{h@j UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL URGANIZALTION " gﬂ
2 | INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ===
L.CT.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE: CENTRATOM TRIESTE

SMR.703 - 16

WORKING PARTY ON
MECHANICAL PROPERTIES OF INTERFACES

23 AUGUST - 3 SEPTEMBER 1993

"Interfaces: Structure and Properties'
(Part 1V)

"Role of Interface Dislocations and
Surface Steps in the Work of Adhesion"

Dieter WOLF
Materials Science Division
Argonne National Laboratory
9700 S. Cass. Avenue
Building 233
Argonne, 1L 60439
U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

Mty Buiioing Strana CosTibra. il Tee 22401 Tevkrax 224363 Teies 460397  Apmiatico Guest Ho sk Via GRiGaano, & Ter. 224241 Teoeean 228531 Teeex 460449
MicnorROCESSOR Las. Via Beri 1, Y TeL 224471 Teeeran 224163 Trien 460392 Gauwzo Guest Hotse Via Berana, ? Teo. 22400 Teieean 224559 Truex 460392






CHAPTER TWENTY-SIX

work of adhesion
D. Wolfand J. A. Faszczak

Role of interface dislocations
and surface steps in the

Introduction - Interfacial decohesion: from interface dislocations to surface steps + Computer simulations -
Core and elastic strain-field effects in free surfaces and GBs - A broken-bond model for intertacial decohesion

- Summary and conclusions

26.1 INTRODUCTION

Although crack extension is usually accompanied
by plasticity and other highly complex, non-
equiibnium kinetic phenomena, the ideal brittle-
fracture energy nevertheless represents a useful
lower thermodynamic limit for the work of ad-
hesion, W, particularly since it is often assumed
that both the plastic work and the energy due to
kinetic processes tncrease in proportion with W
[1]. Britte interfacial decohesion in the sense of
Griffith [2], L.e. the reversible transformation of an
internal interface into two free surfaces, hence
requires as a minimum an understanding of the
equilibrium energies of the initial and final states,
from which the ideal cleavage-fracture energy,

W_!ad = + Yy — B (261,

van be determined. Here the energy of the internal
interface is denoted by ¢, while the two free-surface
energies are denoted by v, and v,, respectively. To
etucidate ideal-cleavage decohesion of internal
interfaces hence necessitates a better under-
standing, from a common viewpoint, of the
energies of internal intertaces and external sur-
faces. In the following, bv investigating the zero-

temperature work of adhesion, we hope to develop
such a unified framework.

Much of the high-resolution-microscopy work
of recent years has shown that the structure of
internal interfaces generally consists of areas of
localized misfit, so-cailed misfit  dislocatios.s,
which are separated by elastically strained regions
of relatuvely good match across the interface
(1, 3-5]. Similarly, the structure of free surfaces
is usually characterized in terms of localized steps
or ledges which are separated by regions of ‘flat’
surface material [6]. The ideal-cieavage decohesion
of an internal interface into two free surfaces may
hence be viewed as the reversible transformation of
misfit dislocations into surface steps. Since both
interface dislocations and surface steps consist Qf
highly disterted core regions surrounded by elasuc
strain fields, interfacial decohesion therefore
involves the transformation of dislocation cores
into the cores of surface steps, and of the lO_HB'
range elastic strain fields near dislocations info
the much shorter-ranged strain fields surrounding
the surface steps. It is the purpose of this chaptef
to investigate the underlying core and clasuc
phenomena accompanying this transformation DY
means of atomistic computer simulations.
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Introduction

Without loss o gencradity,  throughout  this
chapter we will consider the decobhesion of grain
Soundaries GBs  as simple model svstems lor
clucidating the transtormaton ot dislocations into
sleps. As discussed, tor example, in Chapter 1 of
this volume (7], GBs generally have five macro-
seopic degrees of freedom  DOFs), i.e. three more
thar free surfaces “with onlv the two DOFs as-
soclated with the surface normal, #;. However, to
emphasize the geometrical similarity between GBs
and free surfaces, these DOFs will be chosen such
rhat four are assoclated with the GB-plane normal,
charactenized by the unit vectors #; and 7 in the
twoy halves of the bicrvstal ‘corresponding to the
iwo fracture surfaces obtained upon decohesion),
while the remaining one 1s represented by the twist
angle, 8, A non-vanishing value of 6 adds a twist
component (i.e. screw dislocations) to the GB,
in addition to the ult component (i.e. edge dis-
locations) already present once the GB plane has
been fixed. Then, to focus on the similarity
between surface steps and edge dislocations (to
be elaborated upon below), but yet sull capture
the essential core and elastic phenomena involved,
we limit ourselves to the following two types of
GBs whose structure contains edge dislocations only.
l. By investigating pure tilt boundaries, from

the outset the twist component is eliminated
altogether. Like free surfaces, the GBs are fully
characterized by only the DOFs associated
with the interface plane (four in the case of
asymmetrical tilt GBs, and two 1n the sym-
metrical case). Their dislocation structure
should therefore be most intimately connected
with the structure of the steps in the corre-
sponding fracture surfaces,

2. For large twist angles, 8, in the Read - Shockley
sense [8], the cores of the screw dislocations
overlap completely, and a simple model may be
formulated in which all interactions across the
interface are assumed to be entirely random.
This model of a ‘random grain boundary’ (RGB)
[9-11] thus represents an idealized theoretical
model suitable for high-angle twist boundaries.

Because in the RGB model the twist angle is
eliminated as a DOF, both pure tilt boundaries and

L3

RGBs are charucterized fully by only the DOFs
assoctated with the GB plane. However, in the
RGB muodel screw  dislocations — albeit with
completely overlapping cores - are, in principle,
present. A comparison of the work of adhesion of
RGBs with that of pure tilt boundaries should
therefore elucidate the role of screw dislocations in
the transformation of interfacial edge dislocations
into surface steps.

Given that i) the appearance of steps in surfaces
is directly connected with the crysullographic
orientation of the surface plane and (ii) the strictly
edge-type dislocations in both of the above types of
GBs are fully characterized solely by the DOFs
associated with the GB plane, a comparison of the
energies and structures of these GBs with those of
free surfaces should also provide insight into the
importance of the role of the interface plane in the
work of adhesion. Moreover, since the bulk ideal-
crystal brittle-fracture energy, 27 (eq. (26.1)) is
also a very sensitive function of the fracture plane,
such a comparison of free surfaces and GBs also
provides information on the crystallographic
anisotropy of the perfect-crystal cleavage energy.

Two conceptually different types of interatomic
potentials will be used in our computer simu-
lations. To provide some insight into the role of
many-body effects, results obtained via a semi-
empirical many-body embedded-atom-method
(EAM) potential [12] will be compared with
simulations involving a conceptually simpier
Lennard-Jones (L.]) pair potential. EAM poten-
tials have the advantage over pair potentials that
they incorporate, at least conceptually, the many-
body nature of metallic bonding, while being
relatively efficient computationally., In these
potentials the strength of the interaction between
atoms depends on the local volume or, in another
interpretation, on the local electron density
‘sensed’ by every atom. Also, while at zero tem-
perature any equilibrium pair potental auto-
matically satisfies the Cauchy relation for the
elastic constants, C,; = Cy4, these many-body
potentials permit all three elastic constants of
a cubic metal 1o be determined (or used in the
fitting). An iterative energy-minimization algor-
ithm (‘lattice statics’) is used to compute the fully
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relaxed ZCro-temperature  atomje structure  and
eicrgy of free surfaces and GBs, including the
volume  expansion at  the nternal
[13, 14].

It should be noted that the absolute values of GB
and free-surface energies presented throughout this
chapter are probably not very reliable. Even for the
many-body potentials there exist discrepancies (in
SOMe ¢ases up 1o a factor of two [12]) between the
computed free-syrface energies, on the one hand,
and the values obtained from experiments ang by
means of electronic-structure methods on  the
other. We nevertheless beljieve that a comparison
of the relative energies of GBs and free surfaces is
Mmeaningful, particularly when the same generic
behavior s obtained by means of conceptually
different tnteratomic potentials,

The chapter s organized as follows. [n section
26.2 we offer a formal description of the work of
adhesion for symmetrical tilt boundaries (§TGBs;
In terms of the line energles of the underlying edge
dislocations and surface steps, including their

interfaces

(b}

x

z

Fig. 26.1 Orientation of a vicinal’ surface |, One centaining
steps of height 4 [, 713, with unit normal 7, which is rotated by
the angle Ay relative 1o a'special’ surface fi.e. one giving rise ro
an energy cusp), with un;t normal 4., . In both {a;and by, the
vicinal susface s assumed to lie m the X-y plane, with the
surface normal defining the 2 direction. Whle ) shows a view
down the v axis (i paralle! 1o the stepss, (b) represents a view
onto the x-y plane, with the steps, separated by the distance a,
forming the left and right edges of the planar ynir cell

®

s i adhesion

elasue interactions. [n section 26.3, gup computer-
simulatton resules for the energies of STGBs, ithe
RGB model and free surfaces will be compared,
including the work of adhesion of (he internal
interfaces, Ap analvsis of the crystallographic
ARISOtropy of the weork of adhesion 1s a)so presented
In section 263, This systematic investigation of
the role of the interface plane in ideal cleavage
decohesion  leads naturally 1o the distinction
between special’, vicinal’, and  “high-angle’
interfaces,  with qualitatively  rather differeng
behaviors of the work ot adhesion. Then, in section
26.4 the core and elastic-interaction energies of
seps and  dislocations are determined directly ;

by considering in detail the enecrgies of STGBs .

and surfaces in the vicinity of rwo CRCrgy cusps. ¢
Finally, in section 26.5 it is shown that only the
cores of the steps and dis]uca[ions, but not thejr ¢
surrounding  strain fields, give rise (o broken
bonds; this finding leads naturally to an elucidatjon
of the role of broken bonds in interfacial deco-
hesion and, hence, the [atrinsic limitations of
broken-bond and structural-unit models,

26.2 INTERFACIAL DECOHESION: FROM

INTERFACE DISLOCATIONS TO SURFACE
STEPS

26.2.1 Surface steps

With only the two macroscopic DOFs associated
with the surface normal, free surfaces conceprually
represent the simplest of al] planar defects {Chapter
' in this volume {7]). Given that these two DOFs
are usually chosen to represent the orientation of
the surface normal, the appearance of steps in
surfaces s clearly connected with the crystallo-
graphic orientation of the surface plane. Figure
26.1 illustrates the orientation of a “vicinal® surface
(i.e. one containing steps 6, 7)), with unit normal
fiy, relative to a ‘special’ surface (i.e. one giving rise
10 an energy cusp), with unjt normal #,,. In both
Figs. 26. I{a) and (b), the vicinal surface is assumed
to lie in the x-y-plane, with the surface normal
defining the z-direction. While Fig. 26.)(a)

shows a view down the ¥-axis (i.e. parallel to the
steps), Fig. 26.1(b) represents a view onto l_hc
x—y-plane, with the Steps, separated by the dis-
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tinee o, torming the left and right edges of the
olanar unit cell.

According to the ligure, the detailed geometry of
the steps 1n the vicinal surfuce mav be described in
terms of a rotation of the unit vector Rousp about an
axss perpendicular to both flousp and 71, by the angle
\w; the latter ts obviously determined by the dot
product

COS Ay = YA, AL, 126,23
wusp s \ ;

Thus, the spacing, 6, between the steps of height #
5 given by

O = h/sin Ay (26.3)

[t one assumes the increased energy of the vicinal
surface to be entirely due to the introduction of
steps tnto the cusped surface, its energy per unit
ared, v, = y(Awy), may be written as follows [15]:

1AW) = [Yowp Ausp + TOLAAY)  (26.4)

The second contribution on the right-hand side
represents the total line energy of the steps per unit
surface area, with I'(d) denoting the energy per
unit length of the steps (i.e. their line energy) and
L, representing the total step length in the planar
unit cell (Fig. 26.1(b)). Because of the interaction
between neighboring steps, the line energy [ is a
function of their distance &, The first contribution
to t(Aw) in eq. (26.4) arises from the energy of the
cusped surface, v,,,, = 7(Ay = 0), reduced how-
¢ver by its projection onto the larger planar unit-
cell area, A(Aw), of the vicinal surface relative to
the unit-cell area, A, = A(Ay = 0), of the
cusped orientation. As seen from Fig. 26.1(b),
A{Awy) 1s given by

AlAv) = L3 = L hfsin Ay {26.5)
from which it follows that
Acusp/A(AY) = 876 = cos Aw (26.6)

with &' defined in Fig. 26.1(a).
Inserting eqgs. (26.5) and (26.6) into eq. (26.4),
and using eq. (26.3} to replace Ay by &, we obtain:
1

HB) ~ Youspll = R = (835 (26.7a)

Sometimes it is more convenient to express v
directly in terms of Ay and write instead:

# AW = ge c0s Ay = [Tid)/h]sin Ay

126.7b)

As discussed further in section 26.4.1, the
murtual repulsion between steps arising from their
overlapping elastic strain fields may formally be
incorporated in eqs. (26.7(a)) and (b) by decom-
posing the line energy I as follows:

rld) = r:cvln: + rdkd) (268)

where 0. and [, represent, respectively, the
‘core” and strain-field (i.e. elastic) energies of the
step. In writing eq. (26.8), it was assumed that only
the ¢lastic contribution to the line energy varies as a
function of ¢ while the core energy of the steps is
essentially independent of 8. The validity of this
assumption will be tested in section 26.4.1.

The elastic energy in eq. (26.8) may be broken
down further into the line energies of isolated (1.e.
non-interacting) steps, [;] = I',(6 — =), and the
step~-step interaction energy, [ '3 *(4), according to

Fa6) = I + Iy (26.9)

As illustrated schematically in Fig. 26.2, the elastic
step—step interaction energy is determined by the
(shaded) area of overlan of the elastic displacement
fields surrounding each individual step, and
therefore varies as a function of §. According to
Marchenke and Parshin [16], the consequent
elastic repulsion between two idenucal steps
decreases inversely with the square of their dis-
tance, according to
338) = Gi°/8° (26.10)
where G37° is a constant characterizing the elastic
strength of the step—step interaction. Inserting
eqs. (26.8)-(26.10) into eq. (26.7(a)), we thus
obtain: 1
+(8) =~ Feuspll — KD = [=/8 + G /&’
(26.11a)

where '™ contains the &-independent contri-

butions, according to
™ =T%e + T4 (26.12)

By definition the line energy of an isolated step,
I'*, thus includes contributions from both the fully




J7is Role of interface dislocations and surface steps in adhesion

i
@ /:lL \‘
T S

ey 5:

b ossrrsorivevirrres

-3
r [l
al

Fig. 26.2 Elasuc strain ficlds between steps schenatic). (a
Non-interacting limit ifor large separations o) in which the
strain fields do not overlap. (b) The interaction between steps is
Biven by the arca of overlap between the strain fields of neigh-
boring steps.

relaxed cores and elastic displacement fields of the
steps, while [27°(8) arises solely from the dis-
placement fields (Fig. 26.2).

Instead of expressing the elastic energy directly
as 2 function of 4, it mnay alternatively be expressed
as a function of Ay, i.e. [(6) — T(Ay); eq. (26.3).
Equations (26.8)-(26.10) may then, instead, be
written as follows

r(AW) = rcnrc + rel(Aw) (2613)
latdy; =T + Ay (26.14)
%Ay = (G5 RP) sin® Ay (26.15)

and eq. (26.11a} becomes (eq. (26.7b)):
Y(AW ~ Ycusp €08 Ay
= (I'/hdsin Ay + (G2R?) sin® Ay (26.11b)

The validitv of egs. (26.117(a}} and ‘b), and the
assumptions made in their derivation, will be tested
in some detail in section 26.4.1,

b4

(b}

Fig. 26.3 Conceprually o symmetrical tilt grain boundary
STGB: mav be tormed by bringing two identical free surfaces
inte contact, thus transtforming the two parallel sets of surface
steps, each of height A, 1nto two paraltlel sets of edge dislocations,
cach with Burger’s vector & icompare Fig. 26.1:. [n forming
such a ult bicrystal, the relauve pusitions of its two halves,
characterized by the rigid-body-translation vector T = (T, T,
T}, are varubles.

26.2.2 Interface dislocations

It is interesting to observe the geometrical simi-
larity of this picture of a vicinal-free surface
with the geometry of an STGB. As illustrated
in Fig. 26.3, an STGB may conceptually be
formed by bringing two identical free surfaces into
contact, thus transforming the two parallel sets of
surface steps, each of height #, into two parallel sets
of edge dislocations, each with Burger’s vector b.
In forming such a tilt bicrystal, the relative posi-
tions of its two halves are obviously variables.
The three components of the related rigid-body
translation vector, T = (T, T,, T,), are known as
the three microscopic or translational DOFs of
the GB {17]; in practice they are governed by
the condition that the bicrystal be in a state
of minimum free energy or, at least, in a mefa-
stable translational state for a given choice of the
macroscopic DOFs,
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Assuming some arbitrary, but well-defined rigid-
body translation to be present at the GB, in analogy
10 ¢q. ‘1 26.7a; the energy per unit area, (Ay), of a
wicinal’ GB 7i.e. one in the vicinity of a ‘special’
or ‘cusped’ GB which, bv this definiton, is en-
nrely dislocation free; mav be written as follows
Figs. 26.1 and 26.31:

| .
GE = e ] = RSTS = 288 126.16a)

or, 1n analogy to eq. 26.7b),

AW = Euep €03 Ay = 2[AL9)/b] sin Ay
(26.16b)

where £, Is the energy per unit area of the cusped
GB while A(d) denotes the total energy per unit
length of the dislocations, i.e. their total line
energy. Notice that in writing eq. (26.16b}, the
step height, A, in eq. {26.7b) was replaced by the
magnitude of the Burger's vector, b (Fig. 26.3(a)).

[f the tlt boundary in Fig. 26.3 were asym-
metrical, the two sets of edge dislocations would
still be parallel to the tilt axis; however, their
spacings, 8, and d; (which are related to angles Ay,
and Aw,), and Burgers vectors, b, and b;, would
now differ, and eqs. (26.16a,b), would have to be
modified accordingly.

As in the case of the steps, the mutual repulsion
berween dislocations arising from their overlapping
elastic strain fields may formally be incorporated in
eq. (26.16) by decomposing A as follows {(eq.
(26.8)):

A(6) = Agf)rc + f\e](a) (2617}

where AZ.. and A, represent, respectively, the
core and elastic strain-field energies of the two
sets of dislocations. As for the steps, in writing
eq. (26.17) it was assumed that only the elasuc
conrribution to the line energv depends on &
while the dislocation-core energv is essentially
independent of their spacing, an assumption to
be tested in section 26.4.2.

The elastic energy in eq. (26.17) may be broken
down further into the line energy of an isolated (i.e.
non-interacting™ dislocation, AJ = Aygio — =1,
and the energy of interaction berween diiferent
dislocations, A&, according to Fig. 26.2:

Agdr = AL+ AW 126.18)

L‘-L
As in the case of the steps, the latter is determined
by the areca of overtap of the elastic displacement
fields surrounding cach individual dislocation, and
therefore vartes as a function of 6. According to
Read and Shockley [8], the dislocation-interaction
energy depends logarithmically on their distance,
according to

AdHEY = L4 Indb/é) (26.19)

where the constant LY characterizes the elastic
strength ol this repulsive interaction. Inserting
eqs. (26.17)-(26.19) into eq. {26.16a), analogous to
eq. 126.11a) we obtain:

t
(6% — fup(l — AT87)
= 2[A /6 — (L48)In(b/6)] (26.20a)

where A” contains the é-independent contribu-
tions, according to (compare eq. (26.12))

A" = AL + AL (26.21)

As is well known, the elastic contriburtion to the
line energy of an isolated lattice dislocation in an
infinite crvstal, AJ, diverges whereas the core
contribution, AJ,., remains fnite. However, for
the long-range-ordered arrays of dislocations in
GBs (with murually opposite Burger's vectors;
Fig. 26.3), these divergences in the far-away strain
fields of the individual dislocations cancel one
another, with a consequently finite and small
residual value of A determined by the geometry
of the array. The line energy in eq. (26.21) is
therefore probably dominated by that of the dis-
location cores. Interestingly, the total line energy
of the steps in eq. {26.12) is also dominated by the
core energy; however, for an entirely different
reason, namelv the weakness of the step-step
interaction (section 26.4.1 below). A comparison
of the line energles of steps and dislocations
therefore provides mostly information on the
related core energies while the information on their
elastic displacement fields is largely contained in
the interaction-energy term, i.e. the magnitudes of

S*and L&,

As for the steps, eq. (26.20a) may alternauvely be




writlen in terms of Ay as follows egs. 26.16b,
and ' 26.11b);:

AW = gL eos Ay
= 2[{A"/b)sin Ay
~ (L9378 sin Aw Insin Aw] 126.20b;

The validity of egs. (26.20a,b), and the assump-
tons made in their derivation. will be tested in
some detail in section 26.4.2.

26.2.3 Work of adhesion

If we assume that the free surfaces in Fig. 26.1 and
the STGBs in Fig. 26.3 show energy cusps for the
same special crystallographic planes (an assump-
uon to be tested below), eqs. (26.11) and (26.20)
may be inserted into eq. (26.1) to obtain the ideal
cleavage-fracture energy,

1
Wo) = (2 0 — Eowpl(1 = K167
+ 20— AT
2GS + LA In(bis))
(26.22a)

or, in terms of Ay,

de(Aw) = (Z‘KLunp - Ccusp) cos AW
+ TR — A™/b)sin Ay
+ 2 sin Ay{(G*/h)sin? Ay
= (L by In(sin Ay)] (26.22b)

According to these expressions, a high cleavage
energy therefore requires (i) a large difference in
the cusped energies, Zcusp — Ecuspy andfor (ii) a
large line energy of the steps compared 1o that of
the dislocations, and/or (ii1) a high elastic energy of
interaction between steps by comparison with dis-
locations. For a better understanding of the work of
adhesion it is therefore necessary to 1nvestigate the
core and elastic properties of steps and dislocations.

Finally, exactly at the cusp (i.e. for Ay =0, or
6 — =}, eqs. (26.22a,b) reproduce the trivial result
that for a symmetrical GB,

Wad(All-’ =0 = (zqfcusp = Eeusp) (26.23)

Because the cusped surfaces and interfaces are free
of steps and dislocations, respectively, the related
work of adhesion therefore provides no information

L Role of interface dislocations and surfuce steps in adhesion

on cither the line energies ot steps and dislocations
or on their interaction.

26.2.4 Distinction between ‘special’, *vicinal’,
and “high-angle’ interfaces

The above discussion illustrates the distinet effects
due to the cores and clasue strain fields of interface
dislocations and surface steps in the work of
adhesion. These effects lead naturally to a dis-
uncuon between three tvpes of interfaces, with
a rather different physical behavior as far as the
work of adhesion 15 concerned. [n analogy to the
distinction between low- and high-angle GBs, we
disunguish ‘vicinal’ interfaces, whose work of
adhesion is governed by both the elastic and the
core effects, from *high-angle’ interfaces, in which
the core effects dominate completely. Because
they are entirely free of dislocations or steps,
the “special’ interfaces represent a class all by
themselves; similar to the ‘high-angle’ interfaces,
however, no elastic cffects therefore contribute to
their work of adhesion.

Since the distinction between special and vicinal
interfaces was discussed earlier in this section, here
we only consider further what we refer to as the
‘high-angle’ interfaces. Because in these interfaces
the cores of the dislocations and of the corre-
sponding surface steps overlap, their work of
adhesion can be expected to be dominated by the
core energies. Given that (1) the elastic interaction
between line defects is mediated by the strained
perfect-crystal-like regions between them, and (ii)
virtually no such regions remain when the cores
overlap, the interaction energies, [3%5) and
AL(8), should vanish as 6 — & or 6 — b, respec-
tively (i.e. for Ay — 90°; eq. (26.2) and Figs. 26.1
and 26.3). While the Read-Shockley equation
(26.1%) automnatically satisfies this requirement,
the  Marchenko-Parshin  expression  (26.10)
approaches a finite value of G3*/h%. In our further
analysis of high-angle interfaces, this unphysical
prediction of eq. (26.10) will be corrected by
eliminating this rematning, finite-energy elastic
energy for 6 — & from the relevant expressions.

Ignoring thus all effects arising fri -1 the clastic
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strain fields near the steps and dislocations, the
expressions denved  in o sections 26.2.1-26.2.3
simplity  constderably.  For example, the free-
surface energy in egs. (26.11a,b) becomes

Ywee = A A = 90°) = [l Jh (26.24)

while the GB energy in egs. (26.20a.b) simplifies as
follows:

Coore = HtAw = 9070 = 270 /b 126.25;
The ratio,
fn F—t.un:/z-f‘\_nn: = [f‘\\:)rc/b)/(r:)r:/h) (2626)

therefore provides a direct measure for the relative
magnitudes of the core energies of isolated steps
and dislocations. As illustrated in section 26.4, the
simulation of free surfaces and STGBs far away
from any of the energy cusps permits determi-
nation of f.. The above relations vield the following
expression for the work of adhesion:

Wilee = WAy = 90°) = ATtk = Alelb)
(26.27)

Equations (26.24)-(26.27) have two noteworthy
properties. First, a positive work of adhesion
implies automatically that the core energy of the
steps exceeds that of the dislocations. As discussed
in the next section, this requirement finds a natural
explanation within the framework of a broken-
bond model. Secund, the energies of the cusped
surfaces and GBs are remarkably absent in ail
three, i.e. the energy and the ideal cleavage-
fracture energy of a high-angle interface do not
depend on the energies of any of the cusped
orientations, and neither do the energies of the
related free surfaces. Instead, these energies are
governed solely by the core energies of the under-
lving line defects and by the magnitude of the
geometrical discontinuity at the line defects (i.e.
the step height and Burger’s vector). The ratio,

f-id “Vggrl:/z-./cure =1~ (A;re/b>/( r:(:)rc/h)
=1-f, {26.28)
therefore provides another direct measure for the

relative magnitudes of the core energies of steps
and dislocations.

Il

i

26.2.5 Role of broken bonds

Broken-bond models have been used for the
calcutatton of surface energies with a greac a deal
of success for at least 50 years [6]. Such models
naturally give rise to cusps in energy-orientation
plots and lead to faceted crystal shapes [6]. Since
broken-bond models do not 1ake into account
clasuc-interaction effects, it appears that such
effects are small for surfaces — an assumption that
will be quantitied in section 26.4.1. Broken-bond
muodels can also be usetul in predicting structure—
property correlations in GBs [18]. While, based on
the Read-Shockiey model [8], elastic-interaction
effects are expected to be important in the GB case,
broken-bond modeis are nevertheless useful in
predicting the energy contributions of the cores,
stnice it is only the dislocation cores which con-
tribute to miscoordination but not their elastic
strain fields (for details see section 26.6).

The coordination ceefficient, Clu, #), for the
(-th nearest neighbors (nn), defined by [19]

Clu, 1y = >, |Kigla) — Kolu, A (R)

1]

(a=1,2,...) (26.29)

represents a convenient measure per unit area of
how well, on average, an interface of orientation #
1s coordinated (or, perhaps better, miscoordi-
nated). Here A(#) is the planar unit-cell area
(assuming, for convenience, that the interface is
commensurate [7]); the dimensions of C(a, #) are
therefore (length)~2, and its values are usually
given in units of @ °, where a is the lattice par-
ameter. We define as a-th neighbors ail those
atoms n within a minimum radius (R, + R,_)/2
and a maximum radius of (R, ., + R,)/2 of a given
atom, i.e. all atoms within a radius half way
between corresponding neighboring shells. R

u

here denotes the radius of the u-th nn shell in a
perfect crystal. For every atom we thus determine
the deviation, AK(a, A) = K (a) — K {a, #), of
its number of u-th nearest neighbors from that of
a perfect fce crystal, K {a), and subsequently
summing over the absolute values. For a = 1, all
atoms between R, = 0 and the half-way point



between nearest and 2nd-nearest neighbors are
included [ [97.

[o illustrate og. 26,29, by an example, we
consider unrelaxed free surfaces in monatomic
structures  tor  which the miscoordination  in
€q. 126.29) may be given analvtically as a function
of the vrientation 7 as follows (6]

>l S, . L . .

Cliy, jy = 20N in- B, i(26.30)

where the Bii, are the ‘bond vectors' from an
atom to its «-th neighbors, and p is the number of
atoms per volume; the summation over | involves
all the reighbors of type u. For example, for
surfaces vicinal to (100} and normal to the [001]
pole axis in the fec structure, the first three mis-
coord}jnation coctficients are given by {in units
of a™*)

C™HL Aw) = 8 cos Ay + 4sin Ay (26, 31a)

CM™M2, Aw) = 4 cos Ay + 4 sin Ay (26, 31b)
O3, Ay) = 32 cos Ay (26. 31c)

assuming Ay =< 26.57° for which the (210) plane is
reached.

The similarity of these exXpressions to eq. (26.7b)
1s rather striking. In fact, in complete analogy with
eq. (26.7b), for vicinal surfaces eq. (26.30) may
generaily be rewritten in terms of the step mode]
as follows:

CM%e, Ay = Chip(a)cos Ay

+ [Cauepladh]sin Ay (26.32)

where C3ii(a) is the a-th neighbor miscoordina-
tion per unirt area of the cusped surface (at Ay = 0)
while C. () is the u-th neighbor miscocordination
per unit length of the steps on the surface.

To quantify the similarity between egs. (26.32)
and (26.7b), we assume that the elastic strain fields
surrounding the steps indeed do not cause any
broken bonds, an assumption to be validated in
section 26.5.2. Both the cusped energy and the
line-energy contribution due to the isolated steps
in eq. (26.11b) mav then be assumed to be prop-
ortional to the corresponding miscoordination per
untt area. The broken-bond contribution, 4, _, to

®
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the total surtace energy mav then be written as
tollows:

Il M = N BenC i, Ay

(N3

= Yeusp €08 Ay + (T “/h)sin Ay

(26.33)
with ¢y, {26,323
Toanp = 2 PuoClia (26.34)
and
Fh = E Ble Cyeplen)/h (26.35)

X3

The proportionality constants, («), are obviously
determined by the strengths of the bonds that were
broken. In an unrelaxed surface interacting via
a pair potential, B(w) ts identical to the corre-
sponding «-th nn perfect-crystal bond energy; by
contrast, in a fully relaxed surface B{u) obviously
represents an average over the slightly varying
bond lengths in a given neighbor shell. In contrast
to a perfect crystal, in a crystal containing lattice
defects the magnitude of B(«) may therefore be
expected 1o depend on the local environment of the
defects.

Inserting eqs. {26.33) into eq. (26.11b), we
obtain

1Ay} = v p{Ay) + (G sin' Ay (26.36)

with (egs. (26.33)—(26.35))
7o-6(AY) = cos Ay D, Bla)Ciutia)

+ sin Ay 3 B)Cep(c)h (26.37)

Similarly, for internal interfaces, if we assume
that (i} the elastic strain fields surrounding the
dislocations do not create any broken bonds (an
assumption also to be validated in section 26.5.2)
and (i) that the line energy in eq. (26.21) is,
indeed, dominated by the core term, in analogy to
eq. {26.32) we may write:

C'™a, Ay) = C™ () cos Ay

+ 2[Cy(v)b]sin Ay (26.38)
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where, i analogy o the steps, G /6 denotes
the -th wn miscoordination per unit length of the
interface dislocations  while Cllye is the co-
ordination coelticient of the cusped interface. The
hroken-bond contribution, &, .. to the wtal inter-
lace energy may then be defined as follows:

Chopt Ny = }: Bro, C™ o, Ay

= S €08 Ao+ 20N Thosin Ay

126.39

with ey. "26.20b
o = PO e 126,40/
"ANiby = : Biee Cytasib (2641

RS
[nserting these expressions into eq. £26.20b), in
analogy 1o eq. /26.36) we obtain

SCAY = gy wi A — 2003748 sin Aw Inesin Ay
{2642}

with the broken-bond contribution, &, _n{(Aw),
given by {compare eq. (26.37))

Eh-ptAW) = cos Ay D Blu)CR (u)

i

+ 2sin Ay Y BlegCyale)lb

it

(26.43)

Equations (26.36) and (26.42) may be inserted
into ¢q. (26.1) to express W™ in terms of irs
broken-bond (i.e. core) and elastic strain-field
contributions, according to (eq. (26.22b))

Welaws = Wl (Ay) + 2 sin Aw [(G3 kY
sin® Ay + (L349b) In(sin Ayl
(26.44)

Here the broken-bond work of adhesion is given by
W sy = 2 p (A — £p_nlAw)
= X Bl 2C u, Ay = C™ (g, Ay)]
’ (26.452)
or, using egs. 26.40} and 726.41},

mpt ~Hst

W V= NG 200 - O]

< 2Cemitith = Ctctr/b)!
(26.45b;

As noted in the preceding section, the energies
of the “spectal’ and the ‘high-angle’ interfaces are,
by defimtion, independent of elastic interaction
effects. Their work of adhesion is therefore
governed completely by the broken-bond con-
tribution in ¢q. “26.44;. For the ‘special’ intertaces
we thus obtain “ey. 126,23

WiAw=0.= W;{h[‘—\‘if =0)= (ZYcusp - j

Huusp)

= 2 B2CHG (@) - Ch(w)]

(26.46)

while for the “high-angle’ interfaces €q. (26.45b)
vields {eq. 126.27))

WAy =907 = 2 S B[Coenlcdth

= Cyi(a)/b) (26.47)

These expressions imply that a positive work of
adhesion necessitates the dislocation cores in the
internal interface to be better coordinated than the
cores of the steps in the corresponding two fracture
surfaces, 1.¢. Coeplt)h > Cyy(u)b. That this
is, indeed, the case will be shown in section
26.5 in which the miscoordination per unit length
of steps and dislocations will be determined by
means of computer simulations.

26.3 COMPUTER SIMULATIONS

As already mentioned, two conceptually differ-
ent types of interatomic potentials will be used
throughout in order to provide some insight into
the role of many-body effects. For the fcc metals,
results obtained via a semi-empirical embedded-
atom-method (EAM) potential fitted to represent
Au [12]} will be compared with simulations in-
volving the well-known Lennard—Jones (L])
potential, with only two adjustable parameters,
¢ and &, defining the length and energy scales,
respectively. Although the L] potential was fitted
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W the lattice parameter and melung point of Cy
with & = 0167 0V and 6 = 2315 AL the relative
energies of different Intertaces are the same for
any LT svstem if aif energies and distances are
expressed in units of « and o, respectively.

To enable a most direct comparison of free
surfaces with GBs, only energies of symmetrical
tilt boundaries (STGBs; and random grain bound-
aries (RGBs) will pe discussed here. The two
fracture surfaces are then identical and, as for the
free surfaces, both of these types of GBs are then
characterized by only the two DOFs associated
with the GB plane, thus permitting a direct in-
vestigation of how one particular type of GB edge
dislocation is transformed Into surface steps.

26.3.1 Energies of free surfaces and GBs

The energies of free surfaces, STGBs and RGBs
with a common (110} and {100 pole (or tilt) axis
are plotied, respectively, in Figs. 26.4 and 26.5
against the pole (or tilt) angle, v = 2Ay (Fig. 26. 1.
While these figures show only the EAM resuics
obtained for Au, the L] potential yields qua-
litatively identical resulrs.

According 10 these figures, the energy of the
RGB configuration on a given plane is always
lower than that of the related two free surfaces.
Considering that some of the bonds broken during
bulkk cleavage fracture are recovered when the
two free surfaces are brought back into contact,
irrespective of their relative orientation, this result
1 not surprising. Also, in all instances investigated
the STGB configuration on a given plane has a
much smaller energy than the RGB on the same
plane, with a consequently smaller volume ex-
panston. This difference arises from the Jocal
interlocking of the lattice Planes in the STGBs,
which is possible because of (1) their additional rwo
translational DOFs, (T, T,}, parailel to the GB,
and (i1) their very smal] planar unit ceils (with only
one atom per (hk{) plane, as in the perfect crystal
(20D). We note that, because the STGB configu-
rauton on the (100} and (110) plane is identical o
the perfect crystal [20], the corresponding STGB
energies vanish. Also, although finite, the energy
of the STGB on the (1] I'; plane (the so-called (1] 1)
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Fig. 26.4 (a) Energies (in unics of mf/m?) of fully relaxed free
surfaces {243, STGBs and RGBs on planes perpendicular o the
{110} pole axes for the AWEAM) potential. ¥ = 2Aw 15 the ult
fotation angle abouyt (110} (see also Fig. 26.1). The lines
connecting the data points are merely a guide to the eye. (b)

twin boundary), s very small for both potentials
(Table 26.1). A realistic comparison of the relative
energies of STGBs, RGBs and free surfaces should
therefore involve the less-dense planes,

We should mention that the Au(EAM) energies
are substantially lower than the measured average
surface energy of abour 1500 m]/m? of gold [21].
Similarly large ¢ ~60-80%) discrepancies between
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Fig. 26.3 Same as Fig. 26.4, but for interface pla
. 26.4, nes -
dicular to (001}, F perpen

computed and measured  surtace  energies  are
also tound for other tee metals [12]. As already
mentioned, we nevertheless hope that a comparison
of relative energies of surfaces and GBs which uses
these potentials is meaningtul.

A comparison of the energies in Figs. 26 4(a) and
26.5(a) with the interplanar spacings, d{(hkl),
shown in Figs. 26.4(b) and 26.5(b) (see also Table
26.2) demonstrates that the appearance of cusps 1n
the energies of free surfaces, RGBs and STGBs 1$
closely connected with relatively large values of the
interplanar spacings d(hk{). In contrast with the
free surfaces, however, which show only the three
cusps associated with the three densest planes, the
GBs show minor cusps all the way up to about the
10th- or 11th-densest fcc plane. (Notice, however,
that in the case of the STGBs, the (100) and (110)
interplanar spacings are irrelevant because the
STGBs on these planes are identical to the perfect
crystal ([20].) As a consequence, the energies of the
free surfaces vary much more smoothly as a func-
tion of the pole angle w. This difference between
GBs and free surfaces is thought to be due to the
absence of the three translational DOFs in the
latter. In STGBs, by contrast, the possible rigid-
body translations in T enable a much more effec-
tive minimization of the GB energy, particularly for
GBs with the smallest planar unit cells, i.e. those
on planes with the largest d{hkl) values, which
consequently give rise to energy cusps. With only
one transkational DOF (that associated with volume
expansion at the GB), RGBs fali somewhere

Table 26.1 Comparison of the surface energies, v, and nearest-neighbor coordination
coefficients, C(1)/a® (see eq. (26.29)) obtained for the two potentials for surface normals in
the four principal cubic directions [19]. For comparison, the corresponding energies and
coordination coefficients of STGBs [23] and RGBs [9] are also listed. All energies are in

units of mJ/m? (=erg/icm?)

(h&kD v Cllya? ghaB C(ia® gSTUB C{l)ia?
Cu(LD {111) 839 6.93 432 3.17 2 0
AW EAM) (1) 767 6.93 249 1.80 2 0
Cu(L.D (100 892 .00 310 7.90 0 0
Au(EAM) {100} 897 8.00 616 6.30 0 0
Cu(L]) (110 957 8.48 1329 12.76 0 0
Au(EAM) (110 957 8.48 1041 11.43 0 ]
Cu(L]) (113 961 8.44 1431 13.73 293 2.41
AuEAM) {113, 944 8.44 1069 9.46 211 2.4
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Table 26.2 lmerplanar spading. o 80 inoumits of the lattice Table 26.3 Core cncrzies ol steps and edge Jslocanons 1n
pardmeter o tor the T8 most wadely spaced planes 1inthe o STGE and RGEy 0 e metals extracted from the sonwelaton
Latiee: These planes sl correspond 1o the ones with the resulty i the “higheangle” hmat via egs. 2626 o1 22627 5 see
Highest planar densice o atoms. e, the smallest planar repeat abso P 26600 und b oand i 2608
unit ¢ells
From NI R

No hit Jdrhkt ia Noadhr L AV I
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2 [ 1000 - - R — S

3 Lo .331s Cu L] T .45 1) 83 1 56

4 13 s Ao EAM 033 i ST 62

5 33l 0. 2294

b 210 1).2236

;; ::i 3 fg“:; of any cusps in which the u)rcs‘m’crl:‘lp completely,
9 S0 01690 one would expect a linear relationship between the
10 221 0. 1667 free-surface and GB cenergies [sce egs. 126.24)-
1l 310 01541 124.26:]. To invesugate this relationship, in Figs.

between STGBs and free surfaces as tar as their
sensiuvity towards rigid-body translations is con-
cerned, with a consequently more smoothly vary-
ing energy plot than that of the STGBs. (For a
quantitative analysis of the role of the interplanar
spacing in the above energies, see section 26.3.3 )

That the energies in Figs. 26.4a) and 26.5(a) are
intimately connected with the number of nearest-
neighbor bonds per unit area broken upon creation
of the free surface or GB, Ci1) (see eq. :26.29)), is
demonstrated in Table 26.1. It is interesting to note
that in the case of the free surfaces, the coordination
coefficients extracted from the simulations were the
same for both the unrclaxed and fuily relaxed
structures and for both potentials. As discussed
further in section 26.5, this suggests that the elastic
strain fields surrounding the surface steps do not
cause any broken bonds in the sense defined above;
instead, similar to the case of dislocations, all
broken bonds arise from the highly disordered
cores of the steps. We note, however, that by
choosing the primitive planar unit celi of the frec
surface, reconstruction was systematically dis-
couraged in our simulations. If reconstruction were
to take place, one would in principle expect dif-
ferences in the average atom coordination between
the unrelaxed and relaxed structures.

As discussed ‘n section 26.2.4, for the ‘high-
angle” tree surfaces and GBs, i.¢. those well outside

26.6(a} and (b, the energies of STGBs and RGBs
are plotted against 2. As expected, the cnergies
assoctated with vicinal orientations scatter widely
but, as indicated by the dashed lines, are sys-
tematically related w the energies of the densest
tcusped) planes. As shown in the inserts, however,
for all the remaining (‘high-angle’) interfaces a
reasonably good correlauon exists between the
energies of STGBs and RGBs, on the one hand,
and the energy of free surfaces, on the other.
According to eq. 126.26), the slopes of the solid
hines through the origin give the rato, [ = tgrd
27 ares OF the core encrgies of steps and disloca-
tions. According to the values listed in Table 26.3,
this ratio is less than one in all cases, consistent
with the positive work ol adhesion of the internal
interfaces (see below). As discussed further in
section 26.4, the origin of the qualitatively different
behavior of the ‘special’ and ‘vicinal’ interfaces in
Fig. 26.6 compared to the ‘high-angle’ interfaces
lies in the fundamental difference between the
short-ranged elasuc strain fields near the steps,
which are contrasted by the long-ranged strain
fields near the dislocations.

26.3.2 Cleavage-fracture energies
The above simulation data for free surfaces and

GBs may be combined to determine the work of
adhesion for the internal interfaces. The plots thus

STGB energy [mJ/m”]

RGB energy [mJ/m?]
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Fig. 26.6 Energies of (a) STGBs and
(b) RGBs plotted against the bulk-
cleavage energv, 27 (in mJ/m?) in the
fee lattice. Dashed lines correlate
‘vicinal’ orientations with their
corresponding ‘cusped’ orientations
‘sohid svmbols). The two sets af (111)
vicinals correspond to tilting toward
7100) and (110} surfaces respectively.
The solid lines in the inserts show a fit
to the energies of the *high-angle’
interfaces (i.e. those far from anv of
the cusps) through the origin ‘eqs.
726.24)-726.26"1. The slopes, f,,
obtained for the two potentials are
listed in Table 26.3.
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Fig. 26.7 Cleavage energies for the STGEs in Figs. 26.4(a) and
26.5{a}. For comparison, the bulk ideal-crystal cleavage energies
(= 2v) are also shown.

obtained from Figs. 26.4(a) and 26.5(a) are shown
in Figs. 26.7(a) and (b}, respectively. A comparison
of the STGB and RGB data shows qualitatively
the same behavior for both types of GBs. This
similarity is particularly remarkable in the vicinity
of the (100) and (110 planes for which, in both
lattices, the STGB energy vanishes identically
while the RGB energy remains finite. From these
figures, the cor “jaticn berween a large value of
d(hkl} and a large work of adhesion is rather
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Fig. 26.8 Plots analogous 1o Figs. 26.6(a) and (b} showing (a)
the cleavage energies of the STGBs and the RGBs plorted
against the bulk-cleavage energy, 2y {(in mj/m?). Solid symbols
mark the cusped orientations and the dashed lines connect
corresponding vicinal orientations. The two sets of {(111) vicinals
correspond 1o tilting toward (100} and (! 10} surfaces respectively
{Fig. 26.7(a)). The solid lines in the blow-up in (b} show a fit to
the cleavage energies of the ‘high-angle’ interfaces through the
origin. According to eq. (26.28), their work of adhesion is
proportional to the energy of the related two fracture surfaces.
For both potentials, values of f, = | - fay 35 obtained from the
slopes, f.., are also listed in Table 26.3.

apparent, as is the correlation between large d{hk!)
values and small valyes of 2y,

This correlation between the cusps in the bulk
ideal-crystal cleavage energy, E°' = 2v, and the

peaks in the GB work of adhesion, W34, is par-
ticularly interesting. Intuitively one would expect
the opposite behavior: if the corresponding free-
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surtace energy 1s particularlv small one would think
that 1t should be casier to separate a parucular
bicrystal. However, a comparison ol the corre-
sponding intertace energies in Figs. 26.4a) and
26.5ta, shows that while 2 mav be smalt for a
given cusp orientation, the corresponding GB
energy s significantly smaller still. Since the
energetics of the interfaces at cusped orientations
are dominated by miscoordination (section 26.2.5),
the origin of this behavior is largely crystallo-
graphic “section 26.5.2°%. Furthermore, the elastic-
interacton energy and the high miscoordination of
the dislocations it GBs results in a more rapid
increase in the GB cnergies, as compared to free-
surface energies. This leads to relatively higher GB
energies, and correspondingly smaller works of
adhesion, for the high-angle orientations.

To enable a more quantitative analysis of the
relationship between the bulk ideal-crystal cleavage
energy, E, and the GB work of adhesions, W?*,
Fig. 26.8 shows the two plotted against one an-
other. These figures suggest the distinction of two
types of GBs as far as their work of adhesion is
concerned. First, for the ‘special’ GBs and their
vicinals, W™ decreases with increasing E*'. This
behavior is due to the elastic energy of the vicinals.
Second, for all remaining GBs (1.e. those that are
neither ‘special’ nor ‘vicinal’), W increases with
increasing E¢', as seen from Figs. 26.8(a) and (b).

26.3.3 Role of the interplanar lattice spacing:
vicinal versus special interfaces

The simulation results presented in the preceding
suggest a special role of the densest planes in
the energies of free surfaces, STGBs and RGBs,
and therefore in the work of adhesion. Since both
the STGBs and the symmetrical RGBs are fully
characterized macroscopically by only the two
DOFs associated with the GB normal, a com-
parison of their energies with those of free surfaces
enables a systematic investigation of the role of the
interface plane in both their energy and work of
adhesion.

To analvze the role of the interface plane
quantitatively, in Figs. 26.9(a) and {b) the energies
of the free surfaces and GBs are plotted against
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Fig. 26.9 Energies {in mJ/m?; of fully relaxed (a) free surfaces

(2v) and (b} STGBs and RGBs plotted against d(kki)/a. The
densest surface planes (Table 26.2) are indicated on the top.

d(hkD). These plots demonstrate that the criterion
that a large interplanar spacing gives rise to a
particularly low GB energy is valid only for the few
densest lattice planes, i.e. for the ‘special’ inter-
faces giving rise to the cusps. For the smaller values
of d(hk!} the simulation data scatter widely, in-
dicating that the GB energy is not governed by the
interplanar spacing exclusively.

That the energies of the vicinal interfaces cannot
be governed by d(hkl) becomes obvious if we

|
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comsider, tor example, the free surtaces and GBs
e viciniy of Lthe cusps i Fios, 2640 and
2630 - Ther energics are obviously governed by
te energy and interplanar spacing of the free
surface or GB at the hottom of the related cusp. As
4 cusp s approached, the corresponding value of
d"kRL approaches zero "Figs 26 kb and 26.5ib .
Then, at the cusp, the nterplanar spacing suddenly
umps o 4 finite and large value associated with the
cusp. For example, the 41, 41, 42 plane s very
close to the 111 plane. however with a practicallv
vansshing value of & A&l because the latter 15

proportional to A~ ~ £+ {7, The energies of
the free surface, the STGB and the RGB on the
S 4 420 plane of the fee lattice are therefore
practically the same as those on the (111, plane.
Consequentlv, while the energy decreases smoothly
twwards that of the cusped orientation, dihkl;
does not vary steadily as g function of w, which
Is the reason for the absence of a direct relation
between the two for the vicinal but not the cusped
interface-plane orientations.

A detailed analysis of the distribudion of all the
dawa points in Figs. 26.9a; and 'b; contirms that
for every plane with a relauvely high diakl) value,
there is a point at di ki) = 0 {assoclated with some
infinttesimally close vicinal interface) with identical
energy. Al other surfaces associated with the same
cusp then fall on a smooth line emuanaung trom this
point as Jf ikl increases slowly from zero.

As is well known, the distinction between vicinal
and special interfaces is very useful for describing
the underlying atomic structure of surfaces and
GBs. For the case of the STGBs, Weins ¢ af. [24]
demonstrated 20 vears ago that the structure of
those STGBs in the vicinity of a major cusp may be
decomposed into the polvhedral units of, and the
angular deviation from. the ‘special’ STGB at
the bottom of that cusp. ‘These structural units
correspond 1o the dislocation cores in the Read—
Shocklev model considered in section 26.2.2.:
By comparison, for the case of free surfaces it has
been known for well over half a century that the
structure and energv of ‘vicinal’ surface orien-
tatons is governed by the number of and distance
between the steps introduced into the nearbv ‘flat’
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Fig. 26,10 Work of adhesion in mfim’ ot fully celaxed

STGBS und RGBS i foe metals agunst drakl Ja see also Table
264

fi.e. step-free) principal surface (section 26.2.1)
{6].

Finallv, by subrtracting corresponding  data
points in Figs. 26.9%a) and (b), the role of d(hkD)
in the work of adhesion is readily analyzed (Fig.
26.10). As expected, the distinction between
vicinal and special GB-plane orientations is the
same In the cleavage energies as that discussed
above for the underlying GB and free-surface
energies. It is interesting to note, however, that
the particularly low energy of both the free sur-
faces and GBs on the densest planes is accompanied
by a particularly high work of adhesion. This
counter-intuitive behavior of the special interface
planes is due to the very low degree of miscoor-
dinaton at the special GB interfaces (section 26.5).
While therefore the interplanar spacing of the
lattice planes parallel to the interface should be of
importance only for the cusped orientations, it is
obviously irrelevant for vicinal ones.

In summarv, it appears that in assessing the role
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Table 26.4 Work ot adhesion see eq. 26 L for S TGBS and RGBs tor the tour densest
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hk! Gl ] Aw 430
STGBs ROGBs bulk 21 STCGBs RGBs bulk (2v)
]
]
Y 1676 1246 1678 1532 1287 1534 |
100 1784 974 1784 1794 1178 1794
Ll 1914 585 1914 lo14 873 1914 .
13 1629 191 1922 1677 819 1888 '

of the GB plane in the energies of free surfaces,
STGBs and RGBs, and therefore in the work of
adhesion, one should distinguish between ‘special’
and ‘vicinal’ interface planes. While the energies of
the special interfaces are governed by the inter-
planar spacing of the lattice planes parallel 1o the
interface plane, the value of d{kkl) is irrelevant for
the vicinal ones. Plots such as Figs. 26.9 and 26.10
provide a quick and simple method for separating
the two types of interfaces for a given crystal
structure and interatomic potential used in the
simulations.

26.4 CORE AND ELASTIC STRAIN-FIELD
EFFECTS IN FREE SURFACES AND GBs

We are now ready 1o test some of the assumptions
made in sections 26.2.1 and 26.2.2 concerning the
core energies of and elastic interactions between
steps, on the one hand, and dislocations, on the
other. For that purpose, the energies of free sur-
faces and STGBs perpendicular to {100} deter-
mined for the Au(EAM) potential (Fig. 26.5(a))
will be analyzed in some detail.

26.4.1 Surface steps

We first consider the line energies of surface steps.
According to Fig. 26.5(a), two cusped orientations,
associated with the (100) and (110) surfaces, are
encountered when rotating about a (001} pole axis.
For a detailed investigation of the line energies of
the corresponding steps, a number of surfaces in
the close vicinity of these cusps were simulated
in addition to those shown in Fig. 26.5/a). For
reasons to become evident below, these most
vicinal surfaces are needed for a reliable deter-
mination of the line energies of isolated steps,
Le. in the limit for 8 — . According to Table
26.5, the largest separation considered for the (100)
steps is & = 21.542, by comparison with § =
15.95a for the (110) step. By investigating step
separations down to about 1.12a (Table 26.5), we
hope to gain insight into the nature of the elastic
interaction between the steps as a function of their
distance.

The relaxed and unrelaxed energies of ali
surfaces perpendicular to (001) considered here
are shown in Fig. 26.11. We note that both sets
of energies are plotted against Ay, the angular

Table 26.5 Geometnical parameters associated with the steps considered in detail in
this section. n is the step height, whiie « denotes the lattice parameter.

n Poleaxis Plane #ia

A, fdegf

Vicinal plane  6/a Viainal plane  d/a

I 1100) (100} 0.5000 0.00-26.56
2 (100, (1003 0.3535 0.00-18.44

(G431, 2154 (021 1.12
(02322) 1595 (021 1.12
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2 > 5 S strain lields cannot develop near the steps: vY s
= - B - theretore governed completely by core effects {i.e,
] broken bonds), according o {eqs. (26.11bY and
1150 4 (26.12)%:
{ Unrelaxeq
1100 ) A = vl cos Ay + (T /R sin Ay

1050

s fmdme]

1060

35Q relaxed

)
200
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850 T LI R B | T T A B | T T
% 10 15 20 25 30 35 40 45

Ay, (deg)
Fig. 26.11 Unrelaxed 7 and relaxed - 7oencergies of free
surtaces of Au perpendicular to 7001 against Ay, with Ay, =
45 vury Nutee that by comparison 1o Fig. 26.51a:, consider-
ablv muore vicinai surtaces close 1o the 100 and - 116, planes are
considered here S Table 265 Notice that Mooyl
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Fig. 26.12 Unrelaxed energies of Fig. 26.11, +*/cos Ay (in
mJ/m™ ., plotted against tan \y vy, 126,481 tor the {100} and
LI vacinals perpendicular 1o (001, The line energics of the
unrclaxed steps extracted from the slopes of the solid lines are
listed in Table 26.6.

deviauon from the (100} cusp. The results as-
soclated with the (1{0) cusp should actuallv be
plotted against, and will be interpreted in terms of
the angle Ay, = 457 — Ay,

To determine the line energy of the isolated
steps. it iIs useful to first consider the unrelaxed
surface energy, ", Without relaxation, elastic

(26.48)

where e denotes the unrelaxed encrgy of the
cusped surface, while T, is the unrelaxed core
cnergy per unit length of the steps. To test the
validity of eq. 126.48), in Fig. 26.12 the values of
7y i/cos Ay obtained from Fig. 26.11 are plotted
against lan Ay, The extremely  good linearity
exhibited in Fig. 26.12 is proof that, down to the
smallest values of &, the unrelaxed energy s
determined by a d-independent core energy of the
steps and, hence, by the number of broken bonds
per unit surface area {eQs. (26.32) and (26.37)).
The unrelaxed core energies obtained from the
related slopes are listed in Table 26.6.

Next, in order to focus entirely on the elastic
contribution to the line energy, it is useful to define

the {positive) relaxation energy (eqs. (26.11b) and
(26.48)),

Av(Ay)

I

YAy — v(Ay)

(?:Iusp - Ycusp) Cos AW

= [(Teore — T7)h] sin Ay

— (G31hY) sin® Ay (26.49)

where, according to eq. (26.12), the relaxed line
energy of the isolated steps, '™, contains con-
tributions from both the relaxed cores and elastic
straint fields; therefore

l—gure -Ir* = r::‘lore - r:t)rc - :[ (2650)

Using the data in Fig. 26.11, the relaxation
energies shown in Fig. 26.13 are readily obtained.
[n this representation of the simulation data, the
discontinuity in the slope at the (210} plane de-
imiting the two cusps is particularly noticeable
(Table 26.5).

To extract the step-step interaction energy from
the data in Fig. 26.13 by means of eq. (26.49), we
take advantage of the fact thart for a large separ-
ation berween the steps (i.e. for the smallest values
of Aw;, their interaction energy in the third term
on the right-hand side of €q. {2649} should be
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Table 26.6 Step parameters determuned for the Ay EAM: potential in umits of mf/m=)

Poteaxs Cusped  Howhi o Y U el ' =4 Wk 1" th (6 N R
plune ‘hig:
100, 100} 0.5 960.6 898.6 669.5 £ 0.5 265.4 £ 0.5 404.1 £ 1.0 570 + 60 280 £ 10
100, 1 100) 0.3535 1977.0 9585 4314 £05 1447 205 286.7 = 1.0 540 & 50 280 £ 10
5 s s s
= c o ol -
160 3
‘ w
o
T 140 4 S
£ =
g 3"
= 120 4 a
= -
‘ 3 |
> 1004 80 Au{EAM)
<Q01=>
60 v ————r e
80 1 <001> Au{EAM) 0.0 0.1 0.2 0.3 0.4 0.5
] tan(myn )
60 11—t _ _ ‘ |
0 5 10 15 20 25 30 35 40 45 Fig. 26.14 Relaxation cnergies of Fig. 26.13 ploued against

Ay, (deg}

Fig. 26.13 Relaxation energies, Ay = ¢~ v {(eq. (26.49)), for
the free surfaces of Fig. 26.11. The discontinuity in the slope at
the (210) orientation, delimiting the two cusps at Ay, = 0° and
457, respectively, is clearly visibie.

negligibly small compared to the line-energy
contribution in the second term (egs. (26.10) and
{26.15)). Similar to Fig. 26.12 we therefore plot
Ay(Awy)/cos Ay against tan Ay (Fig. 26.14); the
slope of a straight-line fit to the low-angle data
in Fig. 26.14 (indicated in the figure), should
therefore yield the line energies of the isolated,
nofi-interacting steps. According to Fig. 26.14, for
values of tan Ay less than about 0.05, these plots
are, indeed, very well represented by straight lines.
Their slopes (I'Y,. — I'*h, obrained from a
linear fit through the origin for only the few most
vicinal surfaces are listed in Table 26.6. The con-
vergence of these fits was tested by including
variable numbers of the closest few vicinals in
the fit, with no discernible change in the slope,
confirming that the largest separations between

tan Ay {cq. (26.49)). From the slopes of the straight-line fits to
the low-angle data (solid lines), the !ine energies of the isolated,
non-interacting steps can be extracted; these are listed in
Table 26.6.

steps considered here (Table 26.5) are, indeed,
large enough to enable a reliable determination of
the line energies of non-interacting steps.

Finally, if we attribute any deviations from the
straight lines in Fig. 26.14 to the elastic interaction
between the steps, i.e. if we plot the difference
(eq. (26.49))

Yer (Aw)/cosAy
= _AY(AW)/COS Alll + (Y:usp - Ycusp)

= (G R sin? Ay tan Ay (26.51)

against sin® Ay tan Ay, we expect a straight line
with a slope of Gi*/A* if the interaction is, indeed,
proportional to 1/8” (eqs. (26.10) and (26.15)) [16].
According to Figs. 26.15(a) and 26.16(a), a rea-
sonably good linear behavior is, indeed, obrained
for the surfaces with the largest separations
between the steps (typically 6 < 10a for the (100)
vicinals, and & < 7z for the (1.0) vicinals). The
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Fig. 26.15 Step-step-interaction contribution to the surface
energy, o (Aw)/cos Ay {eq. (26.51)) for {a] the largest and (b)
the smallest values of & (indicated on the top) for the (100}
vicinals plotted against sin? Ay tan Aw {in m]/m?). The slope of
the solid line in (a1, Gur*th?, obtained from a least-squares fir
through the origin (eq. (26.51)), is listed in Table 26.6 together
with the slope of the dashed line, G%737h°, which TEPresents a
least-squares fit 1o the small-é data alone.

siopes of the solid lines, obtained from a least-
squares fit through the origin, are listed in Table
26.6. This 1/5° variation of the step-step inter-
action energy in Au is in good agreement with
recent simulations for Si [25] in which the same
behavior was found for both steps on a flat surface
and vicinal surfaces.

Not wo surprisingly, for smaller step separations
significant deviations trom this linear behavior are
apparent: As llustrated in Figs. 26.15b) and
26.16(b}, the step-step repulsion does not increase
as rapidly with decreasing ¢ ‘indicated in the tops
of these figures) as predicted bv the Marchenko-
Parshin  formula (egs. (26.10Y, (26.15), and
(26.31)). That the step—step  repulsion cannor
increase indefinitelv s intuitively obvious because
the  perfect-crystai-like regions mediating  this
clastic interaction are virtually eliminated when
the step cores start to overlap. Another reason for
the failure of eq. (26.49) for small values of 6 can be
expected to arise from a o-dependence of the
relaxed core energy, .., as the cores start to
interact.

Because no theoretical predictions are available
for the required modification, at small separations,
of either the elastic step-—step interaction or the
Lore energy, at present the two effects causing
deviations from €. 126.11{b)) cannot be separated,
It appears, however, that Figs. 26.15(b) and
26.16(b) provide a clue. As is evident from these
figures, even for the smallest separations between
the steps their interaction energy varies linearly
with 1/8? (see the dashed lines in the figures). By
comparison with the large-3 Marchenko- Parshin
limit, however (derived from isotropic  linear
continuurn-elasticity theory; see the solid lines
in these figures), the slopes of the dashed lines,
labeled (G 75/k%), are smaller by about a factor of
two (Table 26.6).

Two interpretations of the observed small-&
behavior appear possible. First, linear continuum
elasticity theory used to derive the Marchenko-
Parshin expression in €q. (26.10) obviously breaks
down when the steps get too close. Although a
non-linear-elastic extension of eq. (26.8) is not
available, the above results would suggest that the
non-linear effects give rise to a reduced prefactor,
Gi7%, withour affecting the basic functional form
of the Marchenko—Parshin formula.

Second, as the steps get rather close, one could
envision a modification of the core energies of the
steps, 1.€. a non-elastic core—core interaction. Such
an interaction — which, according to the above
results, would be attractive - could be incorporated
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Fig. 26.16 Same as Fig. 26.15 for the (110) vicinals. The least-
squares-fit parameters of the solid and dashed lines are listed in
Table 26.6.

into the theory of section 26.2.1 by replacing the
line energy in eq. {26.8) by

r(a) = rcorc(a) + rel(a)

Analogous to eq. (26.9), one can then define the
core—core interaction energy, I 2o(0), as follows:

Feore(8) = Tigre + Teorel(8) (26.53)

(26.52)

and eq. (26.11b) becomes instead:

LAW) =~ Yousp €08 Ay = (I"*/h}sin Ay
+ (GIPRYysin® Aw = [[7555.(8)/R] sin Ay
(26.54)

¥ ®

if onc were to assume the Marchenko-Parshin
contribution to remain unchanged even at the
smaller separations, I'7;(8) could readily be ex-
tracted from the simulauon data in Figs. 26.15(b)
and 26.16{b) by subtracting the data points from
the corresponding solid lines. The attractive core—
core interaction energies thus obtained would
obviously still follow a 1/3* dependence. However,
to understand — or at least rationalize — this result
seems difficule.

To summarize and, in particular, to elucidate the
overall magnitude of the step-step interaction
relative to the other contributions to the surface
energy, we return to the original expression for v
in eq. {26.11b), which may more generally be
rewritten as follows:

YAW) = Yeusp €08 Ay + 77 (AY) + v Ay)
(26.55)

Here the contribution due to the total line energy of
non-interacting steps is given by {eq. (26.11bY)

Y= (Ay) = (C*/h)sin Ay (26.56)

while, for the present purpose, no particular
functional form needs to be assumed for the
(elastic or non-elastic) contribution, ¥**(Ay), due
to the step—step interaction. Using the values of
Yeusp and (I'™/k) listed in Table 26.6 together with
the simulation data in Figs. 26.15(b) and 26.16(b),
the three contributions to y in eq. (26.55) may be
plotted separately against Ay, for both types of
steps (Fig. 26.17).

Figure 26.17 demonstrates that the overali
surface energy is dominated by the energies, v..p
cos Ay, of the cusped orientations projected onto
the vicinal planes. For both types of steps, the
contributions due to the line energies of the isolated
steps are much smaller by comparison. Finally, on
the scale of the first two contributions, the effects
due to the step—step interactions appear entirely
negligible. As illustrated in the next section,
the relative proportions of these three contri-
butions are rather different for the case of interface
dislocations.
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26.4.2 Grain boundary dislocations

To compare the core and strain-field energies of
steps with those of dislocations, we now analyze the
GB results in a similar manner. For simplicity, as
in the case of the steps we again limit ourselves to
interfaces in Ail perpendicular to an (001) tilt (or
pole) axis.

According 1o Fig. 26.5(a}, two major cusped
orientations, associated with the (100) and (110}
planes, are encountered when rotating about a
{001) tilt axis. As discussed elsewhere {7, 20],
the STGBs on these two planes are identical to
the related perfect-crystal configurations, with
consequently vanishing cusped energies, by con-
trast with free surfaces and RGRBs (Fig. 26.5(a)).
By contrast to the free surfaces, however, for both
the STGBs and RGBs several minor Cusps appear
between these major cusps; particularly noticeable
are the ones associated with the (310} and (210}
planes. These additional cusps, positioned in the
‘high-angle’ region of the two major cusps, make
it exceedingly difficult to reliably extract core
energies for the underlying main dislocations,
particularly since we have no information on how
these minor cusps affect the background energy
associated with the main cusps. Moreover, as

&)
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in the case of the steps one might contemplate
consideration of additional vicinal STGBs. ie.
nearer to the bottoms of the t(wo main cusps and
hence far from these minor cusps, Unfortuenately,
however, because of the total domination for small
values of Aw of the strain-field over the dislocation-
core contribution (as evidenced by the well-known
logartthmic shapes of GB cusps; see for example,
eq. (26.20b) and Fig. 26.5(a)), consideration of
more-vicinal STGB planes provides no more
information on the magnitude of the core energy.

To nevertheless gain some insight into the re-
lative magnitudes of the core and strain-field con-
tributions to the GB energy, we have performed a
least-squares fit of the Read-Shockley equation
(26.20b) to the simulation data for the STGBs in
Fig. 26.5(a). Values thus obtained for the line
energy, A”, and for the strength of the dislocation —
dislocation interaction, L&Y, are listed in Table
26.7. How well these parameters represent the
actual simulation data for the two types of dis-
locauons is illustrated in Fig. 26.18, which also
shows the breakdown of the total energy in eq.
{2.20b) (solid lines, with the simulation data of
Fig. 26.11(a) superimposed) into the dominating
contribution due to the dislocation—dislocation
interaction and the one associated with their line
energy {dotted lines).

Because of the particular pairwise geomelrical
grouping of the edge dislocations in STGBs (with
mutually opposite Burgers vectors; Fig. 26.3), the
line energies listed in Table 26.7 are thought to be
governed by the dislocation cores. A comparison
with the corresponding line energies of the steps in
Table 26.6, I'/d, shows that the latter are typically
three to four times larger than the core energies,
A”/b, of the dislocations. Because of the weakness
of the step—step interaction, it appears reasonable

Table 26.7 Dislocation parameters determined for the Au
{EAM) potential {in units of m]/m?)

Tilt axis Cusped Burger's A™/b LEb
plane vector, bia

{100} (100) 0.5 80+ 25 960 = 90

{100 110) 0.3535 110 £ 25 800 * 80
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A broken-bond model for interfacial decohesion

to assume that the total line energv of the steps,
o= Tl = TS ey 026,120, 1s also domi-
nated by the core energv. The magnitude of the
ratio, (AY/b("/dy = 0.25-0.35 obtained from
Tables 26.10 and 26.11 therefore indicates a sig-
nificantly larger core energy of the steps than of the
dislocations.

If the above interpretation is correct, this value
for (A“/b;/(T */d} should be comparable in mag-
nitude to the related core—energy ratios, (A, ./b)/
(Floeefh), determined in Figs. 26.7(a) and 26.9
from the direct simulation of the ‘high-angle’ inter-
faces, in which all elastic effects vanish, and which
are listed in Table 26.3. The value of 0.33 obrained
tor the latter (for the Au(EAM) potential; Table
26.3) is in remarkable agreement with the above
results, suggesting that (i) the line energies are,
indeed, governed by the core contributions and
(i) the core energies of GB dislocations are sub-
stantially lower than those of surface steps.

A comparison between Figs. 26.17 and 26.18
shows another fundamental difference between
GBs and free surfaces. While in the STGBs (Fig.
26.18) the elastic interaction energy vastly out-
weighs the core energy [81, the opposite is true for

= =) Y =y
s o ~ .
800 T — -
o
o~ 600 ——
E Elastic Y B
B interaction energy )
= 400 -
g J <001> STGBs Au(EAM)
W
200 4

Isolated line energy

e

15 20 25 30 35 40 45
AW {deg)

Fig. 26.18 Comparison of the relative magnitudes of the line

energy and elastic—interaction energy contributions to the total

GB energy in the Read—Shockley eq. 126.20b; (solid lines). The

values for the line energy, A, and for the strength of the

dislocation - dislocation interactien, L4 ¥, cbtained from a least-
squares fit of ¢q. '26.20b" 10 the simulation data in Fig. 26.5(a)
rsquares’. are listed in Table 26.7.

5 ®

the free surfaces, in which the elastic contribution
to the line energy is negligible compared o the core
contribution (Fig. 26.171. As discussed further in
the next section, this difference is responsible for
the fact that a broken-bond model is so successful
tor free surfaces while for internal interfaces its
usefulness is limited to the ‘high-angle’ limit in
which elastic effects are irrelevant.

We conclude by pointing out that the vastly
ditferent amounts of elastic energy associated with
the strain fields of GB dislocations, on the one
hand, and surface steps, on the other, by com-
parison with the corresponding core energies have
impertant consequences for the fracture behavior
of internal interfaces in general. When fracturing
an interface situated in the vicinity of an energy
cusp, elastic work has to be done to convert the
long-range strain fields near the dislocations into
the short-range strain fields near the steps. When
fracturing a high-angle boundary, bv contrast, no
sizeable elastic work has to be performed because
the strain-field energies in both the GB and free
surface are negligible due to the virtually complete
core overlap. Among the three types of interfaces
defined in section 26.2.4, the ‘high-angle’ inter-
faces therefore represent the group with the smallest
work of adhesion, followed by the ‘vicinal’ and
finally the ‘cusped’ or ‘special’ interfaces.

26.5 A BROKEN-BOND MODEL FOR
INTERFACIAL DECOHESION

In the discussion of the role of broken bonds in
section 26.2.5 it was argued that the energies of
surfaces and interfaces, and therefore the work of
adhesion, may be decomposed into a broken-bond
contribution - associated with the cores of steps
and dislocations in addition to those of the cusps —
and the elastic energy of interaction between these
line defects. To study the role of broken bonds,
in all our simulations the nn and 2nd-nn mis-
coordination coefficients defined in eq. (26.29)
were determined. Their analysis in this section will
enable us to test the underlying basic assumptions,
and to investigate the limitations of a broken-bond
mode! for interfacial decohesion.



%

2104

Buik {2+)
1800

1500 A Broken bonds s}

1200 A ¥ STGRs
900 . ¥ 4

600 H .

Cleavage energy {mJ.m-

=00 Au(EAM)

0 T | — T T T T d
Q 4 g 12 16 20

2100

Butk (2v)
1800

1500

1200 A

S00

600 - .
0] & Cu(LJ)

0 T Y T v T T T *
0 4 8 12 16 20
[2C(1) — cm)ya?

Fig. 26.19 Simulation data for STGBs, RGBs, and bulk perfect-
crystal cleavage (2v) obtained by means of the two fcc polentials
dgainst miscoordinadon difference, (20, Ayy — oo,
Awl), between the two fracture surfaces and the internal inter-
face {eqs. (26.44) and 26.45a)).
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26.5.1 Work of adhesion

According to eq. (26. 17a), the contribution to the
work of adhesion due to bond breaking should be
governed by the difference in the number of bonds
broken in the two free surfaces and in the internal
interface. To Investigate the validity of this pre-
diction, in Figs. 26.19(a) and (b) ali the simulation
data for STGBs, RGBs, and bulk cleavage (2v)
obtained by means of the two potentials are plotred
against [2C*], Ay) — €YY, Ay)]. As seen from
the figure, both the GB and free-surface energies
are, indeed, reasonably well correlated with the

@

Role of interface dislocations and surfuace steps in adhesion

difference in nearest-neighbor miscoordination,
although the GB dara scatter systematically towards
smaller cleavage energies. By contrast, the scatter
of the free-surface energies alone is much smaller;
the scatter in this case was shown to disappear
compietely when the breaking of 2nd-nn bonds is
also considered in the analysis [19].

As discussed in section 26.2.5, the total work of
adhesion conains, in addition to broken bonds,
an elastuc contribution due 1o the conversion of
the long-ranged dislocation strain fields into the
short-ranged strain fields surrounding the steps
(eq. (26.44)). However, tollowing our discussion in
sections 26.4.1 and 26.4.2, for all the vicinal inter-
faces the (negative) contribution in eq. (26.44) due
to the dislocations dominates over the positive con-
tribution due to the steps. Consequently, for the
same number of broken bonds a ‘vicinal’ interface
has a lower work of adhesion than either a ‘special’
or a ‘high-angle’ interface. The vicinal interfaces
therefore appear to be the reason for the systematic
scatter of the GB data in Figs. 26.19(a) and (b)
towards lower energies. A broken-bond description
of interfacial decohesion (see, for example, the
solid line in Fig. 26. 1%a)) therefore represents an
upper limit for W™, with the elastic effects in
vicinal interfaces causing a lowering of the work of
adhesion due to bond breaking alone.

26.5.2 Broken bonds in steps and dislocations

In the discussion of the role of broken bonds in
section 26.2.5 it was argued that the relatively small
elastic displacements of the atoms situated near
steps and dislocations should not appear in the
miscoordination per unit interface area, C(a, A),
defined in eq. (26.29). In wriling egs. (26.36) and
(26.42) it was therefore assumned that only the cores
of the steps and dislocations cause additional
broken bonds over the cusped interfaces and,
hence, contribute to Cla, 7). In the following, this
assumption will finally be tested.

Starting with the free surface, and recalling
that for the Au(EAM) potential the 2nd-nearest-
neighbor contribution to the surface energy is
negligibly small [19], in Fig. 26.20 we have plotted
the coordination difference (eq. (26.32)),
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A broken-bond model for interfacial decohesion

2.0 Py
/001, Free surfaces
Au(EAM)
1.5+
. 1 Slope = 4.0
_*! |y
= 1.0
Q
0.5
o {100
1 Siope = 2.8 ¢ :
o {110
0.0'J v T A T T T T T +
0.0 0.1 0.2 0.3 0.4 0.5
sin Ay

Fig. 26.20 Coordination difference, AC{1¥a’, defined in eq.
26.57) against sin Ay for the two steps considered in detail 1n
section 26.4. 1. The stopes of the solid lines, C,,..{ 1}k, obtained
from a least-squares fit through the origin, are listed in Table
26.8.

Table 26.8 Nearest-neighbor broken-bond parameters defined
in section 26.2.5 (eqs. (26.32) o {(26.35)) for the two steps
considered in secuon 26.4.1 for the Au {EAM) potential (Fig.
26.20)

Pole axis  Cusped  hia Cutilal CuelDitha®)
plane
{100} (100} 0.5 8.00 4.0
{100} (110} 0.3535 848 2.8
AC(1) = C (1, Ay) — CE (1) cos Ay

-l

[Cyepl 1)/R] sin Ay {26.57)

against sin Ay for the two steps considered in
detail in section 26.4.1. The excellent linearity
of the plots, with slopes C.p(1)/h listed in
Table 26.8, confirms that the additional number of
broken bonds per unit area introduced into the
cusped surface is governed by the total length of
the steps in the vicinal surface.

To demenstrate that only the cores are re-
sponsible for the broken bonds, in Fig. 26.21
the related total-energy increase from the cusp,
WAY) — Y.usp €08 Ay (eq. {26.11b)), is plotted
against AC(1} from Fig. 26.20. If both the step

+ (110)
a  (100)

0.0 0.5 1.0 1.5 2.0
AC()/a®

Fig. 26.21 Total energy increase from the cusp, y(Ay) — Yousp

cos Ay (eq. (26.11b)) against AC(1) from Fig. 26.20. The slight

upwards curvature of the simulation data arises irom the fact
that only the cores of the steps give rise to broken bonds.

cores and their elastic strain fields would cause
broken bonds, a perfectly linear plot would be
expected in Fig. 26.20. However, the slight
upwards curvature clearly evident in the figure is
proof that not all of the energy increase can be
accounted for by bond-breaking alone. Given that
both the sign and magnitude of the deviation from
linear behavior (the latter obtained from a detailed
analysis of the simulation data) are in quantitative
agreement with the repulsive step—step inter-
acuions in Figs. 26.15 and 26.16, we conclude that,
indeed, only the cores of the steps give rise to
broken bonds.

It is interesting to note that the different slopes
obtained in Fig. 26.20 for the (100) and (110) steps
scale quantitatively with the corresponding line
energies, [*/h, listed in Table 26.7, with the larger
energy per unit height of the (100) steps giving rise
to a proportionally larger number of broken bonds.
This leads to the virtual overlap of the (100) and
(110) data in Fig. 26.21, which represents further
proof for the validity of a broken-bond description
of the core energies, independent of the origin of
the broken bonds.

To perform a similar analysis for the GB dis-
locations, in Fig. 26.22 we have plotied the co-
ordination coefficients determined for the (001)
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Fig. 26.22 Courdination coefficients, C(1ya”, for the (0013
STGBs in Fig. 26.19, aganst sin Ay for the two types of
dislocations considered 1 detail in secton 26 4.2, The slopes of
the selid lines, €17k, obtained from a least-squares fit
through the origin, are listed in Table 26.9.

STGBs in Fig. 26.18 against sin Ay for the rwo
types of GB dislocations considered in section
26.4.2. Since the cusped energies vanish in this
particular case (Fig. 26.18), according 10 eq.
(26.57), AC(1) = C1). By contrast with Fig.
26.20, in Fig. 26.22 we have therefore plotred the
total value of C(1) against sin Av. In accordance
with eq. (26.32), Fig. 26.22 exhibits excellent
linearity between the number of broken nn bonds
per unit area and the total length of the dislocation
cores in the different GBs. If the strain fields were
to contribute broken bonds also, their contribution
would be expected 10 be logarithmic rather than
sinusoidal. We therefore interpret Fig. 26.22 as
proof that only the dislocation cores cause broken
bonds.

Table 26.9 Nearest-neighbor broken-bond parameters defined
1n section 26.2.5 (egs. (26.36) to {26.18)) for the dislocations
considered in section 26.4.2 for the Au ‘EAM) potendal (Fig.
26.22)

Pole axis Step bla Cliolta? Cawid 1)i(ba™y
plane

(100} 100) 0.5 0.00 15.5

{100) RN 0.3535 0.00 22.5

()

o Role of mterface distocations and surface steps in adhesion

As lor the steps, the different stopes in Fig.
26,21 associated with the {100} and (110} steps
scale quantitauvely with the corresponding line
energies, A6, listed in Table 26.8, with the larger
energy of the dislocations introduced into the  100)
CUSp giving rise to a proportionally larger number
of broken bonds. While the cusped orientations
have a very low degree of miscoordination in the
GBs as compared to the free surfaces, it is interest-
ing to note the much larger miscoordination per
unit length of the dislocations compared to that of
the steps (cf. Figs. 26.22 and 26.203. This resulr
1s particularly surprising if we recall the approxi-
mately three times larger line energy of the steps
(cf. Tables 26.6 and 26.7). The origin of this
apparent discrepancy is not understood yet; it
appears, however, thar the assumption of a single
interaction-strength parameter, }{u), for the relaxed
cores of both steps (eq. (26.33)} and dislocations
(eq. (26.39)) may be an oversimplification. The
existence of broken bonds due to large elastic
strains, as well as the relatjve contribution of
higher-order-neighbor bonds, may also be of im-
portance in the larter.

We finally mention that, in a sense, the broken-
bond description discussed here may be viewed as
little more than a quantified polyhedral-unit model
[24}; while the structural units of a free surface are
represented by the steps, the corresponding build-
ing blocks of the structure of an internal interface
are the dislocation cores. Such structural-unit
models have been criticized for their inability to (i)
provide a quantifiable description of the interface
structure and (i) incorporate the systematic dis-
tortion of the structural units as a function, for
example, of a steadily varying misorientation angle.
Because the small elastic strains near steps and
dislocations are usually not transmitted into broken
bonds, the broken-bond model suffers from the
same shortcoming in (i) as do structural-unit
models. However, by contrast with structural-unit
modeis, a broken-bond description provides a
Quantitative characterization, in terms of the mis-
coordination per unit area of the related polyhedral
building blocks, of the core contributions to
various physical properties of the interface.
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Summary and conclusions
26.6 SUMMARY AND CONCLUSIONS

In this chapter we have taken the viewpoint that
interfacial decohesion involves the transtormation
of the very long-ranged elastic strain fields near
dislocations into the much shorter-ranged strain
fields surrounding the surface steps. Our main
goals have been to (i} formulate a comprehensive
theoretical framework in which interfacial ideal-
cleavage decohesion is viewed as the reversible
transformation of misfit dislocations into surface
steps, (i1} test the validity of the basic assumpuons
made in deriving the relevant expressions by means
of atomistic computer simulations at zero tempera-
ture, and (iii) elucidate the distinct roles of broken
bonds and of the elastic interactions between inter-
face dislocations and surface steps during interfacial
decchesion.

Within this framework, only the highly distorted
core regions of the steps and dislocations were
shown to give rise to broken bonds, while the
overlapping elastic strain fields surrounding the
two types of line defects are the source of their
elastic interaction. Qur simulations thus not only
provide insight into the very different magnitudes
of the elastic strain fields surrounding steps and
dislocations, respectively, but also permit extraction
of all relevant core parameters.

The main conclusions that have been drawn
from our investigation may be summarized as
follows.

1. The elastic strain-field energies per unit length
of interface dislocations and surface steps differ
dramaticaily. While the long-ranged elastic-
interaction energy between dislocations shows
the well-known logarithmic (Read-Shockley
[8]) variation as a function of ™" (where & is
the separation between the line defects), the
interaction between steps is of much shorter
range, falling off proportionally to 7% By
comparison, the related core energies differ by
much less, with the steps showing a typically
two to three times larger core energy per unit
length than the dislocations.

2. Depending on the relative magnitudes of the
elastic strain-field energies by comparison with
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the related core energies. three types of in-
ternal interfaces and free surfaces may be dis-
tinguished, namely ‘special’, ‘high-angle’, and
‘victnal® interfaces. While the energies of both
special and high-angle interfaces, and their
work of adhesion, are dominated by the broken
bonds, the behavior of vicinal interfaces, 1.e.
those in the vicinity of an energy cusp, Is
governed by both elasuc and core effects. A
broken-bond description of interfacial de-
vohesion is therefore limited to special and high-
angle interfaces.

3. A systematic investigation of the role of the

interface plane demonstrates that the energies
of surfaces and GBs on the special, i.e. most
widely spaced, planes, and the ideal cleavage-
fracture energy of the GBs, are governed by the
interplanar lattice spacing, d(hkl), parallel to
the interface plane. By contrast, on the vicinal
planes the value of dihk{) is irrelevant in both
the energy and work of adhesion.

4. The comparison between interfacial and ideal-
crystal brittle decohesion shows that cusps in
the bulk ideal-crystal cleavage-fracture energy
coincide with peaks in the GB work of adhesion.
Responsible for this interesting behavior is the
significantly smaller miscoordination of the
special GBs as compared to the corresponding
flat free surfaces.

5. Although the magnitudes of the works of ad-
hesion of tilt and twist boundaries differ dra-
matically, the comparison of symmetrical tilt
boundaries, which contain only edge dis-
locations, with high-angle twist boundaries,
represented by the RGB model in which all
screw-distocation cores are assumed to overlap,
shows a qualitatively similar behavior as far as
core and elastic strain-field effects are con-
cerned. This similarity suggests that our basic
conclusions remain the same even when a twist
component is added to a tilt component already
present in the interface. The net effect is a
lowering of the work of adhesion when screw
dislocations are added to the edge dislocations.

In concluding we mention that, although the
absolute values of GB and free-surface energies
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presented throughour this Paper are probably not
very reliable when compared with experimental
results, we hope that the comparison of the relative
cnergies of GBs and free surfaces presented here
IS meaningful, particularly since throughout our
investigation the same generic behavior was ob-
served for conceptually rather different {pair versus
many-body) interatomic potentials.

ACKNOWLEDGMENTS

We have benefited from discussions with Simon
Philipot and Sidney Yip. JA] gratefully acknowi-
edges support from the Office of Nava] Research,
under Coniract No, NO00014-88-F-0019. This
work was supported by the US Department of
Energy, BES-Materials Sciences under Contract
W-31-109-Eng-38.

REFERENCES

1. See, for example, Chapter 25 in this volume.

2. A A, Griffith, Phrl. Trans. R Soc. Lond. A, 221019203,
163,

3. See, for example, Chapter 2 in this volume,

+. See, for example, Chapter 3 in this volume.

5. See, for exampie, Chapter 4 in this volume.

[£3

NGy

12

13,

14

[5.

18.
19.
20,
21
22.

23
24,

25.

&

Role of interface dislocations and surface steps tn adhesion

See, for example, C. Herring, 1n Serucrure and Propernes of
Nobd Surfaces eds R Gomerand €S, Suth i, University
of Chicago Press (1953), p. 4, and references therein,

- Chapter | in this volume.

W. T. Read and Shockley, Phys. Ren. | 78 193¢y, 275,

- DOWOIE T Muter. Res. 3019900, 1708,
- DOWolt, Phat. Muag. A, 63, 1991, 1117,
I

AP Sutton, Phyt, Mag 4,63199] p. 000

M.S. Dawand M. [. Baskes, Phys. Rev. B, 29, 1986,
6443,

DoNolf, Phveca B, 131 T1985), 53,

D Wolf, Aca Merall |, 37 (19893, 1933,

See, for example, P. G. Shewnuan and WM. Robertson, in
Structure und Properties of Sotig Surfaces (eds R. Gomer and
C. 5. Smirh), University of Chicago Press (1953), p. 67.

- V. 1. Marchenko and A. Y. Parshin, Sov. Phys. -FETP, 52

1980}, 129.

- See, for example, C. Goux, Can. Merall, Quarterly, 13

(19743, 9.

D Wolf, 7. Appl. Phys., 691199] i 185,

D. Wolf, Surf. Ser., 226 119901, 38

D Walf, 7. de Physigue, 46 (1985), 197, D. Wolfand J. F.
Lutsko, Z. Kn'smllugmphte, 189 (1989), 239

S AL Lindgren, L. Wallden, J. Rundgren and P. Westrin,
Phys. Rew. B, 29(1984), 576.

S. M. Foiles, M. I, Baskes, and M. §. Daw, Phys. Rev. B,
33(1986), 7983,

D. Woalf, Acrg Merall. Marer ., 38 (1990), 781.

M. Weins, H. Gleiter, and B. Chalmers, Seripta Mewatl | 4
(1970}, 235, and 7. Appl. Phys., 42(1971), 2639,

T. W. Poon, §. Yip,P.S. Hoand F. F. Abraham, Phys.
Rev. Lete. 65(1991)‘ 2161,







