& + AR) — (k) will be positive
for any orientation of A and, for small values of
An, will be asymptotically proportional to the
density of steps. The surface with normal # hence
tepresents a cusped minimum-energy orientation
in a y(7) plot [27]. Such a surface is called a special
surface; it is distinguished from the nearby vicinal
surfaces whose geomeiry, atomic structure, and
physical properties are governed by those of the
special surface and by the vector difference, Af, in
the phase space representing the two macroscopic
DOFs associated with the surface normal, #.

As illustrated in Fig. 1.18, the misorientation
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between i and # - AR may be characterized by the
rolation axis. iy, and rotation angle, Ay (given bv
egs..1.21 and 1.22°. respectivelv:. and for a fixed
rotation axis the surface energy mav be expressed
solely as a function of Ay. Assuming the steps 1o be
far enough apart thai their mutual interaction may
be ignored, one can easily show that [27, 30].

AW} = Yoy cos Ay + T™ sin Ay/h £1.33)

where v denotes the cusped energv of the
special surface and I'* represents the energy per
unit length of individual steps whose height is
denoted by & (Fig. 1.18).

In the example shown in Fig. 1.19, the un-
relaxed and relaxed zero-temperature energies of
fce surfaces perpendicular to a {110) pole axis are
plotted against 2y which is defined as the angle of a
particular surface with respect to the (1 10) plane.
These energies were determined [31] by means of
the simple Lennard-Jones (1.]) potential fitted to the
lattice parameter and approximate melting point of
Cu, although this potential function is usually
thought to be more appropriate for noble-gas
crystals. The fact that the unrelaxed and relaxed
energies differ by only very little indicates that (i)
the change in surface energy as a function of Ay is
governed by stricdy crystallographic factors,
namely the total length of the steps, and (1i) the
interaction between steps, given by the relaxation
energy, is, indeed, very small.

Figure 1.19 demonstrates the existence of three
cusped ‘special’ orientations associated with the
three principal planes in the fcc lattice, namely
(111}, (100), and (100). Being the densest planes in
the fcc lattice, the smallest number of nearest.
neighbor bonds is broken when one of these
surfaces is created. This is thought to be the reason
for the appearance of cusps for these particular
surfaces, with the depths of the cusps decreasing
rapidly with decreasing planar density, i.e. inter-
planar lattice spacing, d(hkl) (Table L1). A de-
tailed analysis of the smooth variation of Y(Ay) in
the vicinity of the cusps [27] indicates that eq.
(1.33) provides an excellent representation of the
simulation data near all three cusps; such an analy-
sis also provides values of the step energy per unit
length for all three types of steps.

Atomic-level geometry of crystalline interfaces
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Fig. 1.19 Unrelaxed and relaxed Zero-temperature energies of
fee surfaces (computed by means of a Lennard-Jones porential

fitted for Cu), plotted against the tilt angle of each surface with

respect 1o the (110} plane. All surfaces are perpendicular (o the
{110) pole axis [31].

Table 1.1 Interplanar spacing, d(kk!} (in units of the lattice
parameter a), and number of planes in the repeat stacking
sequence, P(hkl) (the so-called stacking period), for the most
widely spaced planes in the fec lattice. According to eq. (1.44),
these planes also correspond 1o the ones with the highest planar
density of atoms

No. (hkl) h + b2+ 1 P(hil) dhkl)ia
1 (111 3 3 0.5774
2 (100) 1 2 0.5000
3 (110) 2 2 0.3535
4 113 11 11 0.3015
5 (331) 19 a8 0.2294
6 (210) 5 10 0.2236
7 (112) 6 6 0.204]
8 (118) 27 27 0.1925

Plots similar to Fig. 1.19 have also been obtained
for symmetrical and asymmetrical-tilt and twist
GBs, suggesting that the distinction between
‘special’ and ‘vicinal’ interfaces is meaningful for
GBs as well as for free surfaces. In particular, most
(symmetrical or asymmetrical) low-angle twist
boundaries may be viewed as vicinal to the cor-
responding tilt boundaries (sections 1.8.2 and
1.8.3). A well known special case is that of sym-
metrical low-angle twist boundaries which may be
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considered as vicinals of the perfect crystal. Similar
to the steps in {ree surfaces. the dislocation struc-
qure of these GBs preserves areas of perfect cr_\'glal.
(For further details. see [27]} and [32] and sections
1.8.2 and 1.8.2..

Finailv, we mention 1hat the distinction between
special and vicinal interfaceg is not possible on a
strictly crvstallographic basis alone because the
identification of the special interfaces requires a
knowledge of the relaxed energy of the system.
Free surfaces represent somewhat of an exception
in that geometrical concepts, based for example on
the number of broken bonds per unit area, are very
useful in predicling some of their basic properties

311,
1.6.5 Misorientation phase space

One of the main goals of structure-property
investigations is the exploration of the so-called
misorientation phase space represented by
the five macroscopic DOFs of the interface. In
principle, any property in this five-dimensional
(5D) phase space, say, the interface cnergy vy, can
“therefore be represented as a 6D hypersurface,
‘y(R1, fiz, 8). Needless to say, even a mere geo-

“metrical representation of such a hypersurface,

~perhaps via 3D cross-sections, is a non-trivial

4

_conceptual undertaking. Any symmetries which

w s
¥

" “reduce the number of DOFs should therefore be

- fully exploited because they simplify the mis-

orientation phase space considerably; a knowledge
of the exact number of DOFs of the interfacial
system under investigation is therefore imperative.

To illustrate possible ways of exploring mis-
otientation phase space, we start with the simplest
interface systems, characterized by only the two
macroscopic DOFs associated with the crystal-
lographic orientation of the interface normal, fi.
The generally 6D structure-energy hypersurface,
¥(h,, i1, 8), thus degenerates into a single 3D plot,
¥(#), which can be constructed as follows. For
simplicity we limit ourselves to cubic crystals
for which, when all symmetry operations are
considered, all possible orientations of # fall into
a triangle on the unit sphere of Fig. 1.16, with the
principal cubic poles at its corners (sce the shaded

Fig. 1.20 Standard projection for cubic crystals of the unit
sphere of Fig. 1.16 onto a plane, with the (001) pole in the center
(so-called ‘projection on (001)'). Due to the cubic symmetry, all

possible orientations of 2 unit vector fall into a spherical triangle, -

such as the shaded onc. (For details see Ref. [22]).

triangle in Fig. 1.20). Naturally, it is desirable to
project this spherical triangle onto a plane (Fig.
1.20) by the so-calied stercographic projection
[22]. However, because of the highly non-linear
nature of this projection, the angle scale of the
stereographic triangle thus obtained is non-linear,
which renders its use a somewhat complicated
endeavor.

To simplify this projection while yet still cap-
turing the essential features of the stereographic
triangle, however, we express the orientation of
# in terms of spherical coordinates, 3 and ¢,
according to (eq. (1.23))

L sin 9 cos @
R+ k+ P 2|k]=|sin8sing (1.34)
! cos 9§

For h = k = 1, all orientations of # = (A + B +

I )_% (h, k, I) then fall into the phase-space triangle
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Fig. 1.21 Schematic plot, similar to the stereographic pro-
jection, of the spherical triangle of Fig. 1.20 onto a piane. ¥ and
¢ are the uwsual spherical coordinates which define the orien-
tation of the interface normal according 10 eq. {1.34); Y is in
degrees. The svmbols indicate positions in the phase-space
triangle at which the free-surface energy in Fig. 1.22(a) was
determined [31].

sketched in Fig. 1.21, with the three principal
cubic orientations at the corners [31). This triangle
differs slightly from the conventional stereographic
triangle sketched in Fig. 1.20 in that its axes are
scaled linearly. Given values of § and ¢, this
simplification makes it a rather straightforward
matter 1o locate its position within the triangle.
As in the stereographic triangle, all orientations
perpendicular to a (110) pole axis appear along the
edge connecting (100), via (113), (112), and (111),
with (110). Similarly, all orientations perpendicular
to a (100) pole axis appear along the edge con-
necting (100) more directly with (1 10) via (310) and
(210)], while plane orientations perpendicular 1o
(111}, {112), etc. cover the central regions of the
triangle.

Using this phase-space triangle as the base plane,
the surface energy, y(i) = ¥(3, ¢), obtained by
means of the L] potential is given by the 3D
structure—energy plot shown in Fig. 1.22(a). By
contrast with the 2D cross-section in Fig. 1.19
(along the edge connecting (100), via (113), (112),
and (111), with (110)), this plot demonstrates the
full extent in phase space of the three €NErgy cusps
at the corners of the triangle, with a remarkable
absence of cusps in the centrat regions of the
phase space. Figure 1.22(b) represents a similar

Atomic-level geometry of crystalline nierfaces

plot for the number of broken nearest-neighbor
bonds per unit surface area. The remarkable
simnilarity of Figs. 1.22:a) and {b) demonstrates
that the structure-energy correlation for free sur-
faces in fcc crvstals is dominated by geometrical
factors, with elastic effects associated with the
interactions between the surface steps being
relatively unimportant {27, 31]. We mention in
passing that a similar plot is obtained for sym-
metrical-ult GBs [33], Combining the two plots
permits one to determine the work of adhesion (ie.
the ideal cleavage-fracture energy)

EY8, ¢) = 2v(9, ¢) — ESTOR(9, ¢) (1.35)

in the entire 2D phase space [27, 33].

If the twist angle, 0, is now added as a third
DOF, every point in the 2D-phase-space triangle
associated with the interface plane is unfolded into
a infinite number of 6 values which, in Fig. 1.21,
are projected into a single point. Any struciure-
property correlation for symmetrical interfaces may
hence be thought of as a 4D hypersurface.

To illustrate a method for constructing 3D cross-
sections through this hypersurface, we briefly
consider the case of symmerrical GBs [33]. As
already mentioned, the 3D phase space for these
boundaries contains infinitely many twist bound-
aries for every STGB (section 1.6.1). To gain some
imnsight into what the corresponding 4D structure—
energy hypersurface might look like and, in
particular, to illusirate the distribution of the
tilt and twist boundaries in this phase space, we
consider cross-sections obtained as follows. In
each 3D cross-section we limit ourselves to a well-
defined subset of lattice planes, defined to be
perpendicular to a particular pole (or tilt) axis,
such as (110), (100), (111), (112), etc. By
fixing the tilt axis, a single tilt angle, ¥, uniquely
defines a given GB plane (see, for example, Fig.
1.21). Combined with the twist angle, 8, a 3D
cross-section of the structure—energy phase space
may thus be obtained for any given tilt axis.

One such cross-section, perpendicular toa (110)
tilt axis, is shown in Fig. 1.23 for the same Cu(lL]D
potential used above. On each plane, i.e. for each
value of the ult angle, the STGB configuration
appears at the twist angle 6 = 180° (while ali other
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GBs are pure twist boundaries), demonstrating the
geometrical uniqueness of the STGBs in the phase
space (sections 1.7.3 and 1.8.3). The deep energy
cusps at the corresponding 6 = 180° angles in-
dicates that this unique geometry translates into a
Particularly low GB energy. The deep valley at the
(111) plane demonstrates that the densest plane of
the fcc lattice is a ‘special’ GB plane, with the
”QPCS of the valley representing ‘vicinal’ GB-plane
onentations. (Notice that the endpoint of the (111)

Fig. 1.22 (a) Three-dimensional
structure—energy plot for free
surfaces in fcc crystals (in arbitrary
units, simulated by means of the
Cu(L]) potential), with the 2D-
phase-space triangle of Fig. 1.21 as
base plane [31]. (b) Nearest-neighbor
miscoordination per unit arca for the
same surfaces.

valley at 8 = 180° represents the well-known (111)
twin boundary.)

Finally, the GB and free surface energies in
Figs. 1.22(a) and 1.23 can be combined to deter-
mine the variation of the ideal-cleavage energy,

EY(S, ¢, 8) = 2v(3, 9) — E°%(9, ¢, 0) (1.36)

in the three-parameter phase space for all sym-
metrical GBs. A (1i0) cross section through this
4D hypersurface, similar to Fig. 1.23, is shown in
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Fig. 1.24. Notice that. for reasons of claritv, the
direction of increasing twist angle was chosen
opposite to that in Fig. 1.23. We point out lha_t,
since for zero twist angle a perfect crystal is
obtained {(eq. (1.27a)), the cleavage energy at
g = 0°, EX3, ¢, 0%, represents the energy to
cieave a perfect fcc crystal along a specific plane,
ie. twice the energy of the related free surface,
28, o). . .

If the free-surface energv, vy, were isotropic
(i.e. independent of § and ¢), Fig. 1.24 would
represent merely an upside-down version of Fig.
1.23). However, as discussed earlier in Fig. 1.22(a),
y varies significantly in the two-parameter phase
space, although its variation is not as pronounced
as that of the GBs.

1.7 ATOMIC-LEVEL GEOMETRY OF PLANAR
STACKING

Following the focus in the preceding section on the
macroscopic geometrical description of crystalline

_ interfaces, we are now ready to take the geometrical

characterization one step further, down to the level
of the atoms (albeit in their unrelaxed positions).
This leads us naturally to the concept of the

. atomic-level geometry of solid interfaces, from

‘. which the concepts of coherency, commensur-

ability, epitaxy and topotaxy discussed in section

¥ 1.2 follow logically. As an example, in section 1.7.3

the three simplest interface systems discussed

& carlier only at the macroscopic level (see section

; . 1.6.3), will be revisited. Later on, in section 1.8,
. the atomic-level geometry of GBs will be discussed
%, within the same framework.

1.7.1 Planar stacking in Bravais lattices

Since in both of its halves a crystailine interface
contains stacks of well-defined lattice planes, in
the following we briefly consider some basic
geometrical definitions and properties associated
with the planar stacking in a perfect Bravais lattice.
S_m:lilar to Fig. 1.12, the underlying three-dimen-
Ronal Bravais lattice is defined by the three Bravais
vectors, a,, a,, and aa, defined in Fig. 1.25 with

» N

a;

a
3 a,

X

Fig. 1.25 Definition of a three-dimensional Bravais lattice by
the Bravais vectors a,, a;, and a; in a Cartesian (x, y, 2)
coordinate system. z' defines some arbitrary direction in the
lattice, with unit normal 7.

respect to a Cartesian (x, ¥, z) coordinate system.
For simplicity we assume the basis attached to the
Bravais lattice to contain only one atom such that
the crystal lattice, identical 1o the Bravais lattice, is
simply given by

r = la, + ma,; + na; (1.37)

withl,m,n =0, =1, £2,.... The conventional
geometrical description of the crystal lattice is then
based on the primitive unit cell skeiched in Fig.
1.25 which, together with its periodic images,
defines the lattice completely.

In crystalline interface materials, a different
choice of the primitive periodic Bravais unit cell,
which emphasizes the plane-by-plane arrangement
of the atoms and hence greatly facilitates the
visualization of the atomic structure, is often
advantageous. We start by defining an arbitrary
{but rational) direction, 2, defined in Fig. 1.25 by
some unit vector #, which represents the normal 10
a set of lattice planes which we will choose as the
lattice planes of interest. The (x', y', 2') coordinate
system in Fig. 1.26(a) is then chosen such that the
generally non-orthegonal x' and y' directions point
along the edges ¢;, ¢; of the primiuve planar
Bravais unit cell of the plane with normal #, while
the 2’ direction (orthogonal to the x' -y’ plane) is
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defined in Fig. 1.25 10 be parallel to the normal .
In this new coordinate svstem, the atom positions
are given by the new basis vectors ¢1, 2. and ¢y,
according to (Fig. 1.26)

r'=1Ic + mec, + n'es (1.38)

with!',m',n" = 0, +1, 2, ... . While the vectors
¢1 and ¢; define the primijtive planar unit cell (with
plane normal #), the out-of-plane vector ¢; enables
one to proceed successively from one lartice plane
to the next. It is important to recognize that the
vector ¢3 = d + e does not generally point along
the 2’ direction; this gives rise to a staggering
of the planes. While jts out-of-plane component, d
(along z*), is determined by the interplanar spacing
in the direction of #, d = |d|, the relative trans.
lation of one plane relative to another is governed
by e, the in-plane component of ¢3. The ‘natural’
coordinate system associated with a given direc-
tion, #i, in the crystal is therefore the (x', ¥, 29
system shown in Fig. 1.26(a): Within the plane

2| A

{a)

Atomic-level geometry of crystalline interfaces

the atom sites are given by the vectors ¢ and ¢,
whereas the Z'-direction, parallel 1o c3, defines the
‘direction of staggering’ of one plane relative to g
neighboring one. In this coordinate system 3]
lattice planes are consequently identical, with no
net in-plane (x’, y') translation required as one
proceeds from one plane 10 a neighboring one.
The 3D unit cell of this lattice is sketched i
Fig. 1.26(b).

To express the new, plane-based primitive
Bravais vectors, €15 €2, and ¢3, in terms of the
primitive vectors, @), a3, and a3, of the conven-
tional Bravais lattice and the normal A simplv
requires the projection of a, az, and a; onto the
plane and the z direction (parallel to A). Since both
the conventional (a1, az, a3) and the plane-based
{€1; €2, ¢3) Bravais unit cells are primitive (i.e.
contain exactly one lattice site), with volume Q, the
two have identical volumes, i.e,

(la1 X @3] - a3) = ([¢; x ¢] - c3) =0 (1.39)

(b)

Fig. 1.26 Three-dimensional Bravais lattice of F ig. 1.25 projected into an (x', 3", 2') coordinate system chosen such that =* || 4 while the
(generally non-orthogonal) x’ and ¥' directions point along the edges of the primitive planar Bravais unit cell of the plane with normal 7.
The out-of-plane component of ¢3, & (along 2°), is determined by the interplanar spacing in the direction of #. By contrast, the relative
translation of one plane relative 10 another {‘staggering of planes’) is governed by the in-plane component of €3, ¢. The primitive volume
unit cell of the Bravais lattice, defined by ¢,, ¢;, and €3, is sketched in (b).
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A simple example of the two Bravais represen-
tations is shown in Fig. 1.27 for the (001) plane
in the fcc lattice. Because both e, (| [110]} and a;
(I (110]" lie in the 001 plane. in this case the
vectors @,. a:. and a; of the well-known rhombo-
hedral primitive fcc unit cell are identical to the
gectors ¢;. €. and ¢z, with the vectors d and e
glong [001] and [010], respectively.

Given that the lattice planes are in general
staggered, an obvious question concerns the
pumber of lattice planes in the repeat stacking
unit, sometimes referred to as the stacking period,
P. The well-known ... |ABC|ABC| ... stacking
of the (111} planes in the fcc lattice 1s an example
of a three-plane stacking period; also, the two-
plane . . . |ABJAB| . . . stacking period of the {001)
and (011) planes is readily recognized. To deter-
mine P, one has to find the nearest lattice plane in
the direction of # in the Cariesian coordinate
system which is identical to the plane through the
origin (i.e. entirely untranslated or translated by a
multiple of the planar unit-cell dimensions); i.e. P
is the smallest integer which satisfies the condition

* (eq. (1.38))

"Pe=lc,+mc (1.40)

" n (oo

z f [o11) [710]

4444

x| [110] 0]

[100)

?" 1‘[2 7 C"“"‘_’nﬁﬂf}al (@), @y, a,) and (001)-plane-based (¢,
- s ;‘e‘?““m lattices (see also Figs. 1.25 and 1.26). Since a,
2 I#¢ In the {001) plane. ¢, = a, and ¢; = a; in this case.

with I’ orm’ = 0, £1, etc. and e, ¢, and ¢; as
defined in Fig. 1.26(a).

To illustrate eq. (1.40) we consider a cubic
crvstal in which the normal 7 may be given in terms
of the Miller indices (kk!) (eq. (1.24)). All relevant
geometrical parameters, including /7, may then be
expressed in terms of the Miller indices. For
example, in a Cartesian coordinate system the
interplanar spacing, |d| = d(hkl) (Fig. 1.26(a}), is
given by the well-known expression

dehkD) = calk® + R + B)7H,
(e =050r1) (1.41}

where a is the cubic lattice parameter and where
the value of £(=0.5 or 1) depends on the particular
combination of odd and even Miller indices. (For
example, in the fec lattice, £ = 1 if b, kb, and [ are all
odd but 0.5 otherwise.) The period, P = P(hkl), is
similarly given by

P(hkl) = 8B + k* + 1), (& =1or2) (1.42)

where the value of 8 (=1 or 2) also has to be deter-
mined in each case by inspection of the various odd
and even combinations of Miller indices.

To illustrate these expressions, in Tables 1.1
and 1.2 the values of d(hkl) and P(hkl) are listed
for the eight planes of the fcc and bee lattices
with the largest values of d(hkl). Also, Fig. 1.28
shows schematically a unit stack of lattice planes,
labeled . .. |AB..IJ|..., in a direction with
P(hkl) = 10 planes in the stacking period (such as
the (210) direction of the fcc lattice; Table 1.1).
The x' and z' axes, parallel to ¢; and d, respec-
tively, are the same ones shown in Fig. 1.26(a),

Table 1.2 Same as Tabie 1.1, but for the bee lattice

No. (hkD) R+ +P PhkI) . d(hklVa
1 (110) 2 2 0.7071
2 (100 | 2 0.5000
3 (12 6 6 0.4082
4 (310) 10 10 0.3162
5 (111} 3 3 0.2887
6 (321) 14 14 0.2673
7 (114) 18 18 0.2357
g (210} 5 10 0.2236
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and periodic border conditions are implied in all
three dimensions. Figure 1.28 illustrates the

constant in-plane translation, e, as one proceeds .-

from one plane 1o another., Because of the per-
iodicity parallel 10 the plane, the lattice site in
plane F, which would normally fall outside of the
unit cell as the vector e is added to the E plane,
is reflected back into the unit cell.

The unit stack shown in Fig. 1.28 is obviously
comprised of P(hkl) = 10 primitive plane-based
Bravais unit cells €15 €2, and c¢3. Since each plane
contains exactly one atom (because we have chosen
a basis containing only one atom), the planar unit-
cell area, A(kkl), and the interplanar spacing,

<hki>
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G: # o(hil)
g T
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Fig. 1.28 Unit stack of lattice planes, labeled ... |AB ... ...,
in a direction with FP(hkl) = 10 planes in the stacking period
(such as for the (210) plane in the fee lattice; see Table 1.1).
INustrated is the constant in-plane translation, e, with the vector
d allowing one 10 proceed from one plane to the nearest one
(schematic).
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dhkl}, are related via the alomic volume, 2, as
follows:

ACRDd(RRD = Q (1.43

Based on this retationship, the most widelv spaced
planes correspond o the ones with the smallest
planar unit-cell areas, i.e. the densest planes of the
crysial lattice (also Tables 1.1 and 1.2).

As discussed in section 1.5.4, a necessarv con-
dition for two lartice planes to be commensurate is
that their planar unit-cell areas are compatibie, and
hence satisfy eq. (1.12). Given egs. (1.43) and
(1.41), for the lattice planes in two different cubic
crystal lattices (with lattice parameters a; and q-,
respectively) eq. (1.12) may be rewritten as follows:

e3a3(h} + k3 + Byedadhl + k3 + B = mim?,

(€1, 82 = 0.50r 1) (1.44)
In the case of GBs (for which a; = ay), the ratio of
the sum of the squares of the Miller indices hence
has to be a ratio of squares of integers. The lattice

planes with the smallest unit cells which are then
compatible with the (111), (001), and (011) planes

are listed in Table 1.3. These are the only rela-

tively low-index combinations of planes forming
commensurate GB interfaces with one of the
three densest planes on one side. All other com-
binations have to form aperiodic or quasiperiodic
structures [32].

Finally, we mention that the validity of eq.
(1.43) is not limited to cubic lattices, as readily
seen from eq. (1.39). The unit-cell area is generally
given by the vector [¢, x €2} which is parallel 10 #
(Fig. 1.26(a)). According to eq. (1.39), the unit-
cell volume is the dot product of the vector ¢; and
the area vector [¢; x €z). Since the latier is paraliel
to 1 (Fig. 1.26(a)) and since the projection of c;
Onto # is identical to the interplanar spacing, |d|,
eq. (1.43) is reproduced.

1.7.2 Stacking inversion by rotation

A basic property of all lattices with inversion
Symmetry, particularly all Bravais lattices, is that
the stacking sequence in a particular (rational’
direction, (hk!), may be inverted by a 180° rota-
tion about the plane normal (hkl). This property

Atomic-level
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Table 1.3 Cubic lattice ptanes with the smallest unt cells which are commensurate with the (171), (0011 and (11 planes. respectively

(seeeq. 1. H for a, = a:and iy = &£;

No. h:k;l’; h!kllrj m:"": fh:kz":- \.hlklll.\ m:f": \/hsz"J\l :h|k|1|f mzﬁ'rf
1 111 111 1 oon oo H oLrn 01N 1
2 111 115 9 00 (221) 9 i (114) 9
3 111 187 25 001) (430) 25 0 (071) 25
4 g BRI 19 oon (236) 49 0il) (345%) 25
1 REEA RESEIE 8i 0oL (148) 8] 01N (149) 49
5 114 (ST 13 81 ol 447 8 GIRY) (358 49
7 RERH 1119 121 {001) (667) 121 o1 4511 81
8 111 (8717 12] Qon (269) i21 orn {778 g1
< hki> < hkl>
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1

B
5. B8 llustrated in Fig. 1.29 for the case of 2 (hypo-
"thetical) five-plane stacking period. The vector r

»

~

"(“in Fig. 1.29(a) represents the translation vector,

¥ = e + d, with components {e,, e,, d) (Fig.

1.28), between atoms in neighboring planes of
the stack. A 180° rotation about the plane nor-
mal, (kkl), transforms rinto ' = —e + d =
(~e., —¢,, d). However, in a lattice with inversion
symmetry a lattice point is found at —#° if there is
onc at r'; the vector —r' = e — d = (e, €, —d)
therefore represents a lattice point as well.

So far we have not elaborated on the rotation
center for the 180° rotation about the plane normal,
(hk{), which inverts the stacking sequence.

Viously, for a direction with an odd period, any
ce point in the central plane of the unit stack
{such as the C plane in Fig. 1.2%a)) represents a

)

I, -3 . . .
+7 - Fig.1.29 Inversion of a (hypothetical) five-plane ideal-crystal stack of lattice planes, A~E, by a 180° twist rotation about the plane
. sormal. (a) Before rotation; (b) afier 130° rotation and application of inversion-symmetry operation (schematic).

possible rotation center. By contrast, for a direction
with an even period, any half-way point between
lattice sites in symmetrically related planes may
serve as rotation center.

If the rotation axis for the unit-stack inversion
has m-fold rotation symmetry, inversion is also
achieved for the corresponding twist angles of 8 =
180°/m = R360°/m (k= 1,2,...,m — 1). Thus,
although each individual (111) plane in a cubic
crystal contains a six-fold rotation axis, the stag-
gered three-plane (111) unit stack only has three-
fold symmetry (m = 3) because the center for this
inversion rotation differs from that of the six-fold
rotation symmetry. For similar reasons, m = 2 fora
two-plane {100) unit stack, although individual
(100) planes have four-fold rotation symmetry.

The property that in a crystal lattice with




inversion svmmetry the stacking sequence may
be inverted by a 180° rotation about the plane
normal has important consequences for the atomic-

level geometry of GBs. As illustrated further in
section 1.8 below, it is responsible for the fact that
in such crystal latices (i) all symmetrical-tilt
boundaries represent special 180° twist boundaries
(section 1.6.1); (i} asymmetrical-tilt boundaries
(ATGBs) form a special subset of general (or
asymmetrical-twist) boundaries; and (iii} for every
asymmetrical combination of lattice planes, there
are two distinct ATGB configurations (obtained for
8 = 0° and 180°, respectively) which differ merely
by the inversion of the stacking in one half relative
to the other.

1.7.3 Example: stacking faults, free surfaces and
symmetrical-tilt GBs in cubic crystals

In section 1.6 we described three interface systems
which share the common property of having only
two macroscopic DOFs, namely STGBs, stacking
faults, and free surfaces. From the preceding
discussion it is clear that they also share some
important geometrical features. Most importantly,
these three systems have identical planar unit-cell
dimensions and areas (Figs. 1.30(b)-(d)), and
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their planar unit cell projected onto the interface
plane is identical to that of the perfect crystal on the
same plane, sketched in Fig. 1.30(a). Also, a tilt
axis and a tilt angle may be formally assigned to all
three, although in the case of stacking fauits this
terminology is not commonly used, while in the
case of the surfaces the tilt axis is usually referred 1o
as the pole axis.

Because a stacking fault differs from the STGB
on the same plane only by the inversion of the
stacking sequence in the latter (Figs. 1.30(b) and
(c)), but is otherwise so similar to the STGRB
configuration, one might expect their physical
properties to be rather similar also. In fact, based
on their close geomerrical relationship, one would
expect that STGBs have a lot more in common with
stacking faults than with GBs; this is contrasted by
the common practice of viewing STGBs as high-
angle GBs. Hence, rather than referring 1o these
simple planar defects as grain boundaries, it might
be more illustrative to call them ‘inverted’ or
‘tilted’ stacking faults. This would merely require
a broadening of the definition of a stacking fault to
include not only translation; parallel to the fauk
plane but also a possible inversion of the stacking
sequence at the plane of the defect.

As a consequence of having the smallest planar
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Fig. 1.30 Comparison of the atomic-level geometry of the simplest three interface systems in (b)=(d) with a perfect crystal in (a) (see
also Fig. 1.1,. Most importantly, the four systems sketched here have identicat planar unit-cell dimensions and areas; this unit cell is the
smallest possible for any atom atrangement involving this particular lattice plane, with a (k! normal. The shaded arrows indicate the
direction of planar stacking. We note that Figs. 1.17 and 1.30 may be directly superitnposed, illustrating the considerable similarity

among these three systems and with the perfect crystal.

Grain b,

unit cell o
the energ
extremelv
paralle] 1o
resistance
defect. Tl
lations ha:
appearanct
whenever
plane is ar
[32. 33].
It appes
between S
and (d}’ ha
which mig
Lauvely lit
of even the
Fig. 1.24).
that when
wdentica] fr
are transfo
1.18), whil
interface a
seem that
fracture re
ship berwe

- and edge d

realization
tween these
some aid in

1.8 GRAIN
Grain bouy;

systems for
metrical asy

" for the fol]

Plexity due
material ¢
voided, thy
plaved by 1)
the atomic «
GBs are b
Parameters
llrained-iay
tpitaxial |a:




"
'l

'Grain boundaries

unit cell of any planar defect on a particular plane,
the energies of stacking f:{ulls and STGBs are
extremely  senmsitive functions of translations
lel to the interface, with a consequently large
resistance towards shear paralle! to the plane of the
defect. This extreme sensitivity towards trans-
lations has been shown to be the cause for the
appearance of energy cusps for‘ s_vmmemcal‘ GBs
whenever the STGB configuration on a p_amcular
plane 13 approached (1.¢. as 8 — 180°; Fig. 1.23)
[32, 33]. . o
It appears that the close geomemcgl similarity
berween STGBs and free surfaces (Figs. 1.30(c)
and (d)} has not always been recognized in the past,
which might be one of the reasons why only re-
latively little is known about the work of adhesion
of even these simplest of all GBs (section 1.6.5 and
Fig. 1.24). From a conceptual viewpoint it appears
that when an STGB is cleaved, thus creating two
identical free surfaces, the dislocations in the GB
5 are transformed into steps in the surfaces (Fig.
371 1.18), while the planar unit-cell dimensions of the
= interface are left unchanged. It would therefore
¥ "seem that a better understanding of ideal-cieavage
égf"fncturc requires an investigation of the relation-
H;slnp between steps in surfaces, on the one hand,
¥ ‘and edge dislocations in STGBs on the other. The
3 realization of the close geometrical similarity be-
A& tween these two simple interface systems might be of
b some aid in elucidating this complex problem [27].

b5 AT
)

ﬁ:(}ram boundaries {(GBs) represent ideal model
- systems for the investigation of the strictly geo-
metrical aspects of structure—property correlations
for the following three reasons. First, the com-
plexity due to the myriad of possible choices of
material combinations forming the interface is
avoided, thus enabling a focus on the distinct roles
played by the GB geometry, on the one hand, and
the atomic structure on the other. Second, because
GBs are bulk interfaces, dimensional interface
Plﬂ_mcu:rs (such as the modulation wavelength in
Strained-layer superlattices, or the thickness of
eprtaxial layers) do not enter into the problem.

&)

Finallv, the GB energy is thought to play a central
role in various GB properties, such as impurity
segregation, GB mobility and fracture, GB dif-
fusion and cavitation, 10 name but a few. A berter
understanding of the correlation between the
structure and the energy of GBs therefore promises
to offer insights into more complex structure-
property correlations as well. This correlation also
represents a base line against which the effects of
interfacial chemistry can be probed.

Although GBs probably represent the best-
studied tvpe of all interface svstems, relativelvy
little knowledge acquired on their physical be-
havior has filtered inio other areas of interface
research. It appears that one reason responsible
for this unfortunate situation is related 10 the
terminology used to describe their geometry,
which differs fundamentally from that commonly
used to describe, for example, epitaxial and thin-
film interfaces. In this section we will review some
of the GB ‘jargon’ within the framework of the
concepts described in sections 1.6 and 1.7; a
good understanding of these sections is therefore
helpful. By defining these important defects in the
context of the unified interface terminology, we
hope to further elucidate the geometrical features
in common to all interface systems and materials.

1.8.1 Coincident-site lattice description
(*CSL-misorientation scheme’)

As is well known, whether a GB is of a pure tilt,
twist or mixed type, whether it is symmetrical or
asymmetrical, or whether it is of a low- or high-
angle type is fully determined by the choice of the
five macroscopic DOFs of the interface. While, so
far, we have reviewed one definition of these five
geometrical variables (the interface-plane scheme
in section 1.6.1), much of the terminology used to
describe the geometry of GBs is based on the
concept of the coincident-site lattice (CSL). By
contrast with the interface-plane scheme in eq.
(1.20), the CSL description of GBs focuses on the
misorientation between the two grains, rather than
on the plane of the defect. Also, because of the
requirement that a superlattice must exist in
common to the two halves of a bicrystal (at least
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prior to allowing for rigid-body  translations
associated with the three translational DOFs), the
CSL terminology is limited 1o Commensurate

mterfaces and is hence not usually applied to

interfaces other than GBs, rendering a comparison
of properties with those of other interfacial systems
virtually impossible.

In this and the following section, we will discuss
two CSL-based, and often intermixed, definitions
of the five macroscopic DOFs (the CSL-mis-
orientation and tilt-inclination schemes). We
then explore the relationship between the three
rather different definitions of the macroscopic
DOFs of crystalline interfaces discussed in this
chapter by investigating the mathematical con-
nections between them.

Within the framework of the CSL description of
GBs {16-19], three of the five macroscopic DQOFs
are identified with the CSL misorientation, and
only the remaining two DOFs are assigned to the
GB plane. (Although redundant, the inverse
volume density of CSL sites, I, is usually added as
a sixth parameter.) The misorientation between the
crystal lattices associated with the two grains may
be characterized by the rotation matrix Rifcsy,
d’CSL): with ficsy. and $esL denoting the CSL
rotation axis and angle, respectively (representing
three DOFs). The five DOFs are then defined as
follows:

{DOFs} = {ficsy, dcsy, i}
(“CSL-misorientation scheme’) (1.45)

where, as in the interface-plane scheme in eq.
(1.20), A, represents the GB-plane normal in either
of the two halves of the bicrystal (here chosen to be
semicrystal 1). Both fics1. and #; are expressed in a
space-fixed principal crystallographic coordinate
System, such as the (x, y, 2) system in Fig. 1.15(a).
Because of its focus on the CSL misorientation
between the two halves of the bicrystal, the de-
finition in eq. (1.45) will be referred to as the
‘CSL-misorientation scheme’. Given these five
variables, the GB-plane normal in the second
crystal, 713, is determined by [18, 21]

fiz = Rificsy, dcsi)n (1.46a)
Similarly, the inverse density of CSL sites, X, is

Atomic-level geometry of crystalline interfaces

governed completely by the three DOFs in the
CSL rotation, j.e, ¥ = L(R{ficsy, des)).
We note that, prior to the CSL rotation, the two

'imerpenetratjng crystal lattices need not necess.

arily be identical. If they are identical, the CSL
rotation resulits in the formation of a CSL for g
grain boundary. Obviously, a superlattice ip
common to the two crystal lattices can not be
formed unless the two are commensurate in all
three dimensions (aralogous to the concept of
wo-dimensional commensurability defined ip
section 1.5).

More explicitly, if one defines ficsy by its direc-
tion cosines, say, in the {x, ¥, ) coordinate svstemn
m Fig. 1.15(a), according 10 ficg; = (u, v, w)
(with #? + % 4+ 22 — I); and if one uses the
abbreviations cos des, = ¢, sin bcsi = 5, the
rotation matrix may be written as follows [18]:

R(ficsL, dcsi) = Ry, T, W, ¢, 5)

¥ ur uw
——-(I—c)(uv 2 vw)

2

uw vw w
¢ — s (1
+| ws c -us (1.47)
— s us c

A pure tilt boundary is defined by the condition
that fice; be perpendicular to #, in eq. (1.45),
while a pure twist boundary is obtained whenever
ficsy. is parallel o fl;. As illustrated in Fig. 1.15,
the total (CSL) misorientation between the two
halves. of the bicrystal may be viewed as consisting
of a tilt rotation (Fig. 1.15(b)) followed by a twist
rotation (Fig. 1.15(c)). Using the perfect crystal in
Fig. 1.15(a) as starting point, the purpose of the tilt
rotation is to align fi; and #,, thus defining the
common GB-plane normal in Fig. 1.15(b). This
rotation is followed by a twist rotation about this
common normal, thus adding a twist component 1o
the tilt component while forming a ‘general’ GB.
The CSL rotation matrix, R(ficg, , bcsr), may
therefore be decomposed into its tilt and twist
components, R(fr, y) and R(n,, 9), respectively
(with the tilt and twist angles y and 0, respec-
tively), according 1o [18]

Rificse, dcsi) = Ry, 8) R(at, y) (1.48)
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Because rotations do not generally commute,
ipterchanging the sequence of the ult and twist
rotations leads 10 a different final state. as is also
evident from the matrix equation (1.48).

Finallv. since the twist rotation does not alter the
common GB normal. the CSL rotation in eq.
(1.46a may be replaced by its tilt component, and

ﬁz = RJ‘TT: L]f} ?‘T] {146b)

Equation {1.46b} expresses the fact that the plane
of a general GB is fully determined by its tilt
component; conversely, the tilt component of a
general GB is determined fully by the GB plane
{section 1.6.1 and egs. (1.21) and (1.22)).

A problem with the above CSL-based ter-
minology is that within its framework the under-
lying number of macroscopic DOFs of a given GB
is not always readily apparent. The three rotation
matrices defined above involve a total of nine geo-
metrical variables in ficsy, $cos, firs W, iy and 6
. for an overall misorientation which is characterized
Ey only the three DOFs in fics; and ¢cgp. Six
ltlanonsh.lps must therefore exist among these
“wariables. While eq. (1.48) represents three of
thw: the remaining three may be obtained by
gxprcssmg ficse and ¢y directly in terms of the
twist and tilt axes and angles, according to [21]

h”»t“"’ e e

bty Gy e ki S &

" Rese = BH[(1 + cos B} — cos w)]% fit

‘gt + [(1 ~ cos 8)(1 + cos y)J &,
B A 1
E + [(1 — cos )1 + cos y))* [Ar X ™))
R o (1.49)
©os dcs. = (1 + cos O)X1 + cos y¥2 — 1
(1.50)
where

1
B=( - cos8 — cos y — cos @ cos g
(1.5

While the (unit-) vector equation (1.49) connecting
rotation axes represents two of the three
relationships, the remaining one is eq.
ch relates the three rotation angles to one

additional
(1.50) whi
mother,
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As is readilv verified, egs. (1.49-{1.51) pass
several trivial tests [2]]:

(1} fory = 0, fics;. = iy with deg. = O (pure
twist);

{2) for 8 =0, ficsy, = A with ¢cs. = v (pure
ult);

{(3) for ¢cs. = 0 (no CSL misorientauon), eq.
(1.50) vields 8 = y = 0; however, ficys
becomes singular in this case because a
rotation axis cannot be defined for this
singularity of the CSL rotation.

Together with egs. (1.21) and (1.22), the above
expressions may be used to make the connection
between the interface-plane and the CSL-mis-
orientation schemes for the characterization of the
same interface. For example, starting from the
interface-plane definition of the five DOFs in eq.
{1.20), the expressions (1.21) and {1.22) may be
used 1o determine the tilt component, (fit, y), of
the interface. With its twist component, (#,, 0),
apparent from the outset in eq. (1.20), egs. (1.49)
and (1.50) may then be used to determine the CSL
misorientation, (ficsy, $csr). Conversely, starting
from the CSL-based definition of the five DOFs in
eq. (1.45), the expression (1.46a) may be used to
determine #i;. Given #; and #;,, the tilt component
of the CSL boundary is simply given by egs. (1.21)
and (1.22); using this information in eq. (1.50), one
may determine the twist angle 8 needed in eq.
(1.20).

The above CSL-based expressions describe
rather clegantly, in terms of linear algebra, how a
commensurate interface can be formed by a single
rotation of two infinitely large, interpenetrating
crystal lattices with respect to one another. From a
practical viewpoint it is important to recognize that
the CSL rotation axis and angle, as well as the
GB-plane normal, are defined in the unrotated
principal coordinate system associated with one of
the two semicrystals (Fig. 1.15(a)). This makes
it rather tedious at rimes to characterize a GB
experimentally, starting from the already rotated
positions of the atoms a1 hand. By contrast, the
interface-plane scheme in eq. (1.20) focuses on the
actual interface geometry at hand rather than on
how this particular geometry may be thought of as
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having been generated by a single rotation of two
interpenetrating crvstal lattices with respect to one
another.

Finally, we mention that the CSL-based rer-

minology is further complicated by the concept of
the boundarv-plane inclination, o, which intro-
duces a fourth rotation to the three already defined
above (for details section 1.8.2). The number of
CSL-based geometrical variables often used inter-
changeably to describe a single bicrystalline GB
(with at most five DOFs) thus increases to a total of
13, including ficsy, dcses frs W, 71, 8, 713, @, and
1. This somewhat startling number emphasizes
the importance in GB studies of knowing the cor-
rect number of independent degrees of freedom of
the system, particularly when structure-property
correlations are being investigated. As a practical
matter, it might help in any such investigation to
adhere strictly to any one of the three choices of
DOFs given in egs. (1.20), (1.45), and (1.54)
below, from which all the others can, in principle,
be derived, via expressions such as the ones given
here and in section 1.6.1.

Atomic-level geometry of crystalline nterfaces

1.8.2 Asymmetrical GBs

In spite of indications for the preponderance of

asymmetrical GBs in polvcrystalline materials
[34], our current understanding of structure-
propertv interrelations is based largely on the
investigation of symmetrical boundaries. With
the development of high-resolution 1ransmission-
electron-microscopy methods (HREM) in ‘edge-
on’ studies of tilt GBs, much atomic-level in-
formation concerning the orientation of the GB
plane has become available during recent years,
Much of this work shows that in both metals
[35-37] and ceramic materials (38, 39] asvm-
metrical combinations of lattice planes and faceting
occur rather commonly.

Two types of asymmetrical GBs are usually
distinguished; these are known as asymmetrical-
tift boundaries (ATGBs) and general boundaries
(Fig. 1.31). In this section we will attempt to
describe their geometry within the framework of
both the interface-plane scheme and the CSL-based
terminology.

Fig. 1.31 Distinction between

asymmetrical-tilt and asym-

metrical-twist grain boundaries.

While an asymmetrical-tilt boundarv

(ATGB) is obtained for § = 0° or

8=00r=180°
‘Asymmetrical tilt'
(a}

0 arbitrary

‘Asymmetrical twist'

180°, for some arbitrary twist angle.
6, an asymunetrical-twist or general
GB, sketched in (b)), is obtained. The
alignment of the lattice planes is
analogous to that in Figs. 1.15(b) and
(€).
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Geometry of general GBs

Applving the interface-plane based nomenclature
in eq. .1.20" to asvmmetrical GBs, one can readily
distinguish the tilt and twist components of the
interface. Its ult component, and hence its edge-
dislocation content, is completely given by the two
sets of lattice planes forming the interface, i.e. by
the GB plane (Fig. 1.31(a) and egs. (1.21) and
{1.22)). The twist angle 6 introduces in addition a
twist component, i.e. SCrew dislocations, into the
boundary (Fig. 1.31(b)). The values of 6 cor-
responding 10 the beginning and end of the twist-
misorientation range (i.e. 8 = 0° and 180°; see
Fig. 1.31(a)) are most appropriately chosen such
that the GB has no twist component, i.e. that its
structure contains edge dislocations only. The
interface thus obtained for (eq. (1.20))

{DOFs}) = {#, fi, 8 = 0° or 8 = 180°} (1.52)

: % s therefore of a pure tilt type and is commonly

¢. referred to as an asymmetrical-tilt boundary
(ATGB). Because of the absence of screw dis-
Jocations (which, similar to the case of low-angle
5 twist boundaries, would increase the planar unit
'(;_ccll area of the GB), this interface has the smallest

(a) {b)

dashed) lattice planes terminating at the GB.

by contrast with a general boundary which also
has a twist component and, hence, five DOFs
(Fig. 1.31(b)).

To relate this GB-plane-based picture of an
asymmetrical boundary to the conventional CSL-
based picture, Fig. 1.32 offers a different view of
how the ATGB structure in Fig. 1.31{a) may be
thought of as having been generated by a pure
tilt rotation. The orientation of the tilt axis, 7,
perpendicular to the GB-plane normal, #, is
illustrated in Fig. 1.32(a). Adding the tilt angle, v,
to the two unit vectors, it and #, according 1o
Fig. 1.32(a) and eq. (1.45), it appears that five
geometrical variables are necessary to specify an
asymmetrical-tilt boundary, because now

{DOFs)} = {fir, v, #) (1.53)

However, since fiT and v are fully governed by #,
and A, (see egs. (1.21) and (1.22)), ATGBs have
only four DOFs; therefore they are a subset of
asymmetrical-twist boundaries.

In the conventional ‘edge-on’ view (down the tilt
axis) of an ATGB, the atoms in densest directions
perpendicular to the tilt axis are usually connected
(Fig. 1.32(c)). In Fig. 1.32(b) the same atoms are,
instead, connected by lines parallel to the GB,
making clear the connection with the ATGB
configuration in Fig. 1.31(a). Finally, Fig. 1.32(d)
provides a view onto the GB plane, showing the

{c) (d)

:“lh: ':2 0’“",‘““"_“"1 CSL generation of an asymmetrical-tilt boundary by a pure tilt rotation (a). In the edge-on view in (c), the atoms
Fe.1 ;nﬁﬁl‘ directions perpendicular to the it axis are connected. To demonstrate the connection with the ATGB configuration in
- 1:31{a). in (b} the same atoms are, instead, connected by lines parallel to the GB-plane. Finally, (d) provides a view oato the GB
he ( » showing the two sets of edge dislocations, with spacings D, and D,; in the edge-on view in (¢}, these dislocations correspond to
\
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two sets of edge dislocations. with spacings D, and
D.; in the edge-on view in Fig. 1.32(c), these

dislocations correspond to the (dashed) lattice "

planes terminating at the GB.

It is important to recognize that for the same
combination of lattice planes forming the asvm-
metrical GB, two ATGB configurations are
obtained. To illustrate this little recognized geo-
metrical feature of ATGBs, in Fig. 1.33 we have
chosen two hypothetical orientations, #, and 3,
with P(a)) = Py = 3and P(#,) = P, = 11 planes in
the repeat stacking period defined in section 1.7.1.
For the purpose of this illustration, we also assume
that the planar unit cells are commensurate such
that, say, nine planar unit cells of crystal 2 (3 x3)
match a single unit cell of crystal 1; the unit-cell
areas are hence related by A,/4, = } (Fig. 1.33).
As discussed in section 1.7.2, in crystal lattices
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with inversion svmmetry a 180°/m 1wist rotation
{about the common GB-plane normal’ leads 1o the
inversion of the stacking sequence on one side of
the interface with respect to the other. {(Here m
characterizes a possible rotation svmmetry (for
m > 1) in the planar unit cell of the GB; section
1.7.2.) In such a lattice the two ATGB configur-
ations thus obtained for the twist angles of 6 = (¢
and 6 = 180°m differ merely by the inversion
of the stacking sequence, while their unit-cel}
dimensions are identical (Fig. 1.33). Since only a
refative rotation of the two halves is involved,
starting from the ATGB in Fig. 1.33(a) the same
ATGB configuration in (b) would have been ob-
tained had the lower semicrystal been inverted
{provided both crystal lattices have inversion sym-
metry). More generally, in a crystal lattice without
inversion symmetry the two ATGB configurations
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-cell dimensions but inverted stacking sequences in one with respect

10 the other. are obtained for 8 = 0° and 180%, respectively. In the case shown, the upper crystat was inverted (i.e. turned upside down)
by the twist rotation. Since only a relative rotation of the two halves is involved, the same ATGB configuration in (b} wouid have been

obtained had the lower semicrystal been inverted {provided the c

rystal lattices have inversion symmetry). d, = d(h,) and Pa = P(i,)

(a = 1, 2)denote, respectively, the interplanar lartice spacings and stacking periods in the two halves. To preserve the perfect-crystal
density, the effective interplanar spacing at the interface is given by the arithmetic average, d 4 = (d \ + da)i2.
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in Fig. 1.33(a) and (b) would differ also by the
inversion of stacking at the interface; however, to
achieve that inversion, one semicrvstal has 1o be
rurned upside down with respect to the ol}_)er. an
operation not possible by a pure twist rotation.

In a few high-svmmetry cases, the two A.TGB
configurations generally possibie for. a p_arucular
combination of lattice planes may be ldepllcal. For
example, the (100) and (110) planes in the .fcc
and bee lattices exhibit only a two-plane stacking
period, . . - |AB/AB|.... The inversion of these
planes by a 90° twist rotation (because m =2
section 1.7.2) about (100} or (110}, respectively,
can be undone simply by a rigid-body translation
parallel to the plane, thus restoring the original
unrotated perfect crystal (Fig. 1.39 below). Hence,

in asymmetrical GBs in fcc or bee metals with a
4 (100) or (110) plane on one side of the interface, the
wo ATGB configurations are identical. (To better
Frisualize the effect of a twist rotation by 180°, one
3 -f_---: simply think of its net effect being the turning
#Bpside down of one of the semi-crystals in Fig.
AT 33(a).) Generally, an asymmetrical GB must be
Mormed by two sets of lattice planes, each with
#ore than two planes in the stacking period, for
A twwo ATGB configurations to be different.

EAs already mentioned, the introduction of screw
i bcations, in addition to the edge dislocations
gready present in the ATGB, obviously increases
B® planar unit-cell area of the interface. The two
BTGBs obtained for a given combination of planes
Rercfore represent the asymmetrical GBs with the
Ballest planar unit-cell area of all the GBs that
3n be formed by these lattice planes. From a
Tictly geometrical point of view, asymmetrical-
g¥ist boundaries may therefore be viewed as
icinals’ to the two ‘special’ ATGBs obtained for a
jven combination of planes {section 1.6.4). More-
grer, since the inversion of the stacking sequence
EReserves the planar unit-cell dimensions, the two
B configurations are unique geometrically in
Bat they have identical planar unit-cell dimensions,
fith an area which is the smallest of all the GBs
drmed by the same combination of lattice planes.
3 illustrated in Chapter 3 of this volume [32],
both fcc and bee metals this unique geometry
goslates into a particularly low energy of asym-

Iy

metrical-tilt boundaries, giving rise to energy cusps
and, hence, indeed ‘special’ properties of these
two configurations at the endpoints of the twist-
misorieniation range. Most asvmmetrical-twist
boundaries are therefore ‘vicinal’ boundaries, in
the sense defined in section 1.6.4.

We finally mention that the interface-plane-
based view of asymmetrical GBs brings out naturally
that (i) the tilt component of a general boundary is
solely responsible for the asymmetry in the GB
plane, (i) ATGBs are a special subset, with four
DOFs, of general boundaries, (iii) there are gener-
ally two ATGB configurations for every combi-
nation of lattice planes, and (iv) there is considerable
resemblance of a general (or asymmetrical-twist
boundary) with a symmetrical-twist boundary, in
that both may be generated by a rotation about
the GB-plane normal by some angle 8 (compare
Fig. 1.31(b) with Fig. 1.35(b)), introducing screw
dislocations into the GB. As illustrated in Chapter 3
of this volume [32], the incorporation of this geo-
metrical similarity between general and symmetrical
GBs in the interface-plane-based definition of the
macroscopic DOFs is of considerable aid in the
investigation of their properties. Finally, since
the interface-plane-based description of GBs is not
limited to commensurate interfaces, it facilitates a
direct comparison of GBs with other types of inter-
face systems.

The concept of the GB-plane inclination
(‘tilt-inclination scheme’)

One CSL-based description of asymmetrical GBs
uses the concept of the inclination of the GB plane,
thus adding a fourth rotation to the CSL-, tilt- and
twist rotations already discussed in section 1.8.1.
The related choice of macroscopic DOFs (referred
to as the ‘tilt inclination scheme’) has the advantage
that it closely resembles an experimental situation
in which the tilt misorientation between two grains
is fixed, while the GB plane may choose whatever
inclination may lead to a particularly low GB
energy. Such a situation is encountered, for
example, when a tilt bicrystal is grown from two
preoriented seeds [37].

It may be useful 1o describe the concept of the
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GB-plane inclination in a somewhat unconventional
manner. We start with the observation that the ult

component, (aTt, y). of a general GB is fullv deter- |

mined by the GB-plane normals, n; and n; (eqgs.
(1.21) and {1.22)). Hence, starting from the three
variables in At and v, in order to fix the GB plane,
a single additional parameter, a, is required; a
is called the inclinaton angle. Therefore, by re-
placing #, and A, in eg. (1.20) by the tilt mis-
orientation and inclination angle, the five DOFs
may be defined as follows:

{DOFS] = {ﬁTa v, a, e}
{‘tilt-inclination scheme’) (1.54)

The geometrical meaning of o is illustrated in
Fig. 1.34(a) [37] for the case of pure (symmetrical
and asymmetrical) tilt boundanes in cubic crystals
{egs. (1.52) and (1.53)). For a given fixed tilt mis-
orientation, (fit, ), symmetrical boundary-plane
configurations are cbtained for the angles a = y/2
(labeled STGB,) and a = y/2 + 90° (labeled
STGB:;), respectively. The asymmetrical combi-
nations of GB planes may conveniently be charac-

(hicly (hkf),

STGB,

90°-¥/2
W2

/ (a)

Atomuc-level geometry of crystalline interfaces

terized bv the inclination angle, ¢, with respect
to the STGB, orientation (Fig. 1.34(a)). The two

STGB configurations are then defined by a = ¢

and a = 90°, while for any other value of u an
ATGB is obiained.

Figure 1.34(a) also illustrates that for everv
combination of #r and v, at most two symmer-
rical, but infinitely many asymmetrical, GB-
plane orientations are possible. (We should point
out, however, that this is true only for a rational
tilt axes in cubic crysials; for systems with less
symmetry, a symmetrical configuration may not
exist {37].}

A simple method for determining o is the follow-
ing. Starting with the fixed tilt misorientation
between two grains, the two STGBs are usuallv
either well known (based on the value of X) or
readily determined [19]; these define the angles ¢ =
0° and 90°. Given an ATGB in the same 1t bi-
crystal (i.e, with the same tilt axis and angle), cos «
is simply given by the dot product between cor-
responding STGB and ATGB plane normals in the

same half of the bicrystal.

ATGB

fir, fig

STGB

(b1

Fig. 1.34 (a) Definition of the rwo symmetrical-tilt configurations, STGB, and STGB,, obtained for a given tilt misorientation, by the
angle y, about the two-fold tilt axis with unit vector #+ (schematic) [37]. One of the mirror planes is indicated by dash-dotted lines for
both crystal 1 and crystal 2. ¢ is the inclingtion of the GB plane of some arbitrary asymmetrical-tilt configuration, combining (h,k,/,}
and (k;k,l;) planes, measured with respect to STGB,. The two symmetrical configurations correspond to inclinations a = w/2and u =
/2 + 907, respectively. (b} illustrates how a twist component may be introduced into the ATGB via a rotation, by the angle 8, abour the
cotnmon ATGEB-plane normal, resulting in a general (or asymmetrical-twist) boundary, with both tilt and rwist components. The
meaning of 0 is the same as in Figs. 1.15(c)and 1.31(b). (For further details, see Ref. [37]).
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Within the tlt-inclination scheme, onlv one
of the five DOFs (u) is actually assigned to the GB
plane, and the determination of 7, and 7. represent
a non-trivial undertaking. However, given the
GB-plane normal on one side of the interface. 71, =
a, (T, ¥, @), the GB-plane orientation in the other
half is determined by (eq. (1.46b))

iz = R(fp, w) (i, v, w) (1.55)

To complete the definition of all five DOFs, a twist
component (#z, 8), may be introduced into the
ATGB in Fig. 1.34(a) via a rotation about the
common GB-plane normal (Fig. 1.34(b)).

In the tilt-inclination scheme, a symmetrical
interface is charactertized as follows:

{DOFs} = {fit, v, a = 0° or ¢ = 90°, 6}
- (1.56)

;'- At first sight, eq. (1.56) appears 1o require the four
+i wariables in #i1, ¥ and 6 for the characterization
s%f an interface with only three DOFs. However,
F n the condition of symmertry, #, = *#, (eq.
:25b)) is combined with eq. (1.55), a relationship
hétween #T and v is obtained, according 1o i, =
Ri#T, w) #,, which permits y to be expressed as
inction of #it, y = w(ir), thus reducing the
iber of independent variables in eq. (1.56) to
y three.

fat it sometimes resembles an experimental

ation rather closely [37). On the other hand,
icularly when the twist component of an asym-
ricat GB is varied systematically, it is more
Fantageous to use the interface-plane definition
- (1.20) and the concept of the asymmetrical-
boundary. Hence, while formally one

M Finally, as an example we consider the two
ATGB configurations that can be formed when
i ging together two fcc grains with (557) and
2M71) faces, respectively [37). Within the interface-
mne terminology, the two ATGB configurations at
0° and 6 = 180° would be characterized by

- (1.24) and (1.52))

©
{1DOFs, = {(357). (771,68 = 0" or ¢ = 180°!
1,570

and the fact that geometrically theyv differ merelv
by the inversion of the stacking sequence at the
interface in one with respect 1o the other is obvious.

in the CSL-misorientation scheme, the two
boundaries are characterized as follows (see also
eqs. (1.45) and (1.53)) [37]):

{DOFs} = [(110), 38.94° (357)} (T =19)
(1.58a)
and
{DOFs! = 1(110), 50.58° (557}) (£ =11}

(1.58b)

where, for clarity, the related values of £ are given
in parentheses, indicating that the two ATGBs
belong to different CSL systems. Given these
definitions of their DOFs, the two GBs are readily
identified as tilt boundaries {by contrast with
general or pure 1wist boundaries, because fics. L
f;). However, it is neither obvious that the 1wo
GBs are asymmetrical tilts nor that they are such
close relatives of one another geometrically. Also,
identifying the GB plane in the other half of the
bicrystal as the (771) plane requires one to solve eq.
(1.46) with the rotation matrix (1.47).

Finally, in the tilt-inclination scheme, the two
ATGBs are characterized by (eq. 1.56)

{DOFs) = {(110), 38.94°, a = 25.24°, A = 0°!

Z=9 (1.59a)

and
{DOFs} = {(110), 50.58°, ¢ = 70.53°, 8 = 0°}
€ =11 (1.59b)

Here the underlying values of a were determined
from the knowledge of the corresponding sym-
metrical configurations ((114X114) and (221)(221)
in the £ = 9 system, and (113)(113) and (332)(332)
for T = 11), from which cos a is simply given by
the dot product of corresponding symmetrical
and asymmetrical planes in the same half of the
bicrystal.

Again, as in eqs. (1.58a) and (b), the two GBs are
readily identified as pure tilt GBs (from the fact

L83




that 8 = 0%). and their asymmetry follows directly
from the fact that « # 0° and ¢ = 90° However,
starting from these parameters. the identification
of the actual GB plane from a determination of #,
and 7y, i non-trivial. Also. as in their CSL-
misorientation description, their close geometrical
similarity is not very obvious, particularly thar
(1) they are formed by the same set of lattice
planes, and (ii} they have identica] planar unit-ceil
dimensions.

1.8.3 Symmetrical GBs

In section 1.6.]1 we defined an mnterface as sym-
metrical if #; and 7, are related linearly, i.e. if f, =
L{m), such as i1, = *hy (eqs. (1.25a) and (b)), thus
reducing the number of DOFs from five 10 only
three (eq. (1.26b)). 8 = 0° now corresponds to the
perfect crystal while, for some arbitrary value of 6,
a symmetrical-twist boundary (with three DOFs
and no tilt component) is obtained (Fig. 1.35). This
terminology emphasizes the similarity of Figs.
1.35(a) and (b) with the asymmetrical-twist boun-
dary shown in Fig. 1.13(b).

As discussed in section 1.7.2, in crystals with
inversion symmetry a twist rotation by 8 = ]80°
{i.e. about the GB-plane normal, fi, = fy) inverts
the stacking sequence on one side of the interface
with respect 1o the other while preserving the
perfect-crystal planar unit-ceil dimensions (Figs.
1.29 and 1.36). Consequently, the symmetrical-tilt

Atomic-level geometry of crystalline nterfaces

boundary (STGB) thus obtained for § = 1g§0° (and

iy = iy} is fully determined by only the two DOF;s
associated with the GB

plane, #, = i), and eqgs.
{1.29a) and (1.29b) are obtained, i.e.
\DOFs) = (a,, ny, & = 180°; (1.603

In crystals without inversion symmetrv, a 180
IWist rotation inverts only the Bravais planes by
not the basis, resulting in an incomplete inversion
of the crystal planes. More generally, the STGB
may then be viewed as 3 perfect crystal (8 = 0% in
which one half is turned upside down (le. #1, =
—#,), according to

{DOFs) = iy, ~A), 0 = 0°) (1.60b

a characterization which does not require inversion
symmeiry,

As in the asymmetrical case, for any twist
deviation from 8 = g° and 8 = 180°in Figs. 1.36(a)
and (b} the planar unit-cell area increases by intro-
duction of screw dislocations. The crossed grid of
screw dislocatior.s is sketched schematically in Fig,
1.35(c). According 10 Frank’s formula {10), the
spacing, D, between these dislocations 15 given by

D = b/[2 sin (8/2)] ~ b/ (1.61)

where b is the Burgers vector. The linearization
In eq. (1.61) is valid only for low-angle twist
boundaries; for larger twist angles this approxi-
mation is not possible, thus defining the regime of
high-angle twis; boundaries. Given eq. (1.61), the
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strain-field energy of the dislocation grid, with its
well-known logarithmic cusp at 8 = 0°, was first
derived bv Read and Shocklev [40] in terms of
isotropic continuume-elasticity theory.

The increase in the planar unit-cell area of the
GR as one rotates from the perfect-crystal or STGB
configuration can be characterized by the inverse
planar density of CSL sites, I'. In contrast with £
(which is the inverse volume density of CSI. sites),
the value of T indicates directly by how much the
unit-cell area, 4(8), of a rwist boundary exceeds
that of the perfect-crvstal or STGB configuration,
A(B = 0%) = A(6 = 180°), on that plane because
(eq. (1.281

AB) =T{6) A8 =09
= [{180° — 8) A(8 = 180°) (1.62)
= A(180° — 8)
By definition,
r@=0)=r®=180")=1 (1.63)

i“f:‘ Equation (1.63) expresses the fact that the STGB
% and perfect-crystal configurations on a given plane
#x are unique in that they share identical planar unit-

iz cell dimensions. with an area which is the smallest

¥ possible for any planar defect on that plane (Fig.
& 1.36) [20]. In Chapter 3 of this volume [32] it will
=48 be shown that this unique geometry of the pure tilt

;2% configuration gives rise to a deep energy cusp at

# 0 = 180° and hence to ‘special’ properties of

STGBs. Most symmetrical-twist boundaries may

I therefore be viewed as ‘vicinal’ to either the STGB

configuration on a given plane or to the perfect

@8 CTystal; in the latter case, they are the well-known

' Jow-angle boundaries.

&= To relate the GB-plane-based picture of the

,,S__ } GB in Fig. 1.36 1o the conventional CSL-based

* Wew, Fig. 1.37 shows the generation of the STGB

. * Sructure in Fig. 1.36(b) by a pure tilt rotation.

- . Figure 1.37(a) illustrates the orientation of the tilt

' &S, fit, perpendicular to the normal # of the GB;
, normal is the same in the two semi-crystals. By
.. ooatrast with the asymmetrical case in Fig. 1.32,
. e GB-plane normal and, therefore the tilt angle,

i ya ¥ are fixed by the condition of symmetry, leaving

b Illly W0 independent DOFs in the CSL character-

ton of these simple planar defects by the five

Vanables in (eqs. (1.45) and (1.53))

&)

11,64,

The fact that the CSL characterization of both
STGBs and ATGBs is based equally on a set of five
parameters (eqs. 1.63) and (1.64)) illustrates the
difficulty in identifyving a GB as either svmmetrical
or asymmetrical in this scheme.

In the conventional edge-on view of an STGR,
the atom columns parallel to the tilt axis are usually
connected (Fig. 1.37(c)}. In Fig. 1.37(b) the same
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Fig. 1.36 In a perfect crysial with inversion symmetry, sketched
schematically in (a) for a (hypothetical) five-plane stacking
period, a rotation of onc half about (hk!) generates the STGB
configuration on the (hk) plane skeiched in (b). The latter
15 characterized by the familiar inversion of the stacking of
the lattice planes a1 the interface (‘twinning'), a feature in
common 1o all STGBs. This inversion usually results in a
volume expansion per unit GB area, 8V. d{hkl) and P(hk!) are
the interplanar spacing and repeat stacking period defined in
section 1.7 (see eqs. (1.41) and (1.42)). The lower half repre-
sents an ‘edge-on’ view of the densest lattice directions, i.c. a
view of atorn columns paralie] to the tilt axis. In this case, the tlt
axis is parailel 1o the v direction; the ult angle, v, is indicated.
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Atomic-level geometry of crystalline interfaces

(c) (d})

Fig. 1.37 Conventional CSL-based generation of the $TGB structure in Fig. 1.36(b) by a pure tilt rotation. (a) Orientation of the tilt
axis, . perpendicular to the normal, #, of the GB; (b} lattice planes paraliei 1o the GB illustraung the similarity with the asymmetrical-
tilt boundary in Fig. 1.32(b). (c) shows the usual edge-on view down the tilt axis, in which the stom columns parallel to iy are
connected. (d} A view onto the GB plane shows two parallel sets of edge dislocations, with a spacing, D, given by eq. (1.61).

atoms are, instead, connected by lines paralle] to
the GB, making clear the connection with the
STGB configuration in Fig. 1.36(b) and the ATGB
in Fig. 1.32(b). Finally, the two sets of edge dis-
locations {one from each side of the interface)
characteristic for this structure are sketched in the
view onto the GB plane in Fig. 1.37(d). In contrast
with the symmetrical-twist boundaries, the two sets
of dislocations (identifiable, of course, only for
small ult angles) are parallel in this case. Interes-
tingly, for strictly geometrical reasons in both cases
the dislocation spacing is given by Frank’s formula
(1.61).

Finally, as an example we consider the character-
ization of the STGB configuration on the (332)
plane of the fcc lattice, which belongs to the same
L = 11 CSL system as one of the two ATGBs
considered at the end of the preceding section.
Within the interface-plane terminoclogy, this
boundary may be characterized in one of two ways.
First, for fi, = +#, the boundary would be charac-
terized as a 180° twist boundary (which is per-
missible because the fcc lattice has inversion
symmetry), according to (egs. (1.24) and (1.60a))

{DOFs} = {(332), (332), 6 = 180°) (1.65a)

More generally, the boundary may be viewed as a

perfect crv-tal (8 = 0°) in which one half is turned
upside down (i.e. Ay = -5y, according to
{eq. (1.60b))

{DOFs) = {(332), (332), 8 = (°) (1.65b)

a characterization which does not utilize the in-
version symmeitry. In writing the last expression,
we have taken into account the fact discussed
in section 1.8.4 below that in 2 cubic crystal an
arbitrary combination of Miller indices (—h, -k,
—1), can always be reduced, by a sequence of 90°
rotations about (100) which transforms the crysial
into itself, for example to a form (h, &k, —/),
(h, —ky 1), or (—h, k, I).

In the CSL-misorientation scheme, the same
boundary would be characterized in terms of five
parameters as follows (egs. (1.45) and (1.53)) [41]:

{DOFs} = {(110), 50.58° (332)} (% = 11)
(1.66°

where the value of T is included in parentheses.
The GB is readilv identified as a tilt boundary
(because ficg L 7). However, a comparison with
the asymmetrical boundary in eq. (1.58b) (which
belongs to the same £ = 11 CSL system) demon-
strates the difficulties in identifying the GB as
symmetrical or asymmetrical.
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Grain boundaries

Finally. in the ult-inclination scheme the bound-
arv 1s characterized bv teq. (1.54))

'DOFs: = 1+110). 50.58°, u = 0°, 8§ = 0%}
' T=11 (1.67)

Again, as in the CSL scheme, the GB is readily
identified as a pure tilt GB (from the fact that
g = 0. and its svmmetry follows directly from
the fact that a = 0°. However, starting from these
parameters, the idenufication of the crystallographic
orientation of the GB plane is non-irivial.

We conclude this secuon by emphasizing an
aspect of the conceptualization of symmetrical-tilt
boundaries as special twist boundaries; this is of
particular refevance to the computer simulation of
GBs. In all GB simulations, in addition to the
bicrystal at hand, a suitable undefected reference
syu;,m containing the same number of atoms has to
be considered in order to determine any excess
quantity associated with the interface (such as

the interface energy, thermal expansion, etc.),
E . :

P * ST GBs are conventionally generated by roating
‘, two infinite, interpenetrating lattices with respect

“to one another, with the subsequent removal of
cnrrcspondmg atoms on both sides of the GB plane.
This procedure gives rise to ambiguities regarding

_ 2 the undefected reference system with the same
& density and crystallographic orientation of the
2N simulation cell as the bicrystal, rendering the

y determination of any excess quantities ambiguous.

1.8.4 Atomic-level geometry of symmetrical-tilt
hundaries

i me astrictly geometrical viewpoint, symmetrical-

2 il boundaries are fascinating, yet little understood,
. objects. Since, like free surfaces and stacking
faults, these simplest of all GBs have only two
macroscopic DOFs (section 1.6.3), in this section
we vf'ill discuss their atomic-level geometry in more

As illustrated in Fig. 1.36(b), the atomic struc-
tre of an STBG is characterized by the familiar
mversion of the stacking of the lattice planes at the

ace (‘twinning’), a feature in commeon to all
Bs. However, the directly inverted configur-
 ation in Fig. 1.36(b) is usually unstable because

two identical lattice planes are right on top of one
other. We refer to this translational state, in which
the GB-plane is a mirror plane but not an atom
plane, as the unastable twin. Two energeticaliv
more favorable translational states are shown in
Fig. 1.38. In the special *win in Fig. 1.38(b), the
GB is both a mirror plane and an atom plane. In the
fcc lattice, for example, there is only one special-
twin configuration, narnely the STGB on the (111)
plane. With the...|ABC|...stacking of (1i1)
planes (with a three-plane stacking sequence,
P(111) = 3; section 1.7.1 and Table 1.1), the
directly inverted, unstable-twin configuration
would be characterized by...|ABC|CBAj...,
while in the optimal translational state the C plane
is shared by the two halves, according to...
|ABC|AB C BA|CBA|. ...

On some arbitrary higher-index lattice plane,
no physical reasons exist to favor the particular,
high-symmetry special-twin configuration in Fig.
1.38(b). The STGB on such a plane usually ex-
hibits some rather arbitrary rigid-body translation
which is not generally a multiple of the in-plane
stacking vector e in Fig. 1.28. We refer to such a
wranslational state, sketched in Fig. 1.38(c), as a
general twin, emphasizing the fact that its planar
structure is still characterized by the inversion at
the GB (‘twin’), but that no special rigid-body
translation exists.

Figure 1.39 illustrates that at least rhree planes
are required in the repeat stacking sequence in the
direction of #, P(s), for that plane 10 accommodate
an STGB configuration. Consider, for example,
the generation of an STGB on a set of lattice
planes with only two planes in the repeat stacking
sequences, such as the (100) and (110) planes in
the fcc and bec lattices. Starting with the perfect-
crystal stacking . ..|AB|AB|...in Fig. 1.3%a),
a 180° twist rotation yields the inverted configur-
ation...|AB|BA| ... (Fig. 1.39(b)). For reasons
given above, this configuration of the STGB in
which two planes are right on top of one another is
usually unstable {(Fig. 1.38(a)), giving rise to a
rigid-body translation, T = (T, T,), parallel to the

interface. The obvious translation to minimize the
mismatch across the interface is one in which B
returns to A; such a translation, however, leads 1o
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the re-establishment of the ideal-crysial stacking in
the lower crystal, as illustrated in Fig. 1.39¢c),
Consequently, the *STGB’ on a set of lattice planes
with 1two or only one piane in the repeat stacking
Sequence is identical 1o the idea] crystal,

With three planes in the repeat stacking
sequence, the lowest-index Plane in the fec latiice
which can actually accommodate an STGB s the
(111) plane. Because of the three-fold symmetry
axis of a unit stack of (111} planes discussed in
section 1.7.2, a rotation by 60° + k«120° (k=0,1,
2,...) abour the {111) normal produces the wel).
known (111) twin boundary sketched in Fig. 1.40,
(In the GB community, this geometrically most
special of all STGRs in the fce lattice is commonly
known as the coherent twin; however, because in
section 1.6.3 the concept of coherency was defined
in a different sense, here we trv 1o avoid this term.)
All other STGBs in the fcc lattice involve at least a
six-plane repeat stacking sequence (Table 1.1), and
no other STGB has been observed to exist in the
‘special-twin’ configuration (in which the GB plane
is a mirror plane).

' ": w2 »
— Fig. 1.38 Definition of three welj-
.—._0.______ characterized iranslational states of
' '-o ! an STGR. (a Directly inverted (and
:-—-—-‘----—---.-:50 _____ ; usually unstable) configuration of
. ’ Fig. 1.36:b3in which 1wo identical

(kR planes face each other across the
() interface. Notijce that in this
configuration the GB-planc is 2
Twinning plane, byt ROt an atom
Plane. (b)In the ‘special’ twin, the
GB is both the twinning and an aom
plane. (¢) In most cases, an STGR
exhibits some rather arbitrary rigid-
body translation, referred 1o asa
general twin, empbhasizing the facy
that its planar structyre is still
characterized by the inversion at the
GB ("twin’) but thai no special rigid-
body translation EXists,

For a more quantitative discussijon of the geo-
metry of STGBs, we now turn to cubic crysialg in
which all relevant geometrical parameters may be
expressed explicitly in terms of the Miljer indices,
(h, k, 1), associated with the GB plane {20].

Formal'y, according 10 €gs. (1.21) and (1.22),
the interface characterized by eq. (1.60) has 3
vanishing tilt component becayse (A, % &y = o
As discussed in section 1.6.1, this apparent djs-
crépancy originates from the fact that (ke sym-
metry relation, 5, = Ty (eq. (1.25b)) does not

one non-collinear combination of fi; and #ty has
o be found which characterizes the same set of
cr_vstallographically equivalent planes.

To illustrate the formal assignment of a tjli com-
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o5 Grain boundaries :
Finally, in the tilt-inclination scheme the bound- two identical lattice planes are right on of one

arv is characterized by feq. (1.54M other. We refer 10 this translational sgu€, in which |
.:DOFS} _ 170y, 50.58%, u = 0, 6 = ) the GB-plane is a mirror plane byt not an atom :
. plane, as the unstable twin. o energetically
(=11 (1.67) .
more favorable transiational ates are shown in
Again, as in the CSL scheme, the GB is readily Fig. 1.38. In the special twin in Fig. 1.38(b), the
7 identified as a pure tilt GB (from the fact that GB is both a2 mirror plang/4nd an atom plane. In the
0 = 0%, and its svmmetry follows directly from fee lattice, for exampje, there is only one special-
the fact that ¢ = 0°, However, starting from these twin configuration, amely the STGB on the (11D
parameters, the identification of the crystajlographic plane. With the/ . |ABC]. .. stacking of (111}
orientation of the GB plane is non-trivial, planes (with three-plane stacking sequence,
We conclude this section by emphasizing an Pl = section 1.7.1 and Table 1.1), the
aspect of the conceptualization of symmetrical-tilt directly ifiverted, unstable-twin configuration
boundaries as special twist boundaries; this is of would ¥e characterized by...|ABC|CBA]|... R
particular relevance to the computer simulation of whileAn the optimal translational state the C plane
GBs. In all GB simulations, in addition to the Is ghared by the two halves, according 10. . .
al- bicrystal at hand, a suitable undefected reference BC|AB C BA|CBA|.. ..
System containing the same number of atoms has to On some arbitrary higher-index lattice plane,
be considered in order to determine any excess no physical reasons exist to favor the particular, .
. quantity associated with the interface (such as high-symmetry special-twin configuration in Fig. §
1ed -, the interface energy, thermal expansion, etc.Y 1.38(b). The STGB on such a piane usually ex-
o * STGBs are conventionally generated by rotag; g hibits some rather arbitrary rigid-body translation ¥
% two infinite, intcrpenetraling lattices with r pect which is not generally a muitiple of the in-plane -
i :gto one another, with the subsequent remgfa) of stacking vector e in Fig. 1.28. We refer to such a b
5b) sg corresponding atoms on both sides of the plane. translational state, skerched in Fig. 1.38(c), as a -
in- §T'lus procedure gives rise 1o ambiguitie: regarding general twin, emphasizing the fact that its planar 'J
on, < the undefected reference system wigh the same structure is still characterized by the inversion at ‘
sed 3¢ density and crystallographic orienfation of the the GB (“twin’), but that no special rigid-body
an L simulation ceil as the bicrystal,/rendering the translation exists.
R, -dctcmﬂnation of any excess quanfities ambiguous. Figure 1.39 illustrates that at least three planes
90° 5 are required in the repeat stacking sequence in the
stal [ 1.8.4 Atomic-leve] geometry g symmetrical-tilt direction of #, P(#), for that plane 10 accommodate
D, : undaries an STGB configuration. Consider, for example, A
: the generation of an STGB on a set of lattice 3
" me  From a strictly geometri viewpoint, symmetrical- Planes with only two planes in the repeat stacking “
ive % tl bounda_riesarefasc ting, yet little understood, sequences, such as the (100) and (110) planes in i
] .. Objects, Since, like surfaces and stacking the fcc and bec lattices. Starting with the perfect- -‘
f 13, these simples of all GBs have only two crystal stacking . . . [AB|AB]...in Fig. 1.39(a),
. mcﬂ_wcqpic DOFs/section 1.6.3), in this section a 180° wwist rotation yields the inverted configur-
' 6 . W will discuss th, T atomic-level geometry in more ation ... |AB|BA]|. .. (Fig. 1.39(b)). For reasons
{ ag, dqm]: given above, this configuration of the STGB in
- As illustrar in Fig. 1.36(b), the atormic struc- which two planes are right on top of one another is
ih O_f an SPBG s characterized by the familiar usually unstable (Fig. 1.38(a)), giving rise o a
= _ 1on of 1€ stacking of the lattice planes at the rigid-body translation, T = (T, T,), parallel 1o the
{ \n- . ace (fwinning’), a feature in common 10 all interface. The obvious translation to minimize the
| as " Bf- Owever, the directly inverted configur- mismatch across the interface is one in which B
A %on in 1g. 1.36(b) is usually unstable because returns 1o A; such a translation, however, leads 10




: " Grain boundaries

A A A Let us now consider the case jn which iy = —5,
R i.e. in Miller indices the interface is characterized
| l by (eq. (1.60b))
A A . A (DOFs} = {th, k, I (=h, -k, ~1), § = )
B 4.9 B - B (1.68)
—_— — — —
A B A Appiving the cubic sYmmetry operations illustraied
B A B above, this expression may be rewritten, for

example, as follows (Fig. 1.41%:
f 1= - = et :
. Ideat crysta! STGB STGB IDOFSI {(hsk: ])s (ha k: 1)98 0 J (169)

where, in order 10 be specific, the z-direction was

(a) (b) () chosen as the symmetry direction, (Had we chosen,
Fig. 1.39 The creation of an STGB on the (100, planc in the fec for example, the y-axis as the symmetry direction,
or bee lattice by a 90° :wilsl rotation (fo; m = 2; section 1.7.2) (h, kB, —1) would be simply replaced by (k, ~k, )
n Hlustrates that, upon suitable (ranslation mn (c), the STGB As illustrated in Fig. 1.41. the condition, fi, = —#
ion i identical to the perf I 2 :
,-::fﬁmuon in (b) becomes identical 1o | ¢ perfect crystal in may thus be equally written as (ﬁz); - —(ﬁ1);.
S Te sumrmarize, a non-collinear set of planes
*:1 11> <111> <111> which is crysEaHograPl}ica;Iy equivalent 1o the col-
e linear set for n; = —h) 1s given, for example, by the
4 t t condition that (,), = ~(#y).. These expressions for
A i) and #; .nay be inserted into egs. (1.21) and
A (1.22) 10 determine the 1ilt component of the
B B interface, according 1o [21]
C T-(T) ¢ -k
in T T = Ar = (R + B2 4, (1.70)
be C B ; - 0
es, B A .
2) A c SInY = 2% 1087 + B2V + 12 4 ) (1.71)
N A —_ —_ , s
S E: i 3. i.e. the tilt axis and -angle are fully determined by
0. i crystal “Unstable twin' {111) twin' the !_Vlillcr indices associated with the STGB plane.
Jis- L ot - Given that an STGB has only rwo DOFs, byt
m- i : (2) (b) (e) that 7 and ¥ represent three geometrica] par- >
not '. b 1.40 Generation of the (11}) twin boundary in the foc ameters, it is not surprising that the til; axis and ‘
ent f : e 832 60° twist boundary (with'_;'_ =B3; scction 1.7.2). In the angle obtained from €qs. (1.70) and (1.71) are not
. { 3 ee-plane nomenclature, this STG would thus be charac- : o H :
na Pred by cither (11D (111) 60° or (M A ee (egs. (1.60a) up:qucf, an: other (S",}:'Gg) COl'l'lllbln:than maly be
-ast Rt (b)), Its CSL-based characterization (eq. (1.64}) as 2 twist given for the same B on [_ e ( 2 [) plane.
has SY would be (111) 60° (111); by conirast, as 2 tilg The number of combinations is finite, however,
of e oY it would be defined by (110) 70.53* (i11) (= = 3), because the number of crystallographically equi-
T valent non-collinear combinations of Miller indices
m- f"(j"" mto a form (A, ky £, (h, +p, D, or (zh, is finite. As an example, we consider the STGB
wn 13 ,-Starting, for example, with (—k, 1, k), one can on the (3, 4, I} plane which, according to eqs.
ion ERorm 3 9¢° rotation about the y-axis (such that (1.70) and (1.71), may be considered as having
be ; Bt 2, 2 — %> X — 2) 10 obuain (4, I, —k); next, a been gencrated by a rotation about the (-4,
oult FRAtion about x by —90° (such that x — x, 2 . -y, 3, 0) axis by y = 22.67°. However, in deriving
for b 3 z) finally yields (he (hy b, D) configuration. eqs. (1.70) and (1.71), we could have chosen, for
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X “\\( _ . Filg.’ 1.43 Rclationsl;:i;;:;:)cm:h;s 1::1“1!
i - 14 _ . (1.74) between I = L(hk!) and d{kk!) for
H‘“' N '\.(.3321(334) (178) 3 l?/z' STGBs with a common (110} tilt axis in
T - - L 3 - _ €x |/ (a) the fec and (b) the bee lattice [20).
(22?‘%\\:.(”6)_(5.29_{921’(53) (556) 2 The figure demonsirates that a low value
_ (|T3,(223‘i.(33"--_._...__.(255‘)' _.:‘335) _ of I is necessary, but net sufficient, for s
M {1i5) (43)) (433) (551} large value of d(hk!). The value of ¢’ =
0 , . ' r ' ¢'(hk!) defined in eq. (1.74) also has to
g 0 0 20 30 40 50 80 assume one of its largest values for d(hk!)
- )M 10 be large.
= B'Szaz[d(hkl)]‘z, (B'se =1o0r0.5) of the STGB on that plane is_ tHustrated in Figs.
= B"az[d(hkl)}‘z, 1.43(a) and (b) for STGBs in the fcc and bee
" ® (B"=1,05,0.25 or 0.125) (1.73) lattices, respectively. Instead of plotting X as a

8 relationship between d(hkl) and the value of T

function of d(h, k, ), however, the figure shows the
inverse relation {eqg. (1.73))




’ @ Atomic-level geometry of crysialline interface; Ch
_1 -1 -1 planar unijt.cel] dimensijong (identical 1o those of of t
dh. ko 1y = (BT ge7r £'al -, the perfect crvsial). This unique geometry of desc
€= 1,322,055, or N2/4) (1.74) the pure 1in configuration on 3 given plane struc
Finally, for 4 Bravajs lattice with a basis of one gives rise to a deep energy cuspatt = 180°, a4 Shoc
atom {with atomic volume ), (he Planar unit-ce]] hence 10 “special’ Properues of STBGs {33; mobi
area of the STGRB and perfect-crysral configurations Mos; twist boupdar 1es may therefore be vieweg in te
on the (h, k, Iy plane is given by (eqs. (1.41) ang as ‘.vxcmal’ 1o etther the STGR configuration on atomi
(1.43) a.glf'en Plane or 1o the perfect crysiaj. excell
3. Similar 1o free surfaces, the geometry of the tify Thy
Ak, by 1)y = Q/a(h, k1) : boundaries may be expressed entirely in term; mterf:
= (Qa)e™'(h? + 32 4 IS of the two DOFs associated with the Milley mterf:
(e =0.50r 1 (1.75) indices of the GB plane. The three geometricy] ized i
For example, u'iFh Q=44 ‘and Q= a2 for [he ga:_l:?;: e:;ig]ug]e ult axis and 4ngle are there. kGIE(:)v:'I
fcc and bee lattices, rc:spectxvelys the ar eazl unies 4. The value of Z, the inverse volume density of crystal
/e in eq. “'75)_ are given by g /4 and @’/2, re. CSL sites, is governed by the number of planes &-func
spf:cuvely. Equation (1.75) 1s°rcadlly eftended_ to in the repeat stacking sequence, P(hk/), which with 1t
tWist angles other than 6 = ¢ and 130°. Starting in turn is given by the Miller indices of (he GB distant
from the planar density of CSL sites for a given plane, of the
twist angle, '), eq. (1.62) yields 5. At least three planes are required in the repeq ‘ﬁlﬁc‘i
AB, b, b, 1) = r'e) Ak, k, 1) | stacking sequence, I"(‘hklj, for a plane. to . ,,_OWII
= FOXQa)e~(h? + 32 . o accomme.date a non-trivial STGB configuration, - face m:
(€ = 0.5 or 1) (1.76) The ‘STGB’ on 3 set of lattice planes with P{hkt - 2ET0 a1
' = 2 or 1 is identical to the idea] crystal, _dzaton
We conclude by Summarizing the following pro- 3'5 inho
perties of symmetrical grain boundaries in cubic '._=?dnort_iex
crystals. .- CHARACTERIZATION OF TiE ATOMIC i« the dire
1. Without loss of generality, ali symmetrical STRUCTURE OF INTERFACES ' gonsider
boundaries in cubic Bravais lartices may be “gtie aton
characterized as follows: Throughout this chapter we have been concerned . Jhe plan;
» with the (macroscopic and atomic-leve)) geometry i rththcfc
i 2l of solid interfaces, which we distinguish funda. et HIC 1T
DOFs = ["' =Ry £ 2(?)’ mentally from their atomic structure, The inves- : e case
tigation of ‘structure’—property correlations for 'g‘kmther ’
afh interface materials usually involves both of these '.ﬂ Mmany
n2 = (B + &+ 2yH >0 aspects of the interface structure, geometrical and disorder
%l (1.77) physical, although the ultimate goal remains to ‘e_.ﬂ'ects e
correlate physical propertjes with the five macro. dnorder.x
Here the + sign defines the set of symmetrical- scopic DOFs. To Hlustrate this distinction between denir
: ies ; ; ; : towards |;
twist boundaries in which the symmetrical-tilg the (cryslallography-based) geometry and (physics-
boundaries are included for § = 180°. The — based) atomic structure of interfaces, in this finai the
. . ) . , ) ] . - %een from
SIgn 1s useful only if one wishes o formaily Secion we briefly review g fow concepts that have ©), wi
assign a tilt component 1o the mterfaces. evolved for the characterization of the atomic struc- » With
2. In the related three-parameter phase Space, the ture of solid interfaces, Posation
STGBs are geometrically unique in thay (a) they The usefulness of any model for the z10mijc 1;0"8?1
fepresent a special subset of twist boundaries, structure of solid interfaces should be assessed in Ghlmen R
and (b) they represent the GBs with the smajlest terms of its ability 10 predict physical properties , ed
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of the interface, in addition to providing a goqd
description of its crystallography and/or atomic
structure. The dislocation model of Read and
Shockley [40], which predicts the structure, energy,
mobility, and other properties of low-angle GBs
in terms of a quantitative characterization of the
atomic structure (via Frank’s formula (1.61), is an
excellent example for such a model.
The most pronounced structural feature of solid
mterfaces is the atomic-level disorder near the
interface. This type of disorder is well character-
ized in terms of the radial distribution function,
G(r), or its Fourier transform, S(k). As is well
known, thermal disorder in an otherwise perfect
crystal gives rise to two effects in G(r): First, the
&-function-like zero-temperature peaks associated
_with the shells of nearest, second-nearest and more
; Mt neighbors are broadened; second, because
: 'l'i"fthc volume expansion, the peak centers are
hifted towards larger distances.
ng to the presence of planar defects, inter-
% materials are structurally disordered even at
O temperature. However, because of its local-
tion near the interface, this type of disorder
i inhomogeneous — in contrast with thermal
‘Sdtorder {42]. To illustrate this inhomogeneity in
-2 the direction of the interface normal, it is usefu] to
Ptonsider the radial distribution function for each of
: atom planes near the interface (or, conversely,
i€ planar structure factor). As seen from Fig. 1.44
& the case of a symmetrical (100) twist boundary
the fcc lattice, the amount of structural disorder
gecreases very rapidly from one (100) plane 10
@other, indicating the existence of large gradients
R many properties, Interestingly, the structural
p=rorder at the interface gives rise to the same two
flects even at zero temperature, as does thermal
I pdsorder in an otherwise perfect crystal, namely, a
ﬁ'ﬂndcmng of the peaks combined with a shift
5Owards larger distances [42]. This shift, originating
‘wom the volume expansion near the interface, is
s4pgernt Irom the shift of the arrows in Figs. 1.44(a)-
139 With the open arrows marking the average peak
f-g‘llgnnon in the bicrystal while the solid ones mark
we Corresponding perfect-crystal peaks.
. B¢ type of detailed atomic-level information
#8%0tained in Fig. 1.44 is difficult 1o obtain experi-

mentally. Varicus models have therefore been
proposed 10 describe the atomic structure at the
interface without having 1o know the atom positions
too precisely. In one such group of models,
summarily known as polyhedral- or structural-unit
models and primarily applied to GBs [41, 43-46],
the atomic structure is described in terms of the
stacking of polyhedra along the interface (Fig.
1.45; [47]}. The requirements of space filling at the
interface, and of the compatibility of the structural
units with the adjoining grains, generally cannot
be satisfied simultaneously, however, unless the
polyhedra are elastically distorted. Hence, while
the idea to describe the structure of GBs in terms of
a few basic polyhedra is interesting, the systematic
distortions of the polyhedra from one GB to
another make it difficult to quantify the structure.

In a second group of models, known as hard-
sphere models, the optimum translation paralle!
to the interface plane is assumed to be the one
which minimizes the volume expansion at the GB
(41, 48-50]. Although based on unrelaxed atomic
structures, via the volume expansion these models
provide at least a rough quantiiative measure of the
degree of structural disorder at the Interface.

As discussed in detail elsewhere [29], both
groups of models may be combined via the charac-
terization of the atomic-level disorder in terms of
the number of broken nearest, second-nearest and
higher-order neighboring bonds. Such a quantified
formulation of these models makes them now avail-
able for a systematic investigation of atomic-level
structure—property correlations {29]). While such
broken-bond models have been very successful for
over 50 years in predicting physical properties of
free surfaces from their relaxed or unrelaxed atomic
structure [28], their application to solid interfaces
is not yet very widespread.

In a broken-bond model the alomic structure
is characterized Quantitativelv, for example, via
the number of broken v-th nearest-neighbor (nn)
bonds per unit interface area, given by [29]

COv) =L, |Kig(v) - K, (v)|/A (1.78)

where A is the planar unit-cell area. K,(v) denotes
the number of \-th nearest neighbors of atom n,
while Ki4(v) is the related perfect-crystal valye.
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ny structural units [47]. (Courtesy of K. L. Merkle).

mewhat arbitrarily, the nearest neighbors are
ed to include all those atoms situated between
l(lisl:ance and the half-way point, R,; = (R +
REV2, between the nearest and 2nd-nearest neigh-
BEEs in the perfect crystal. C(v = 1) is thus closely
ginected with the area under the nn peak in the
Wl distribution function. The ‘miscoordination
cient’ C(1) thus provides a convenient quan-
[itive measure of how well the atoms are, on
rage, coordinated in the fully relaxed structure,
Al) is usually given in units of a2 [29].
This definition of broken nn bonds corresponds
the replacement of the overall plane-by-piane
ial distribution functions near the GB, for
mple, in Figs. 1.44(a)~(c) by the integral under
Bearest-neighbor peak in G(r), with a sub-
"0t summation over all the lattice planes near
s terface. Because all the information contained
L. lhe detailed shape of the nn peak is thus lost.
PWC strain-field effects associated with inter-
o dislocations of surface steps are therefore

) ) 45 HREM picture of the structural units in the (00) Yy =387
: this GB would be referred to as the STGB on the (310} plane

{310} (£ = 5) STGB in NiO [47). (In the interface-

piane
s 310y 310y 0

i €. (1.60)b.) The inset shows the image averaged

not included in C(1), as is also the case for the
polyhedral-unit and hard-sphere models. While in
the case of the free surfaces this may not be a very
severe limitation, in low-angle GBs the strain-fields
associated with interface dislocations may dominate
the behavior near the interface, thus severely limit-

ing the use of these models. (For further details
see [27] and {29].)
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